Г. Г. Бортник, В. М. Кичак

ЦИФРОВА ОБРОБКА СИГНАЛІВ В ТЕЛЕКОМУНІКАЦІЙНИХ СИСТЕМАХ

Підручник

Вінниця
ВНТУ
2014
Автори:
Г. Г. Бортник, В. М. Кичак

Рекомендовано до друку Міністерством освіти і науки України як підручник для студентів вищих навчальних закладів. Лист № 1/11-1129 від 05.02.13 р.

Рецензенти:
Л. Н. Беркман, доктор технічних наук, професор
В. В. Поповський, доктор технічних наук, професор
О. М. Шинкарук, доктор технічних наук, професор

Бортник, Г. Г.

Наведено питання теорії дискретних сигналів і лінійних систем, які є основою цифрової обробки сигналів. Описываются особенности обработки сигналов, связанные с ограничением разрядности цифровых устройств: кодирование информации, квантование и преобразование сигналов.

Розглянуто методы синтеза анализаторов спектра, цифровых фильтров и трансмультплексоров для телекомунікаційних систем з імпульско-кодовою модуляцією та дельта-модуляцією.

Призначений для студентів спеціальностей “Телекомунікаційні системи та мережі”, „Технології та засоби телекомунікацій”.

© Г. Бортник, В. Кичак, 2014
<table>
<thead>
<tr>
<th>Таблиця</th>
<th>Сторінка</th>
</tr>
</thead>
<tbody>
<tr>
<td>Зміст</td>
<td>3</td>
</tr>
<tr>
<td>Перелік скорочень</td>
<td>6</td>
</tr>
<tr>
<td>Вступ</td>
<td>7</td>
</tr>
<tr>
<td>1. Перетворення сигналів в телекомунікаційних системах</td>
<td>9</td>
</tr>
<tr>
<td>1.1 Форми подачі сигналів в телекомунікаційних системах</td>
<td>9</td>
</tr>
<tr>
<td>1.2 Теореми відліків</td>
<td>15</td>
</tr>
<tr>
<td>1.3 Існістне перетворення у рівень його впливу на існування</td>
<td>17</td>
</tr>
<tr>
<td>1.4 Собівідності дискретних систем</td>
<td>21</td>
</tr>
<tr>
<td>1.5 Обґрунтування ней логаритмів швидкого перетворення у рівень</td>
<td>30</td>
</tr>
<tr>
<td>1.6 Логаритм з проріджуванням у часі</td>
<td>31</td>
</tr>
<tr>
<td>1.7 Розгортка ліній логаритму з проріджуванням у часі</td>
<td>35</td>
</tr>
<tr>
<td>1.8 Логаритм з проріджуванням ней в часі зі статистичних</td>
<td>38</td>
</tr>
<tr>
<td>1.9 Ритуал використання логаритмів</td>
<td>40</td>
</tr>
<tr>
<td>2. Методи та засоби цифрової модуляції</td>
<td>41</td>
</tr>
<tr>
<td>2.1 Амплітудно-імпульсні модулятори</td>
<td>41</td>
</tr>
<tr>
<td>2.2 Цифроаналогові перетворювачі</td>
<td>45</td>
</tr>
<tr>
<td>2.3 Імпульсно-кодові модулятори</td>
<td>52</td>
</tr>
<tr>
<td>2.4 ІКМ з рівномірним квантуванням</td>
<td>60</td>
</tr>
<tr>
<td>2.5 ІКМ з нерівномірним квантуванням</td>
<td>63</td>
</tr>
<tr>
<td>2.6 Дельта-модуляція</td>
<td>72</td>
</tr>
<tr>
<td>3. Цифрова обробка сигналів в телекомунікаційних системах на базі дискретних базисних функцій</td>
<td>78</td>
</tr>
<tr>
<td>3.1 Трикутні модуль функції оліш</td>
<td>78</td>
</tr>
<tr>
<td>3.2 Існістне перетворення оліш - дійсно</td>
<td>83</td>
</tr>
<tr>
<td>3.3 Видів перетворення оліш - дійсно</td>
<td>85</td>
</tr>
<tr>
<td>3.4 Вовмірне дискретне перетворення</td>
<td>87</td>
</tr>
<tr>
<td>3.5 З ємні перетворення спектрів</td>
<td>90</td>
</tr>
<tr>
<td>Сторінка</td>
<td>Назва</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>91</td>
<td>3.6 теоретико-числові перетворення</td>
</tr>
<tr>
<td>95</td>
<td>3.7 унікві п т перетворення p</td>
</tr>
<tr>
<td>97</td>
<td>3.8 ддитивн скл дність дискретних ортогональних перетворень</td>
</tr>
<tr>
<td>100</td>
<td>4.1 рикл діз стосув ння цифрових н ліз торів спектр в електрозв’язку</td>
</tr>
<tr>
<td>101</td>
<td>4.2 цифровий поточний спектр</td>
</tr>
<tr>
<td>102</td>
<td>4.3 оточний спектр з прямокутним ч соєм вікном і рівновідд ленями ч стот ми</td>
</tr>
<tr>
<td>106</td>
<td>4.4 н ліз спектрів з використ нням прямокутного „ч соєго вікн ” т нерівновідд ленями ч стот</td>
</tr>
<tr>
<td>107</td>
<td>4.5 н ліз спектрів з довільним „ч соєм вікном” т рівновідд ленями ч стот ми</td>
</tr>
<tr>
<td>110</td>
<td>5 цифрове оброблення сигналів в б г ток н лийних систем х зв’язку</td>
</tr>
<tr>
<td>110</td>
<td>5.1 цифрове оброблення сигналів ліз з однією бічною смугою</td>
</tr>
<tr>
<td>114</td>
<td>5.2 цифров інтерполяція сигналів</td>
</tr>
<tr>
<td>124</td>
<td>5.3 перенесення спектр при інтерполяції дискретного сигналу лу</td>
</tr>
<tr>
<td>126</td>
<td>5.4 цифрове формування односмугового сигналу лу</td>
</tr>
<tr>
<td>129</td>
<td>5.5 стоті перетворення при інтерполяції сигналу лу з</td>
</tr>
<tr>
<td>131</td>
<td>5.6 відшкодування ч стоти дискретизації (децим ції)</td>
</tr>
<tr>
<td>133</td>
<td>5.7 відшкодування ч стоти дискретизації ції при вузькосмуговій дискретній фільтрації ції</td>
</tr>
<tr>
<td>136</td>
<td>5.8 використання нерекурсивних і рекурсивних фільтрів при децим ції</td>
</tr>
<tr>
<td>137</td>
<td>5.9 собливості зменшення ч стоти дискретизації ції в цифрових системах</td>
</tr>
<tr>
<td>138</td>
<td>5.10 перенесення спектр при вузькосмуговій фільтрації ції з її зменшенням ч стоти дискретизації ції</td>
</tr>
<tr>
<td>142</td>
<td>6 цифрове оброблення сигналів лів при узгодженні телекомунікацій ційних систем</td>
</tr>
<tr>
<td>142</td>
<td>6.1 г льні відомості</td>
</tr>
<tr>
<td>144</td>
<td>6.2 йпростіші тр немультисплексори</td>
</tr>
<tr>
<td>Розділ</td>
<td>Тема</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------------</td>
</tr>
<tr>
<td>6.3</td>
<td>Трансмультиплексори з додатковим обробленням сигналів</td>
</tr>
<tr>
<td>6.4</td>
<td>Багаторівневі тр нсмультиплексори</td>
</tr>
<tr>
<td>6.5</td>
<td>Реалізація тр нсмультиплексорів</td>
</tr>
<tr>
<td>7</td>
<td>Операції логітмів цифрового оброблення сигналів у системі MATLAB</td>
</tr>
<tr>
<td>7.1</td>
<td>Лінійні відомості про систему MATLAB</td>
</tr>
<tr>
<td>7.2</td>
<td>Функції цифрового спектра льового і лізувати в MATLAB</td>
</tr>
<tr>
<td>7.3</td>
<td>Интеція цифрових фільтрів у системі MATLAB</td>
</tr>
<tr>
<td>8</td>
<td>Реалізація швидких алгоритмів цифрової обробки у телекомунікаційних системах на базі мікропроцесорів</td>
</tr>
<tr>
<td>8.1</td>
<td>Структура системи т реалізація алгоритму</td>
</tr>
<tr>
<td>8.2</td>
<td>Декодування коригувальних кодів з допомогою швидкого перетворення D M P</td>
</tr>
<tr>
<td>8.3</td>
<td>Озділення мажоритарно-ущільнених сигналів з допомогою діодної згортки</td>
</tr>
<tr>
<td>8.4</td>
<td>Різні логітміти</td>
</tr>
</tbody>
</table>

