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INTRODUCTION 

Higher mathematics for non-mathematical specialties in higher education institutions 
contains five mathematical components with different level of detail - linear algebra, 
mathematical analysis, probability theory, functions of a complex variable and vector algebra. 
But this is not enough for the effective learning of some special subjects in the field of 
information technologies, and therefore the curricula of some of these specialties contain 
other mathematical components, among which an important role is played by the 
mathematical component called “Functional analysis” and which, in fact, is the “second floor” 
over the “Mathematical Analysis” component. 

It is known from mathematical analysis that a function is a law according to which one 
numerical set corresponds to another numerical set. 

Graphically, this can be displayed as shown in fig. B.1. 

X Y 

f 

Figure B.1 – Graphical interpretation of the term function 

Conventionally, the function is most often written as follows 

  YyXxxfy  ,, ,  (1) 

or  

  YyXxxyy  ,, ,, (2) 

where   –is the symbol of the element belonging to the set. 
If the function f assigns only one number Yy  to each number Xx , then, as is 

known from mathematical analysis, such a function is called a single-valued, and if the 
function assigns two or more numbers to each number, then such function is called a multi-
valued. 

A function can be specified in the form of a table, a graph, or one or more formulas. 
A function the graph of which has no discontinuities belongs to the continuous class, 

and a continuous function the graph of which does not contain breaks and therefore has a 
continuous first derivative belongs to the smooth class. 

A continuous function whose graph has breaks, and therefore its derivative - the breaks 
of the 1st type, belongs to the class of piecewise smooth. 

From the same subject of  “Mathematical analysis” it is known that a functional is a law 
according to which a set of functions is matched to a set of numbers. 

Graphically, it looks as shown in fig. B.2. 

Figure B.2 – Graphical interpretation of the concept of functional 

Y(X) 

J(Y) 

J 
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Conventionally, the functional is most often written as follows 

        JJXYxyXxxxyJJ yy  ,,,, .  (3) 

Examples of functional can be definite integrals: 

  
b

a
y dxxyJ   (4) 

or 

  
b

a

f
y dxyxfJ , ,  (5) 

or 

   
b

a

F
y dxyyxFJ ,, ,  (6) 

in which  yxf ,  – is a mathematical expression that is a construction from an independent 

variable x  and its function  xy , and  yyxF ,,  – is a mathematical expression that is a 

construction from an independent variable x , its function  xy , and the first derivative 

 xy   of this function; at the same time, the segment   ba,  is the domain of the function 

 xy , i.e.  bax , . 

So the function sets the law according to which each element from one numerical set is 
matched with some element from another or the same numerical set, and the functional sets 
the law according to which each element from the set of functions is matched with some 
element from the set of numbers. 

Then, there is a question: “Is it not possible to find a law according to which each 
element from a set of functions is matched by some element from another or the same set of 
functions?” 

The answer to this question is positive, and the mathematical concept that characterizes 
such a law is called an operator in mathematics. 

For example, between a set of continuous functions on a segment  ,a b  and a set of 

derivatives of these functions    , ,f t t a b  there is a one-to-one correspondence, which is 

given by the differentiation operator 
d

D
dt

 , for example, the function 

 2ty    (7) 

corresponds to the derivative 

 ,2t
dt

dy
  (8) 

which is also a function of the same independent variable. 
Analyzing the program of the educational subject “Mathematical analysis”, it is easy to 

realise that this mathematical discipline is dedicated to the study of the properties of functions 
and operations with them, the main of which are differentiation and integration. And it does 
not pay attention at all to the study of the properties of functional and operators as 
independent mathematical objects. Therefore, a separate mathematical component called 
“Functional analysis” is dedicated to the study of these mathematical objects, which is studied 
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by students of all mathematical specialties at universities and which is also included in the list 
of mandatory mathematical disciplines for students and postgraduates of some IT specialties. 

The mathematical discipline “Functional analysis”, which is studied by students of 
mathematical specialties at universities, is a set of concepts and theorems that combine these 
concepts into a single mathematical structure, and therefore it contains 90 percent of the 
material dedicated to the formulation and proof of these theorems . At the same time, it is 
more important for IT students to be able to use this material in practical applications. That is 
why we built our study guide using material dedicated mainly to the presentation of the main 
concepts and final results obtained in the theory of functional analysis and their application to 
the solution of the applied problems that IT specialists face with. The program material of the 
subject is presented in six chapters, the first of which is dedicated to sets, metric spaces and 
their characteristics; the second – theories of measure and integrals of Riemann, Lebesgue and 
Stieltjes; the third – to functional and methods of finding their unconditional extrema; the 
fourth – methods of finding conditional extrema of functional; the fifth – theory and applied 
aspects of the use of operators; the sixth – characteristics and recommendations for the 
application of several special operators, such as direct and inverse Laplace operators and 
autoregressive operators, which are widely used in system analysis and applied information 
technologies. 