Література........................................................................................................... 230
д птвн диференці льн імпульсно-кодов модуляція
мплітудно-імпульсн модуляція
-1 мплітудно-імпульсн модуляція першого роду
-2 мплітудно-імпульсн модуляція другого роду
mplітудно-ч стотн х р ктеристик
н лого-цифровий перетворюч ч
бікв др тний блок
генер тор лінійно змінютої н пруги
dиференці льн імпульсно-кодов модуляція
дельт -модуляція
dиференці льний підсилюв ч
dискретне перетворення ур’є
дискретні сигн ли
ekсп ндер
eлемент, що змінює ч стоту дискретиз ції
імпульсно-кодов модуляція
інтегр тор
н йпростіш вихідн дискретн систем
неперервні сигн ли
компресор
кінцев імпульсн х р ктеристик
нерекурсивний дискретний фільтр
одн бічн смуг
оберенен дискретне перетворення ур’є
прістрої вибір ння т зберіг ння
перетворюч ч код - н пруг
послідовність м ксим льної довжини
перетворюч ч н пруг - код
прістрій керув ння
тр нсмультіплексор
теоретико-числове перетворення
ф зо-ч стотн х р ктеристик
фільтр нижніх ч стот
цифр- н логовий перетворюч ч
цифров обробк сигн лів
цифрові сигн ли
цифровий фільтр
в
ч сове розділення к н лів
ч стотне розділення к н лів
швидко перетворення д м р
швидке перетворення ур’є
Вступ

Стан та перспективи розвитку інформаційних технологій у ХХІ столітні характеризуються широким використанням засобів цифрової обробки сигналів (ЦОС) – однієї з найміцніших технологій у галузі телекомунікацій. Це інформація тик ре льного чу, призн чен для розв’язання ня я д ч прийм ня, оброблення, скорочення та зв’язки т перерва в ня сигн лїв.