In conclusion to this brief introduction to functional analysis it is necessary to note that  
in the English-language version of the textbook the authors used all the references listed in the 
bibliography, but without specification of the source, which is typical of monographs and 
scientific papers. And the material which is taken from the Ukrainian-language manuals, 
written by the authors themselves about the basics of functional analysis and some specific 
subjects in which the concepts of functional analysis are used, which we use in this textbook 
to demonstrate the solution of specific applied problems, we present without quotation marks 
and references. 

The differences between this textbook and other study guides on functional analysis is, 
first of all, in a different structuring of the study material and its selection since this textbook 
is focused on solving those applied problems, that a specialist in information technologies 
confronts with. Moreover, each applied problem is accompanied by the developed computer 
program for implementing its algorithms in the Python language. 
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Chapter 1. SETS AND METRIC SPACES, THEIR CLASSES  

AND CHARACTERISTICS 
 
1.1 Sets, subsets and their characteristics 
 

The concept of a set in mathematics is understood as a collection of objects of a certain 
nature, which are called its elements. A set is given if all its elements and the rule according 
to which the elements belong to the set are known. 

The elements of the set can be, for example, all the rivers flowing through Ukraine, or 
all natural numbers on the number line, or all real numbers located on the segment [0,1] of the 
number line, or all continuous functions whose arguments are given on this segment of the 
number axis. 

In mathematics, sets are denoted by uppercase letters of the Latin or Greek alphabets, 
and their elements are denoted by lowercase letters from the same alphabets, for example, 

,  ,  ,  ,  ,  ,  ,   A B X Z      – are sets, and ,  ,  ,  ,  ,  ,  ,  a b x z       are elements. A symbolic 

entry indicates ,Xx  that an element belongs to a set, and a symbolic entry indicates Xx – 
that it does not belong to a set. A set with a finite number of elements is called a finite set, 
and a set with an infinite number of elements is called an infinite set. An example of a finite 
set is the set of cars registered in Ukraine, and an example of an infinite set is the set of real 
numbers on the segment [0,1] of the number axis. If the elements of the set A are a finite 
numerical sequence with n members, then symbolically it can be written as 

 , 1,  2,  ...,  iA a i n  . If the elements of this set A are an infinite numerical sequence of 

members, then it can be symbolically written in the form  , 1,  2,  3...iA a i   . A Set that 

does not contain any element, is called an empty set and is denoted by the symbol 0  or O , 
which does not need to be equated with the number “zero”. 

If the sets A  and B  consist of the same elements, then they are considered equal, as 
evidenced by the record BA  . If not all the elements of the set A  are included in the set B , 
then the set A  is called a subset of the set B , as evidenced by the record BA . For 
example, on the number line, the set of rational numbers ,R  each of which is known to be the 
ratio of two integers, is a subset of the set Z of real numbers. If we are not sure that the 
subset of the set A contains fewer elements than the set B, then we write it like this: .BA  

When two sets A and B are combined, a new set M is formed, which is called their sum 
and which contains all the elements of both of these sets, and each identical element of both 
sets is included in their sum M as one element - symbolically, the sum is written as follows: 

 BAM    (1.1) 

For example, if A and B and are numerical sets, where 

  5,4,3,2,1A ,   8,7,6,5,4B ,   (1.2) 

then, according to (1.1), we will have 

       1,2,3,4,5 4,5,6,7,8 1,2,3,4,5,6,7,8M A B       (1.3) 

At the intersection of two sets A  and B , a new set P is formed, which is called their 
intersection and which contains only those elements of both sets that are the same, and each 
of these identical elements of both sets is included in their intersection as one element - the 
intersection is symbolically written as follows: 

 BAP    (1.4) 

For numerical sets (1.2) given in the conditions of the previous example, according to 
(1.4), we have  
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       5,48,7,6,5,45,4,3,2,1  BAP   (1.5) 

For the sum and the intersection of sets ,  ,  A B C  the following properties are valid: 
Asociality 

      CBACBA  ,  (1.6) 

     CBACBA  ,  (1.7) 

Commutativity 

  ABBA  ,  (1.8) 

   ABBA  ,  (1.9) 

Distributiveness 

       CBCACBA  ,  (1.10) 

       CBCACBA    (1.11) 

And for the sum and intersection of a set A with itself and with its subset B, the 
relations are valid 

  ,AAA   (1.12) 

  ,AAA   (1.13) 

  ,ABA   (1.14) 

  BBA   (1.15) 

The set Q consisting of the elements of the set A that are not included in the set B is 
called the difference of these sets and is denoted as BA  or BA \  , i.e. 

  BABAQ \   (1.16) 

It is quite obvious that in the general case 

   ABBA     (1.17) 

For example, for numerical sets (1.2) 

   3,2,1 BA ,  (1.18) 

   6,7,8B A    (1.19) 

If the set A is a subset of the set B, then the difference AB  is called the complement 
of the set A to the set B and is symbolically denoted as ACB , i.e. 

  ABACB    (1.20) 

For example, the set R   of irrational numbers on the number line is the complement of 
the set R of rational numbers to the set Z of real numbers, i.e. 

  RZRCR Z    (1.21) 

If the sets , 1,  2,  ...,  iA i n  are subsets of the set A, then the relations are valid 

   nAnAAA AAACACACAC  ...... 2121 ,  (1.22) 

   nAnAAA AAACACACAC  ...... 2121 ,  (1.23) 
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the correctness of which is easy to verify graphically, for example, for  n = 3, іf the set A is 
represented in the figure as a square with three circles inscribed in it, representing the subsets 
of 1 2 3,  ,  .A A A  

An important characteristic of sets is their equivalence, according to which sets A,B are 
considered as equivalent if, according to some rule, each element Aa  is matched by one 
unique element Bb , and each element Bb  is matched by one unique element Aa . For 
example, a set A of privately owned passenger cars, each of which is registered to only one 
owner in a certain settlement, and a set B of people who own these cars are equivalent. The 
rule by which the equivalence of these sets is established is the entry of the owner's surname 
in the vehicle passport. 

And in order to compare non-equivalent sets, the concept of their power is introduced, 

which for the set A is symbolically written as A  and which is determined by something 
common that occurs in all sets equivalent to the one under consideration. It is obvious that 
finite sets of different natures have only the number of their elements in common, and 
therefore, if a set A has n of elements, and a set B has m  of elements and at the same time 

mn , then we state that the set A has a power greater than the set B. 
But there arises a question: “And how to compare the power of infinite sets, each of 

which has an infinite number of elements?”. 
In mathematics, it is established that of all infinite sequences, the natural series N 

approaches infinity the fastest since each of its subsequent numbers is equal to the previous 
number increased by one, and at the same time, when forming this series, all real numbers 
that are contained on the number axis in each such unit are omitted. And therefore the natural 
series, which is an infinite series of numbers, is an infinite set of the lowest power, 
symbolically denoted by a small Latin letter ,a  that is, 

  ,N a   (1.24) 

and all other infinite sets will be compared among themselves, based on how they are related 
by power to the power of the natural series, determined by the relation (1.24). And all 
infinite sets with the power of a natural series are called countable sets, since each of their 
elements can be assigned an index equal to the corresponding number of the natural series, 
due to which each of their elements can be counted. 

And the first fact that was established in mathematics after the agreement regarding the 
power of the natural series is that the power of the set Z of real numbers given on the 
interval [0,1] is bigger than a. 

The proof of this fact is simple - if you add a sequence of real numbers 1 2 3,  ,  ,  ...x x x  on 

the segment [0,1] of the numerical axis so that each subsequent number is three times smaller 
than the previous one, and divide this segment [0,1] into three equal segments 1  each with a 

width of at least one a point 1x  will not enter from these segments. Let's divide the segment in 

which the point 1x  did not enter, also into three equal segments of width 2  each, and choose 

the one from them in which the point 2x . did not enter. According to this algorithm, we will 
continue this process ad infinitum. As a result, on the segment [0,1] of the numerical axis, we 
will receive a counted set 1 2 3,  ,  ,  ...,   , the elements of which are smaller and smaller 

segments of the segment, and next to which, on the same segment, there is a previously 
calculated set of numbers 1 2 2,  ,  ,  ...,x x x ,, none of which falls into any of these segments . And 

this means that there are more real numbers on the segment [0,1] of the number axis than 
there are numbers of the natural series on the entire number axis, which allows us to conclude 
that the power of an infinite set of real numbers on the segment [0,1] is greater than the 
power of the natural series, which is a countable set. 
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In mathematics, the power of an infinite set of real numbers on the interval [0,1] is 
called the power of a continuum denoted by a lowercase Latin letter c, therefore, the 
inequality is valid 

  .c a   (1.25) 

Moreover, it was established that for  powers c, a the inequality (1.25), as well as  the 
equality 

  2 .ac    (1.26) 

are real. 
 