Протягом останніх десяти років ЦОС має зростаючий та першочерговий вплив на більшість ключових технологій індустрії телекомунікацій. Методи ЦОС в системах зв’язку набули великого значення і значною мірою замінюють класичні аналогові методи оброблення сигналів. Зростаючі можливості цифрової техніки забезпечують високу ефективність логічних при ці роз ньці в телекомунікацій цінних систем.

Сучасну світову історію електрозв’язку ще більше, ніж у минулому десятиріччя, вимагає знання та уміння роботи з ЦОС.

Мета даного підручника полягає в тому, щоб ознайомити студентів телекомунікії з інформаційних систем, які вже вивчили дисципліни „Електрозв’язок”, „Інформатика”, „Радіоелектроника” та інші, з найважливішими методами та засобами ЦОС в телекомуніках системах.

Основні питання цифрового спектрального аналізу сигналів у телекомуніках системах викладено у четвертому розділі, та зведені особливості цифрового аналізу спектра з використанням вікна.

Цифрове оброблення сигналів при узгодженні телекомуніках систем розглядається у шостому розділі, при цьому ведено особливості цифрової інтерполяції сигнала, цифрового формування ня односнукового сигналу та використання нерекурсивних і рекурсивних фільтрів при децим ацій.
У сьомому розділі викладено основи моделювання алгоритмів та зобів у системі MATLAB, розглянуто функції цифрового спектр льного та лізу в MATLAB, викон но синтез цифрових фільтрів.

Дев'ятому розділі подано концепцію ре ліз швидких алгоритмів цифрової обробки у телекомунікційних системах, а та з микропроцесорів, ведено особливості декодування китів коригування льних кодів з допомогою швидкого перетворення і розділення м жоритно-уцільнених сигналів з допомогою дії дій згортки.

Ля зручності та почті підручник подано список скорочень. Кінці кожного розділу для кратного з своєї мети введено велику кількість прикладів, контрольних питань, задач, та прикінці підручник – список рекомендованих навчальних посібників.

Втори використали досвід викладання дисциплін підготовки бакалаврів, спеціалістів і магістрів в Інституті радиотехніки, зв'язку та інженерів в Інституті рад
ПЕРЕТВОРЕННЯ СИГНАЛІВ
В ТЕЛЕКОМУНІКАЦІЙНИХ СИСТЕМАХ

1.1 Форми подання сигналів в телекомунікаційних системах

Сигнали є фізичними носіями повідомлень. Одновимірні сигнали описуються матеріальною або комплексною функцією \( x_a(t) \), визначеною на часовому інтервалі \( t' \leq t \leq t'' \). Неперервні сигнали (НС) описуються неперервною (або кусково-неперервною) функцією \( x_a(t) \), причому сама функція \( x \) і аргумент \( t \) можуть приймати будь-які значення на деяких інтервах \( x_a \leq x_a \leq x_a' \), \( t' \leq t \leq t'' \). Приклад НС наведено на рис. 1.1, а:

\[ x_a(t) = U_m \sin 2\pi f T \]

при \( U_m = 1 \text{ В} \) та \( f = 2 \text{ Гц} \). Неперервні сигнали використовуються, наприклад, в системах телефонії, телебачення, радіомовлення [1].

Дискретні сигнали (ДС) описуються послідовностями \( x(nT) \), де \( T=const \) – інтервал дискретизації, \( n \) – ціле число, \( n=0,1,2,... \). Сама функція \( x(nT) \) може приймати довільні значення на деякому інтервалі \( n \). Ці значення функції називаються вибірками або відліками функції. Іншим позначенням функції \( x(nT) \) є \( x(n) \) або \( x_n \). На рис. 1.1, б показана послідовність відліків функції \( x(nT) = U_m \sin 2\pi f T \) при \( U_m = 1 \), \( f = 2 \text{ Гц} \), \( T = 1/16 \text{ с} \). Прикладом застосування дискретних сигналів є телекомунікаційні системи з амплітудно-імпульсною модуляцією.

Цифрові сигнали (ЦС) – це квантовані за рівнем дискретні сигнали і описуються квантованими функціями \( x_c(nT) \), що приймають у дискретні моменти \( nT \) тільки кінцевий ряд дискретних значень – рівнів квантування \( h_1, h_2, ..., h_N \). Кількість рівнів квантування \( N \) і мінімальна кількість двійкових розрядів \( m \) для кодування цих рівнів пов’язані співвідношенням:

\[ m = \text{int}(\log_2 N), \]  

де \( \text{int}(A) \) — н іменше ціле число, не менше .
Наприклад, при $N=16$ кількість розрядів $m=4$.

Рисунок 1.1 – форми подання сигналу: а) неперервні; б) дискретні; в) квантовані

Якщо функція, що кодується може приймати як додатні, так і від'ємні значення, то знак функції подається, як правило, з допомогою спеціального знакового розряду. Інші, з імпульсно-кодовою модуляцією ( ), які використовуються в системах зв'язку, є приклад дом цифрових сигналів лів [1].

озглянемо деякі послідовності, що використовуються в теорії цифрового оброблення сигналів в телекомунаційних системах.

Сув послідовності $x(nT)$ по осі $nT$: послідовність $y(nT)=x(nT-kT)$ з’являється з вляк зсуву послідовності $x(nT)$ на $k$ відліків вправо (при $k > 0$) або вліво (при $k < 0$).

искретні дельта-функції (одиничний імпульс) визнаються співвідношенням

$$
\delta(nT-kT)=\begin{cases} 
0, n \neq k \\
1, n = k 
\end{cases}
$$

Я функція позначена як $\delta$-функція (рис. 1.2, ).
Рисунок 1.2 – елементні сигнали:

а) одиничний; б) одинична послідовність; в) експоненція лін послідовність

н йдемо н літиний з пис послідовності. Визнчення дискретної δ-функції випливає, що будь-яка послідовність $x(nT)$ може бути з пис н у вигляді

$$x(nT) = \sum_{k=-\infty}^{\infty} x(kT)\delta(kT - nT).$$

(1.4)

динична послідовність визнччється співвідношенням

$$u_0(nT-kT)=\begin{cases}0, n < k \\ 1, n \geq k\end{cases}.$$  (1.5)

рис. 1.2, б пок з н послідовність $u_0(nT)$. Диничний імпульс $\delta(nT)$ пов’язний з одиничною послідовністю $u(nT)$ співвідношенням

$$\delta(nT)=u_0(nT)-u_0(nT-T).$$

(1.6)

оді

$$u_0(nT) = \sum_{k=0}^{\infty} \delta(nT - kT).$$

(1.7)
Експоненціальна послідовність визначається співвідношенням 

\[ x(nT) = e^{\alpha nT} \]

де \( \alpha = \sigma + j\omega \) – комплексне число. Рів \( \omega = 0, \alpha = \sigma \) – м тері льне \( x(nT) = e^{\alpha nT} = c^n \) – м тері льн степенев послідовність. Рис. 1.2, в н ведено послідовність \( x(nT) = c^n u_0(nT) \), де \( c < 1 \).

Еріодичною н зив ють послідовність \( x(nT) \), що здовольняє умову \( x(nT) = x(nT+mnT) \), де \( m, i, N \) – цілі числа; \( m = 1, 2, \ldots; NT \) – період послідовності. Еріодичну послідовність дост тьно з д ти н інтерв лі одного періоду, н прикл д, при \( 0 \leq n \leq N-1 \) [2].

Рис. 1.1. Рис. 1.3, зобр жен еріодичні послідовність \( x(nT) = \{1, 1, 0, 0\} \) з періодом \( N=4 \). Рис. 1.5, б н веден т ж с м еріодичні послідовність, де зсунут н д відлік лівіше, тобто послідовність \( x(nT-kT) \) при \( k=-2 \): \( x(nT+2T) = \{0, 0, 1, 1\} \). Розглянутого інтерв лу одного періоду (н прикл д, інтерв лю 0, ..., N-1) легко поб чити, що н виходить в результаті зсуву будь-якого відліку т кий же відлік з’явиться н вході. Кий зсув н зив ється коловим. Лід відмітити, що зсув еріодичної послідовності \( x(nT) \) з періодом \( N \) н \( k' > N \) відліків неможливо відрізнити від зсуву \( (k')_{modN} = k < N \) відліків.

Рисунок 1.3 – Перетворення послідовності шляхом ч сового зсуву

Для описув нія неперервних і дискретних сігналів у ч стотній обл сті використовується п р т перетворення ур’є. Пектрм \( X_a(j\omega) \) неперервного сігналу \( x_a(t) \) н зив ють пряме перетворення ур’є [3]

\[ X_a(j\omega) = \int_{-\infty}^{\infty} x_a(t) e^{-j\omega t} dt. \quad (1.8) \]

Бернене перетворення ур’є д є змогу н основі відомого ч стотного спектр сігналу визн чити його ч сове под нія [3]
Перетворення Фур'є для дискретної функції мають вигляд:

\[
x_d(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_d(j\omega)e^{j\omega t} d\omega. \tag{1.9}
\]

де \(X_d(e^{j\omega T}) = \Phi\{x(nT)\} = \sum_{n=0}^{\infty} x(nT)e^{-j\omega nT}, \tag{1.10}\)

\[x(nT) = \Phi^{-1}\{X(e^{j\omega T})\} = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} X(e^{j\omega T})d\omega, \tag{1.11}\]

де \(X(e^{j\omega T})\) – спектр дискретного сигналу.

Лід відміти ряд властивостей спектрів дискретних сигналів.