To prove the equality (1.26), we will use the method of mathematical induction 
according to the algorithm: we will consider successively which powers 0 1 2 3 ,  ,  ,  n n n n  

will have sets  generated by finite sets        0 1 1 2 1 2 3 1 2 3, , , , , , ,A O A a A a a A a a a     if 

all possible subsets generated by the elements of these finite sets are introduced as elements 
into each of the generated sets. Bearing in mind that the number of combinations of elements 
of  C from the n of the elements on m, as is known from the high school mathematics, shall be 
determined according to correlation 

   !!

!

mnm

n
C m

n 
 , (1.27) 

we will find that: 

  

0 0
0 0

0 1 1
1 1 1

0 1 2 2
2 2 2 2

0 1 2 3 3
3 3 3 3 3

0!
1 2 ,

0!0!
1! 1!

1 1 2 2 ,
0!1! 1!0!

2! 2! 2!
1 2 1 4 2 ,

0!2! 1!1! 2!0!

3! 3! 3! 3!
1 3 3 1 8 2 .

0!3! 1!2! 2!1! 3!0!

n C

n C C

n C C C

n C C C C

    

        


           


              


  (1.28) 

According to the ideology of the method of mathematical induction, it follows from 

relations (1.28) that if a finite set  1 2 3,  ,  ,  ...,  n nA a a a a  has n elements, then the power 

nn  of the set generated by it, which includes all possible subsets of this set, will be equal to 

  2 .n
nn    (1.29) 

And hence the conclusion that if the power of the counted set is ,a  equal to the 
power of the infinite set of real numbers generated by it on the interval [0, 1], the 
elements of which are all possible subsets of the elements of this set, will be equal to two 
to the power of ,a  which proves the validity of the equality (1.26 ). 

And now let's return to the expression (1.21), according to which the set Z of real 
numbers on the segment [0, 1] of the numerical axis is the sum of the subset R of rational 
numbers and the subset R  of irrational numbers given on the same segment. 

As is known, each rational number is the ratio of two integers, and if this rational 
number is less than one, then its numerator is always an integer that is smaller than the 
number in the denominator. Since the integers are elements of the natural series, which is a 
countable power set, then these numbers can be counted both in the numerator and in the 
denominator, and therefore the subset of rational numbers on the segment [0, 1] of the 
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number axis is also a countable set of power a. The above fact has two consequences, the 
first of which proves that the subset of irrational numbers on the specified segment is an 
infinite set of the power of the continuum c, because only due to this subset  the set of real 
numbers on the specified segment will have the power c that we have already shown above 
with respect to the set of real numbers. And the second consequence is the statement that if 
any counted subset is added to the power set of the continuum, the power of their sum 
remains equal c. 

And then we pay attention to the fact that all unit segments on the number axis, located 
between adjacent natural numbers, can be counted by assigning to each of them an index 
equal to the natural number placed on the right border of each such unit segment, so a subset 
of unit segments, placed between natural numbers on the number axis, is a counted set of 
power ,a , which is a smaller power of the continuum of the unit segment [0, 1] of the number 
axis. So, based on this statement, we can draw an important conclusion that the entire axis of 
real numbers is a multiple of the power of the continuum c. 

But, as we have already shown above, the set that is generated by the union of all 
possible subsets of the generic set of a certain power has a power equal to two to the 
power equal to the power of the generic set. And from this fact we draw the conclusion: the 
power f of the set of all functions f(x) the argument x of which is set on the segment [0, 1] 
(or on the entire numerical axis) of the power of the continuum c is equal to two in the 
power of c, that is, 

  cf 2   (1.30) 

This is where we will finish the consideration of the material of the subsection 
dedicated to sets, subsets and their characteristics, which we will need when explaining the 
basics of functional analysis. Those who wish to learn more about this area of mathematics 
are referred to textbooks on set theory or functional analysis, which are used by students of 
mathematical specialties at universities. 

 
 

 
1.2 Metric spaces and their classes and characteristics 

 
Set 

   , , , , , ,x y z u v      (1.31) 

of the elements of some nature are called metric space if each ordered pair of elements 
,x y  is in line with an integral number  ,x y , which is called the metric of space 

 , if this number satisfies three axioms of metrics: 
1) axiom identity 

   , 0x y    (1.32) 

then and only then,  when 

  x y ;  (1.33) 

2) axiom symmetry 

     , ,x y y x  ;  (1.34) 

3) the triangle axiom 

       , , ,x y y z x z    .  (1.35) 
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Considering these axioms we see that the metric  ,x y  of space   sets the 

distance between the elements x , y of this space. 
The elements of the metric space are called points. 