1. (1.10) випливає, що спектр \(X(e^{j\omega T})\) дискретної послідовності є періодичною функцією з ч стотою \(\omega\) з періодом, що дорівнює ч стоті дискретизації \(\omega_d = 2\pi/T\); \(X(e^{j\omega T}) = X(e^{j(\omega + k2\pi/T)}T), \ k = 1, 2, \ldots\) розуміло, що ч кож періодичним з ч стотою з періодом \(\omega_d = 2\pi/T\) є модуль спектр \(|X(e^{j\omega T})|\) т фаз – аргумент \(\arg X(e^{j\omega T})\). Крім цього, для дійсних послідовностей \(x(nT)\)

\[|X(e^{j\omega T})| = |X(e^{-j\omega T})|; \]

\[\arg X(e^{j\omega T}) = - \arg X(e^{-j\omega T}).\]

Оскільки модуль спектр дійсної послідовності є парною функцією, аргумент – непарною функцією ч стоти. Рис. 1.4 подано умовне зображення модуля спектра дійсної послідовності. Спектром прямим спектром \(X^+(e^{j\omega T})\) є зону ч стоту спектр \(X(e^{j\omega T})\), розташований в області нижніх ч стот від \(\omega = 0\) до \(\omega = \omega_d/2 = \pi/T\), основним інверсним спектром – ч стоту спектр в області ч стот \(-\pi/T < \omega < \pi/T\).
2. Лінійність перетворення ур'є. Різ суві спектр \( X(e^{j\omega T}) \) послідовності \( x(nT) \) по осі \( \chi \) стот впр во \( n \) величину \( \omega_1 \) отримемо емо спектр \( Y(e^{j\omega T})=X(e^{j(\omega-\omega_1)T}) \). Йому спектру згідно з (1.11) відповід є послідовність

\[
y(nT) = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} Y(e^{j\omega T}) e^{j\omega nT} d\omega = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} X(e^{j(\omega-\omega_1)T}) e^{j\omega nT} d\omega = e^{j\omega_1 nT} \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} X(e^{j\omega T}) e^{j\omega nT} d\omega.
\]

обто, \( y(nT)=e^{j\omega_1 nT}x(nT) \), і сув спектр по осі \( \chi \) стот відпобід є перемноженю послідовності \( x(nT) \) на послідовність \( e^{j\omega_1 T} \). Окремому вип'яку, при \( \omega_1=\pi/T \) отримуємо, що послідовність \( y(nT)=e^{j\pi n}x(nT) \) м є спектр

\[
Y(e^{j\omega T})=X(e^{j(\omega-\pi/T)T}) \quad (1.12)
\]

й спектр н зив ється інверсним відносно спектр \( X(e^{j\omega T}) \) послідовності \( x(nT) \).
3. Різ суві дискретного сигна лу \( x(nT) \) впр во (тобто, при \( z \) тримці \( u \) \( n \)) відліків отрим ємо сигн \( y(nT)=x(nT-n_1T) \) т згідно з (1.10) спектр з трим ного сигна лу

\[
Y(e^{j\omega T})=e^{-j\omega n_1T}X(e^{j\omega T}). \quad (1.13)
\]

4. Искретний сигна л \( x(nT) \) т модуль його спектр \( |X(e^{j\omega T})| \) пов'яз ні т кою з лежністю (згідно з теоремою ресв ля):

\[
\sum_{n=0}^{\infty} |x(nT)|^2 = \frac{T}{n} \int_0^{n/T} |X(e^{j\omega T})|^2 d\omega. \quad (1.14)
\]

Приклад 1.2. Но послідовність \( x(nT)=e^{\alpha nT} \), де \( \alpha<0 \), дійсне, \( n=0,1,2,... \) згідно з (1.11) спектр цієї послідовності буде дорівнює ти

\[
X(e^{j\omega T}) = \sum_{n=0}^{\infty} e^{(\alpha-j\omega)nT} = \frac{1}{1-e^{(\alpha-j\omega)T}}.
\]

Модуль цього спектр

\[
|X(e^{j\omega T})| = \frac{1}{\sqrt{(1-e^{j\omega T} \cos \omega T)^2 + (e^{j\omega T} \sin \omega T)^2}}.
\]
пектр послідовності \( y(nT) = (-1)^n x(nT) \) \( = (-1)^n e^{anT} = \{1, e^{aT}, e^{2aT}, e^{3aT}, \ldots \} \) згідно з (1.13) буде дорівнювати

\[
Y(e^{j\omega T}) = \frac{1}{1 - e^{(a-j(\omega-\pi/T)T)}}.
\]

1.2. Теорема відліків

Енергетичний сигнал \( x(t) \) перетворюється з допомогою дискретизації в дискретні моменти часу \( t = nT, n = 0, 1, 2, \ldots \) відкладення \( x(nT) \) з його дискретними відліками \( x(nT) \) виконується з допомогою використання різних інтерполяційних процедур.

При виконанні умов теореми відліків (теореми отельников), опер цієї дискретизації є взаємно оберненою. Гідно з цією теоремою: якщо \( x(t) \) логарифмічний сигнал \( x(t) \) має кінцевий спектр \( X_a(j\omega) \), то той, що \( X_a(j\omega) = 0 \) при \( |\omega| > \omega_0 \) (умовне зображення модуля спектра гній рис. 1.5, b), то той сигнал \( x(t) \) можна однозначно чи не інераційно визначити як \( x(nT) \), \( n = 0, 1, 2, \ldots \) при \( T = 2\pi/\omega_0 \) де \( \omega_0 = 2\pi f_0 \geq \omega_0 \) ри цьому [4]

\[
x_a(t) = \sum_{n=-\infty}^{\infty} x(nT) \frac{\sin \omega_0 (t-nT)}{\omega_0 (t-nT)}. \tag{1.15}
\]

Ким чином, сигнал \( x_a(t) \) можна відновити, якщо пропустити послідовність \( x(nT) \) через ідеальний фільтр нижніх частот з частотою \( \omega_0 = \pi/2 \).

Пектр \( X(e^{j\omega T}) \) послідовності \( x(nT) \) отриманої в результаті дискретизації \( x(nT) \) через ідеальний фільтр нижніх частот \( x_a(t) \), і спектр \( X_a(j\omega) \) є схематичні співвідношенням [2]

\[
X(e^{j\omega T}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_a(j(\omega + k\omega_0)). \tag{1.16}
\]

Однак, спектр послідовності \( x(nT) \) дорівнює, з точністю до множник \( 1/2 \), сумі спектрів відповідного сигналу \( x_a(t) \), які зміщено по осі \( \omega \) на допустимі значення частоти дискретизації \( \omega_0 = 2\pi/2 \).

Рис. 1.5, б і 1.5, в ведено умовне зображення модуля спектра \( |X(e^{j\omega T})| \) дискретного сигналу \( x(nT) \) відповідно для випадки \( \omega_0 \geq 2\omega_0 \) і \( \omega_0 < 2\omega_0 \). Перший випадок джу дискретного сигналу \( x(nT) \) збігається з інтервал \( |\omega| \leq \omega_0 \) спектром \( \omega_0 \) відповідно для випадку \( \omega_0 \geq 2\omega_0 \). В другому випадку джу м є місце явище кл д ня спектрів, при якому спектр дискретизованих ного
сигналу не збігається на інтервалі $|\omega| \leq \omega_0$ з вихідним спектром $x(t)$.

Таким чином, якщо $x_a(t)$ має фінітний спектр $X_a(j\omega)$ з частотою $\omega_0$, то він може бути без втрат інформації поданий послідовністю $x(nT)$, яка отримується в результаті дискретизації $\omega_d \geq 2\omega_0$. (1.17)

У системах зв'язку в багатьох випадках спектр $X_a(j\omega)$ не має частоти $\omega = 0$, зосереджений у деякій смугі $0 \neq \omega_{\min} \leq \omega \leq \omega_{\max} < \infty$. Крім цього, наприклад, спектр радіосигналу з амплітудною модуляцією (рис. 1.5) [5]

![Рисунок 1.5](image1.png)

исунок 1.5 – спектри дискретизованих сигналів для різних частот дискретизації

![Рисунок 1.6](image2.png)

исунок 1.6 – спектр амплітудно-модулюваного сигналу

<table>
<thead>
<tr>
<th>$X_a(j\omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$X(e^{j\omega T})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_d$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$X(e^{j\omega T})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_{\max}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$X(e^{j\omega T})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_{\min}$</td>
</tr>
</tbody>
</table>
т ких вип джк для точного под ня послідовностю вибірок викон ня умови (1.17) призводить до з вищення необхідної ч стоти дискретиз ції. ля т ких вузькосмугових сигн лів ч стоту дискретиз ції о_д=2π/ з д ють нерівністю [1]

\[ 2\omega_{\text{max}}/q \leq \omega_0 \leq 2\omega_{\text{min}}(q-1), \]  \( q=1, 2,..., E_u[\omega_{\text{max}}/(\omega_{\text{max}}-\omega_{\text{min}})] \).

пис \( u[A] \) озн ч є <<цил ч стин числа >>. кшоч ч стот \( \omega_0 \) обр н недост тньо високою і (1.18) не з довольняється, то м ють місце н кл д ня зсунених спектрів і в результ ті спектр \( X(e^{j\omega T}) \) дискретного сигну лу в ді п зоні \( -\omega_0/2 \ldots \omega_0/2 \) відрізняється від спектр н логового сигну лу \( X_a(j\omega) \), тобто дискретиз ція н логового сигну лу призводить до втр ти інформ ції.

1.3 іскретне перетворення ур’є т його вл стивості

іж послідовностями, под ним у ч совий і ч стотній обл стях, є одноzn чн відповідність. ех \( x(nT) \) – періодичн послідовність з періодом \( NT \), тобто \( x(nT)=x(nT+mNT) \), де \( m \) – ціле число. іскретним перетворенням ур’є ( ) н зв ють п ру перетворень [3]:

\[ X(k) = X(k\Omega) = \sum_{n=0}^{N-1} x(nT)e^{-jkn\Omega T}, \quad k = 0,1,...,N-1; \]  \( k = 0,1,...,N-1; \)

\[ x(n) = x(nT) = \frac{1}{N} \sum_{k=0}^{N-1} X(k\Omega)e^{jkn\Omega T}, \quad n = 0,1,...,N-1, \]  \( n = 0,1,...,N-1. \)

de \( =2\pi/(NT) \) – основн ч стот перетворення (бін ).