 
Examples 

 
1. For a three-dimensional Euclidean space ЗE  the distance between points 

 1 2 3,  ,  x x x x  and  1 2 3,  ,  y y y y  ( , Зx y E ) is determined by an 

expression 

    
3

2

1

, .i i
i

x y x y


    (1.36) 

2. For the set  0,1C  of continuous functions    ,  ,  x t y t  , given on the 

segment  0,1t , the distance between the elements  x t  and  y t  is given by 

the expression 

       , max .
t

x y x t y t     (1.37) 

If X – an arbitrary metric space then the sequence 

   nx X   (1.38) 

coincides to a point  0 ,x X  if when  n  

   0, 0nx x  ,  (1.39) 

or, as written otherwise 

  0lim n
n

x x


 .  (1.40) 

The sequence  ,nx  that coincides to some point 0x , is limited. 

If the set contains all its limit points, then it is closed. 

Let the metric space X  is given, and let there be a sequence of points  nx  in this space that 

coincides to the point 0x X . Then, when n  the expression (1.39) will be fair as well 

as the expression 

   0, 0n px x   , (1.41) 

for  and any 0p . And the inequality of the triangle (1.35) using expressions (1.39) and 
(1.41) takes a  form of 

      npnnpn xxxxxx ,,, 00    .  (1.42) 

And from expressions (1.39), (1.41) and (1.42) due to the inequality of a triangle for 
metrics, we will have an expression  

   , 0n p nx x   . (1.43) 

If a condition (1.43) is fulfilled for some sequence  nx X , then it is called a 

fundamental sequence or sequence that coincides in itself or a sequence of Cauchy. 



14 

If in the metric space X, any sequence  nx X ,that coincides to itself,  coincides to 

some limiting point 0x , which is an element  of the same space, that is 0x X , then this 

space X is called complete. 
Metric space X is called linear if it defines the operations of addition and 

multiplication by the scalar, which satisfy the following conditions: 

1)   * ** ** * * **, ,x x x x x x X     ;  (1.44) 

2)    * ** *** * ** *** * ** ***, , ,x x x x x x x x x X       ;  (1.45) 

3)  0 , , 0x x x X X     ,   (1.46) 

where the element 0 is zero of the set X; 

4) for *x X    there is **x X  such that 

 * ** 0x x  ,  (1.47) 

where the element **x  is an element opposite to the element 
*;x  

5)  1 ,x x x X    ;  (1.48) 

6)      ,x x x X           and ,  ;  (1.49) 

7)   ,x x x x X            and ,  ;  (1.50) 

8)   * ** * ** * **, ,x x x x x x X           and  .  (1.51) 

A linear metric space X is called  normalized if x X   it can be matched by some 

non-negative number x , which is called the norm and which satisfies the following 

conditions: 

1)  0x    if and only if  0x  ;  (1.52) 

2)  x x    ,     is a scalar;  (1.53) 

3) 
* ** * ** * **, ,x x x x x x X     .  (1.54) 

It is quite obvious that the norm x  is the distance from the element x to the zero 

element of the set X. 
 
Examples of norms: 

1) for space  0,1C  

  
 

 
0,1

max
t

x t x t


   (1.55) 

or 

  
 

 
0,1

sup
t

x t x t


 ;  (1.56) 
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2) for the Euclidean dimension nE  of the space  n 

  2

1

n

i
i

x x


  ,  (1.57) 

where  1 2,  ,  ,  ,nx x x x   nx E . 

 
It is obvious that for any linear normalized space X the relation is valid 

   * ** * **, ,x x x x    (1.58) 

where * **, .x x X  

 
A complete linear normalized space is called Banach (after the name of the 

mathematician who studied this space) and is denoted as B-space. 
It is clear that the spaces  0,1C  and nE  are Banach. 

Note that the norm in B-space can be introduced in different ways, so long as it meets 
the conditions (1.52), (1.53), (1.54). 

For example, in the space of functions  x t  continuous on a segment  0,1t , the 

norm can be introduced not only in the form (1.55), but also in the form 

   
1

0

x x t dt  . (1.59) 

Such a B-space is called a Lebesgue space which is  denoted by  0,1L , to 

distinguish it from the space  0,1C  of the same functions, but with norm (1.55). 

For space nE  as a norm, you can use not only the ratio (1.72), but also a more general one 

 

1

1

, 0
n p

p
i

i

x x p


 
  
 
 . (1.60) 

It is clear that (1.57) coincides to (1.60) for 2p  . 

A Banach space with a scalar product of elements is called a Hilbert space (after 
the name of the mathematician who studied it) and is denoted as an H-space. 

H-space can be finite-dimensional or infinite-dimensional. 

The scalar product of the elements ,f g H  is written in the form  ,f g  or ,f g . 