ричому (1.19) н зв ється прямим , (1.20) – оберненим . ікорист ня поверт льного множник

\[ e^{j\Omega T}=e^{j2\pi/N} = W_N \]  \( (1.21) \)

d є змогу з пис ти і у вигляді [2]

\[ X(k) = \sum_{n=0}^{N-1} x(n)W_N^{kn}, \quad k = 0,1,...,N-1; \]  \( k = 0,1,...,N-1; \)

\[ x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)W_N^{-kn}, \quad n = 0,1,...,N-1. \]  \( n = 0,1,...,N-1. \)
дискретне перетворення ур'є є $X(k)$ т к с мо, як і послідовність $x(n)$ є періодичною функцією з рументом $k i z$ періодом $N$, тому що $W_N^{kn} = W_N^{(k+mN)n}$. може бути використоно і для под ня послідовності $x(nT)$ скінченна довжини $N$, визн ченої при $n=0,1,2...N-1$ і рівної 0 поз інтрив лом [0, N-1].

рікд 1.3. ек й з д но послідовність

$$X(nT)= \begin{cases} e^n, & 0 \leq n \leq N-1 \\ 0, & n < 0, n \geq N \end{cases}.$$ 

н йдемо цієї послідовності. гідно з (1.22)

$$X(k) = \sum_{n=0}^{N-1} e^{kn}W_N^{kn} = \sum_{n=0}^{N-1} (e^{-j2\pi k/N})e^{kn} = \frac{1-e^{N}}{1-e^{-j(2\pi/N)}k}.$$ 

ричуому вр хов но, що $W_N^{kN} = e^{-j(2\pi/N)Nk} = e^{-2j\pi k} = 1.$

ідмітимо, що якшо порівняти спектр кінцевого дискретного сигналу, визн чено з формулою (1.9) (з ур хув ням того, що $x(nT)=0$ при $n<0$ т $n>N-1$), т цього ж сигналу (1.22), то очевидно, що являє собою $N$ відліків спектр , взятих з ч стотою дискретизації $=2\pi/NT$. ому вл стивості н логічні вл стивостюстам спектрів. озглянемо деякі з цих вл стивостей.

1. інійність. ек й послідовності $x_1(n )$ і $x_2(nT)$ м ють довжину $N$; $1, 2, - ст лі і $x_3(nT)=ax_1(nT)+ax_2(nT)$. оді послідовностей можно з пис ти $X_3(k)=X_1(k)+aX_2(k)$, причому усі $X_1(k),X_2(k),X_3(k)$ м ють довжину $N$. кщо $x_1(nT)$ м є довжину $N_1$, а $x_2(nT)$ – довжину $N_2$, то довжин $N_1$ лінійної комбін $x_1(nT), x_2(nT), x_3(nT)$ повинні розр ховув тися при $N=N_3$. кщо, н прикл д, $N_1>N_3$, то $X_1(k)$ розр ховується в $N_1$ точк x:

$$X_1(k) = \sum_{n=0}^{N_1-1} x_1(n)W_{N_1}^{kn}, \text{ послідовність } x_2(nT) \text{ доповнюється } (N_1-N_2) \text{ нулями, і т кож розр ховується в } N_1 \text{ точк x: } X_2(k) = \sum_{n=0}^{N_1-1} x_2(n)W_{N_1}^{kn}, k=0,1,2,...N_1-1.$$ 

2. сув послідовностей. ек й $x(nT)$ – періодич послідовність з періодом $N$ – м є $X(k)$ т $y(nT)=x((n+m)T)$. оді зсуненої послідовності

$$Y(k) = \sum_{n=0}^{N-1} y(n)W_N^{kn} = \sum_{n=0}^{N-1} x((n+m)T)W_N^{kn}.$$ 

кщо в ост нній сум викон ти з міну змінних $n+m=n'$, тоді

$$Y(k) = W_N^{-kn}X(k).$$
3. Основні відмітки. Інтерпретації зовнішньої послідовності \( X(k+l) \) є коефіцієнтами операції \( W_N^{nl} x(nT) \) послідовності, які приводять до комплексних функцій, які вміщують складові – \( n \) рівні функції (симетричні послідовності) \( \text{Re} X(k) = \text{Re} X(N-k) \), уявні складові – 
непарні функції \( \text{Im} X(k) = -\text{Im} X(N-k) \). Симетричної послідовності \( x(nT) = x((N-n)T) \) є матеріальною функцією.

4. Згортка дискретних інформів. Якщо \( x_1(nT) \) та \( x_2(nT) \) – періодичні послідовності з періодом \( N \), тоді

\[
y(nT) = \sum_{m=0}^{N-1} x_1(mT)x_2(nT-mT) = \sum_{m=0}^{N-1} x_1(nT-mT)x_2(mT) \quad (1.24)
\]

тож може бути одинично та послідовністю з періодом \( N \) відліків. Інтеграл з (1.24) інтегральна згортка послідовностей \( x_1(nT) \) та \( x_2(nT) \), які відповідно дорівнюють \( X_1(k) \) та \( X_2(k) \):

\[
Y(k) = \sum_{n=0}^{N-1} \left( \sum_{m=0}^{N-1} x_1(m)x_2(n-m) W_N^{nk}\right) = \sum_{m=0}^{N-1} x_1(m)\left( \sum_{n=0}^{N-1} x_2(n-m) W_N^{(n-m)k}\right) = X_2(k) \sum_{m=0}^{N-1} X_1(m) W_N^{mk} = X_1(k) X_2(k). \quad (1.25)
\]

Інтегральна згортка послідовності \( x_3(nT) \) дорівнює добутку \( x_1(nT) \) та \( x_2(nT) \), кожен із послідовностей \( x_1(nT) = x_1(nT) \) \( x_2(nT) \) має \( \text{Період} = N \), тому її достатньо розрахувати для точок \( n = 0, 1, 2 \):

\[
Y(0) = x_1(0)x_2(0) = 0;
\]

\[
Y(t) = x_1(0)x_2(T) + x_1(T)x_2(0) = 0 + 1 = 1;
\]

\[
Y(2T) = x_1(0)x_2(2T) + x_1(T)x_2(T) + x_1(2T)x_2(0) = 1.
\]
Таким чином, \( y(nT) = \{0, 1, -1\} \).

ідповідно дорівнюють:

\[
X_1(k) = \sum_{n=0}^{2} x_1(n) e^{-j\frac{2\pi}{3}kn},
\]

\[
X_2(k) = \sum_{n=0}^{2} x_2(n) e^{-j\frac{2\pi}{3}kn},
\]

\[
Y(k) = X_1(k)X_2(k).
\]

ри \( k = 0, 1, 2 \).

інклячу згортку (1.24) можна розр рух ти з використ ням з т ким логритмом [6]:
- розр рух ти згідно з (1.22) \( X_1(k) \) т \( X_2(k) \) для послідовностей \( x_1(nT) \) т \( x_2(nT) \);
- розр рух ти \( Y(k) \) для згортки \( y(nT) \);
- зн йти \( y(nT) \) шляхом розр руху згідно з (1.23) послідовності \( Y(k) \).

Пр кий з метою зменшення об’єму розр рух ків для ре ліз ції вк з ного логритму використовуються різні логритми швидкого перетворення ур’є.

рикл 1.5. озглянемо розр рух ніній згортки для дискретних сим лів, з д них у попередньому прикл ді з допомогою н веденого вище логритму.

1. пишемо \( x_1(nT) \) т \( x_2(nT) \): \( x_1(0) = 1, x_1(T) = 2, x_1(2T) = 0, x_1(3T) = 0, x_2(0) = -2, x_2(T) = 1, x_2(2T) = 2, x_2(3T) = 0. \)

2. н йдемо \( X_1(k) \) т \( X_2(k) \):

\[
X_1(0) = 3, X_1(1) = 1 - 2j, X_1(2) = -1, X_1(3) = 1 + 2j,
\]

\[
X_2(0) = 1, X_2(1) = -4j, X_2(2) = 1, X_2(3) = -4 + j.
\]

3. озр хуємо \( Y(k) = X_1(k)X_2(k) \):

\[
Y(0) = 3, Y(1) = -6 + 7j, Y(2) = 1, Y(3) = 6 - 7j.
\]

4. н йдемо \( y(nT) \):

\[
y(0) = -2, y(T) = -3, y(2T) = 4, y(4T) = 4.
\]

ній резуль полі збігається з резуль т ми попереднього прикл ду.

еозередній розр рух н згортки з формулою (1.24) потрібно виконув ти в тому вип дку, коли одн з величин \( N_1 \) бо \( N_2 \) не перевишує 50...100. тому вип дку, коли \( N_1 \) т \( N_2 \) м ють велики з чення, більш ефективним з кількістю опер цій є розглянутий вище логритм із з стосув нням т .

20
ЛІТЕРАТУРА


7. Ольденберг . . . Цифровые фильтры в электросвязи и р. диотехнике / . . . ручченко, . . . утыйльский, . . . ольденберг. – . . . . дю и связь, 1982. – 224 с.

8. Ольденберг . . . Цифровые фильтры для вузов / Ольденберг . . . . тюшкин . . . . оляк . . . . . . дю и связь, 1990. – 256 с.


15. Лейхут . Быстрые алгоритмы цифровой обработки сигналов / Лейхут . . . пер. с нгл. ; под ред. . . . рушко. . . . дю и связь, 1989. – 448 с.
ЦИФРОВА ОБРОБКА СИГНАЛІВ В ТЕЛЕКОМУНІКАЦІЙНИХ СИСТЕМАХ

Підручник

Редактор Т. Старічек
Оригінал-маєт підготовлено Г. Бортником

Підписано до друку 30.01.2014 р.
Формат 29,7×42¼. Папір офсетний.
Гарнітура Times New Roman.
Друк різографічний. Ум. друк. арк. 15,1.
Наклад 300 (1-й запуск 1-100) прим. Зам. № 2014-021.

Вінницький національний технічний університет,
навчально-методичний відділ ВНТУ.
21021, м. Вінниця, Хмельницьке шосе, 95,
ВНТУ, ГНК, к. 114.
Тел. (0432) 59-85-32.
Свідоцтво суб’єкта видавничої справи
серія ДК № 3516 від 01.07.2009 р.

Віддруковано у Вінницькому національному технічному університеті
в комп’ютерному інформаційно-видавничому центрі.
21021, м. Вінниця, Хмельницьке шосе, 95,
ВНТУ, ГНК, к. 114.
Тел. (0432) 59-87-38.
Свідоцтво суб’єкта видавничої справи
серія ДК № 3516 від 01.07.2009 р.