The scalar product must be subject to the following conditions: 
 

1) , ,f g g f , (1.61) 

2) , ,f g f g    , (1.62) 

3) , ,f g f g    , (1.63) 

4) 1 2 1 2, , ,f f g f g f g   ; (1.64) 
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5) 1 2 1 2, , ,f g g f g f g   ; (1.65) 

6) , 0f f  , якщо 0f  . (1.66) 

It follows from the expression for the norm that for the H-space 

 ,f f f . (1.67) 

H-space is often considered in two implementations. 

1. Space 2l  of all counted ordered sequences 2x l  

  1 2,  ,  ,  ,  nx x x x    (1.68) 

such that have the property 

 2

1
i

i

x




  . (1.69) 

For elements: * **
2,x x l : 

    2* ** * **

1

, i i
i

x x x x




  ; (1.70) 

  2* *

1
i

i

x x




  ; (1.71) 

  * ** * **,x x x x  ; (1.72) 

 * ** * **

1

, i i
i

x x x x




  ; (1.73) 

   xxx ,  (1.74) 

 
It follows from these relations that 2l -space is a generalization of Euclidean -nE space 

when  n . 

2l  -space is sometimes called a coordinated Hilbert space. 

2. The space  2 ,L a b  of functions  f t  with an integrated square, that is, for 

which 

  2
b

a

f t dt   . (1.75) 

The following relations are valid for      2, ,f t g t L a b : 

       2
,

b

a

f g f t g t dt   ; (1.76) 
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  2
b

a

f f t dt  ; (1.77) 

  ,f g f g  ; (1.78) 

    ,
b

a

f g f t g t dt  . (1.79) 

Let's write two widely used inequalities separately: 

the Cauchy–Minkowski inequality 

  f g f g   ,  (1.80) 

the Buniakovsky–Schwartz inequality 

 ,f g f g  , (1.81) 

to prove which it is enough to substitute expressions for all components in them. 
 
 
 
 

1.3  Orthonormal subsets in Hilbert spaces 

 

Consider a functional Hilbert space  ,H a b  such that      , ,x t y t H a b , 

 ,t a b . 

Let the scalar product ,x y  of functions  x t  and  y t  equal to zero, that is, 

    , 0
b

a

x y x t y t dt   . (1.82) 

If the condition (1.82) is satisfied for the functions      , ,x t y t H a b , then they 

are said to be orthogonal on  ,a b . 

Let us have in the Hilbert space  ,H a b  a finite-dimensional or infinite sequence of 

functions   k t  such that 

.        , , ,k t H a b t a b   . (1.83) 

If the condition is true for this sequence   k t  

    , 0,
b

k m k m

a

t t dt k m       , (1.84) 

then this sequence is called orthogonal. 
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If the condition is satisfied for an orthogonal sequence     ,k t H a b   

  2 1
b

k

a

t dt  , (1.85) 

then this sequence is called orthonormal. 

A sequence     ,k t H a b   is called orthogonal with weight  w t , if there 

exists a function    ,w t H a b , that satisfies the condition 

       0,
b

k m

a

t t w t dt k m     . (1.86) 

It is clear that the sequence       ,kw t t H a b   is simply orthogonal. 

A subset of orthogonal functions     ,k t H a b   is complete in H-space if there 

is no nonzero function in it that would be orthogonal to any of the functions of this sequence. 

A sequence of functions     ,k t H a b   is called closed in H-space if for 

   ,f t H a b   and for 0   it is possible to construct such a linear combination 

of functions  k t , taken with weight k , that the condition is fulfilled 

        1 1 2 2 k kf t t t t                . (1.87) 

This means that with an error that does not exceed ,  the function    ,f t H a b  

on the segment  ,a b  can be presented in the form 

    
1

N

k k
k

f t t 


  , (1.88) 

where N can be either a finite integer or infinity. 

Different mathematics for basic functions 

   , 0,k
kf t t k n   (1.89) 

obtained various systems of orthonormal polynomials for different weight functions and 
orthogonalization intervals. Therefore, it is not necessary to build this sequence yourself every 

time you need to approximate a function    ,f t H a b  using an orthonormal sequence 

    ,k t H a b  . It is enough to choose one of those built by others, using a reference 

book on higher mathematics or a manual on the mathematical theory of processing the results 
of experiments. 
 

Here are examples of orthogonalization intervals, weighting functions, and 
normalization factors of the most common systems of orthogonal polynomials (Table 1). 
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Table 1 - Examples of orthogonalization intervals, weighting functions, and 
normalization factors for the most common systems of orthogonal polynomials   
 

orthogonal 
polynomials   

orthogonalizati
on intervals 

weighting 
functions 

 W t  
normalization factors 

Legendre 
 kP t  

 1,1t   1   
1

2

1

2

2 1kP t dt
k


  

Chebyshov І 
 kT t  

 1,1t    
1

2 21 t


     
1 1

2 2 2

1

, 0
1 2

, 0
k

k
T t t dt

k









   
 

  

Chebyshov  ІІ 
 kU t  

 1,1t    
1

2 21 t      
1 1

2 2 2

1

1
2kU t t dt




   

Laguerra 

 kL t  
 0,t   te    2

0

1t
kL t e dt


   

Laguerra 
attached 

   i
kL t  

 0,t   i tt e  
      2

0

1 !

!
i i t

k

k
L t t e dt

k


 

  

Ermita 

 kH t  
 ,t    

2te     22
2 !t k

kH t e dt k 






    

 
 

Thus, in order to approximate the function    ,f t H a b ,  ,t a b  using an 

orthonormal system of polynomials     ,k t H a b  , it is necessary, based on the interval 

of orthogonalization  ,a b  and the convenience of the weight function  w t , to select one 

or another orthonormal system of polynomials from the directory and find the ratio for the 
general member of the selected system, revealing which one to obtain the number of its 
members, which is sufficient to ensure the given accuracy of the approximation. 

For example, we give an expression for a common member – 

  ௡ܲሺݐሻ ൌ
ଵ

ଶ೙௡!
	 ௗ

೙

ௗ௧೙
ሺݐଶ െ 1ሻ௡,								݊ ൌ 0,1,2, … ,ܰ  (1.90) 

and the first 7 members of the orthonormal sequence for Legendre polynomials, the weighting 
function for which is the function w(t) = 1, the orthogonalization interval is the segment  
[-1,1), the normalization factor has the form 2/(2n + 1). Therefore, according to expression 
(1.90), we will have: 
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ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ ଴ܲሺݐሻ ൌ 1,

ଵܲሺݐሻ ൌ ,ݐ

ଶܲሺݐሻ ൌ
ଵ

ଶ
ሺ3ݐଶ െ 1ሻ,

ଷܲሺݐሻ ൌ
ଵ

ଶ
ሺ5ݐଷ െ ,ሻݐ3

ସܲሺݐሻ ൌ
ଵ

଼
ሺ35ݐସ െ ଶݐ30 ൅ 3ሻ,

ହܲሺݐሻ ൌ
ଵ

଼
ሺ63ݐହ െ ଷݐ70 ൅ ,ሻݐ15

଺ܲሺݐሻ ൌ
ଵ

ଵ଺
ሺ231ݐ଺ െ ସݐ315 ൅ ଶݐ105 െ 5ሻ,

଻ܲሺݐሻ ൌ
ଵ

ଵ଺
ሺ429ݐ଻ െ ହݐ693 ൅ ଷݐ315 െ ሻۙݐ35

ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۗ

  (1.91) 

 
As a second example, we give the formula for the general member – 

  ௡ܶሺݐሻ ൌ
ଵ

ଶ೙
ቀ൫ݐ ൅ ଶݐ√ െ 1൯

௡
൅ ൫ݐ െ ଶݐ√ െ 1൯

௡
ቁ ,								݊ ൌ 1,2, … , ܰ   (1.92) 

and the first 7 members of the orthonormal sequence for Chebyshov 1 polynomials, the 

weighting function for which is the function ݓሺݐሻ	= √1 െ  ଶ, the orthogonalization interval isݐ
the segment [-1,1), the normalization factor has the form π for k = 0 and π/2 for k ≠ 0. 
Therefore, according to expression (1.92), we will have: 

 

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ ଴ܶሺݐሻ ൌ 1,

ଵܶሺݐሻ ൌ ,ݐ

ଶܶሺݐሻ ൌ
ଵ

ଶ
ሺ2ݐଶ െ 1ሻ,

ଷܶሺݐሻ ൌ
ଵ

ସ
ሺ4ݐଷ െ ,ሻݐ3

ସܶሺݐሻ ൌ
ଵ

଼
ሺ8ݐସ െ ଶݐ8 ൅ 1ሻ,

ହܶሺݐሻ ൌ
ଵ

ଵ଺
ሺ16ݐହ െ ଷݐ20 ൅ ,ሻݐ5

଺ܶሺݐሻ ൌ
ଵ

ଷଶ
ሺ32ݐ଺ െ ସݐ48 ൅ ଶݐ18 െ 1ሻ,

଻ܶሺݐሻ ൌ
ଵ

଺ସ
ሺ64ݐ଻ െ ହݐ112 ൅ ଷݐ56 െ ሻۙݐ7

ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۗ

 (1.93) 

 
 
 
 
1.4 Approximation of continuous functions in Hilbert spaces 

 
The approximation of continuous functions is understood as the process of 

finding an analytical description of a function given by the elements of some set, which 
may not be a subset of the selected space, in the selected space. For example, a polynomial 
approximation of a function given in the form of a table. 

Let     ,k t H a b  ,  ,t a b , be some complete sequence of orthonormal 

functions that is closed in this space. 

Let    , ,H a b L a b  is the H-space of functions    ,f t L a b  for which the 

condition is satisfied 

  
b

a

f t dt   , (1.94) 
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and the metric  1 2,f f  is given by the ratio 

      1 2 1 2,
b

a

f f f t f t dt   . (1.95) 

Suppose that the series 

  k k
k

t  , (1.96) 

where k  is some scalar unknown to us, which converges uniformly to some function 

   ,f t L a b . This means that for 0   exists such that m for  ,t a b   and 

n m   the relation holds 

    
0

b n

k k
ka

f t t dt  


   , (1.97) 

from which it n  follows that 

    
0

k k
k

f t t 




  . (1.98) 

To determine the weighting coefficients , 0,k k   , multiply both parts of equation 

(2.41) by  j t  and integrate the result in the range from « a » to «b».. As a result, we get: 

        
0

b b

j k k j
ka a

f t t dt t t dt   




     . (1.99) 

Since     ,k t L a b   it is an orthonormal sequence, relations (1.84) and (1.85) 

hold for it. Taking this into account, from (1.99) we have 

     , 0,1, 2,
b

j j

a

f t t dt j     . (1.100) 

The weighting coefficients j  are called Fourier coefficients, and their complete 

sequence  j  is called the Fourier spectrum of the expansion of a function 

   ,f t L a b  by an orthonormal system of functions      ,j t L a b  . 
The requirement (1.97) of uniform convergence of the series (1.96) to the function 

 f t  is the so-called “strong convergence requirement”. 

But it turns out that in H-space the strong convergence is equivalent to “convergence 
on the average”, which is a weaker requirement and can be written as 

    
2

0

lim 0
b n

k k
n

ka

f t t dt 




 
   

 
 . (1.101) 

We consider the process of approximating a function    2 ,f t L a b in H-space 

 2 ,L a b  using an orthonormal sequence     2 ,k t L a b  . 
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In this case, the approximation problem can be reduced to such a selection of partial 
sum coefficients kC  

    
0

n

n k k
k

S t C t


   (1.102) 

in the H-space  2 ,L a b  so that this sum approaches the function    2 ,f t L a b  with an 

error not exceeding the given one, i.e. so that 

         2
min

k

b

n n
C

a

f t S t f t S t dt      . (1.103) 

To find min
kC

 of the  expression (1.103), we compose and solve the system of equations 

 0, 0,
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E
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, (1.104) 

where 
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 (1.105) 

As a result of solving the system of equations (1.104), we find that 

 k kC  . (1.106) 

Therefore, in order for the partial sum  nS t  to approximate the function  f t  with the 

specified accuracy, it is necessary to choose the Fourier coefficients k  of the function  f t  

as coefficients 
kC . 

Substituting (1.106) into (1.105), we will have: 

  2 2

0

0
b n

k
ka

E f t dt 


   . (1.107) 

Because 

 lim 0
n

E


 , (1.108) 

then it follows from the expression (1.107) that 

  2 2

0

b

k
ka

f t dt 




 . (1.109) 

The relation (1.109) is called Parseval's equality. The square root of both its parts 
can be interpreted as the length of the vector  f t  in the H-space  2 ,L a b , expressed 

through its projections on the orthogonal coordinate system   k t , which is a subset of the 

same H-space  2 ,L a b . 
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Concluding this subsection, we emphasize  that in   case of using the Legendre 
orthonormal polynomial function (1.91) for approximation, the Fourier coefficients must be 
calculated not by the expression (1.100), but by the expression 

	௡ߤ ൌ
ଶ௡ାଵ

ଶ
׬ ݂ሺݐሻ ௡ܲሺݐሻ݀ݐ,				݊ ൌ 0,1,2,… ,ܰ
ଵ
ିଵ , (1.110) 

and in the case of using Chebyshev 1 (1.93) to approximate the function  f t  of orthonormal 

polynomials, the Fourier coefficients must be calculated not by the expression (1.100), but by 
the expressions: 
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1.5 Programs for implementing operations in metric spaces in Python 

A Python program for checking sets for equality, determining their power, and 
checking for equivalence 

(Program 1): 
In [1]: A={1,2,3,4,5} 
In [2]: B={4,5,6,7,8} 
In [3]: LA=list(A); LA 
Out[3]: [1, 2, 3, 4, 5] 
In [4]: LB=list(B); LB 
Out[4]: [4, 5, 6, 7, 8] 
In [5]: LA==LB 

Out[5]: False 
In [6]: len(LA)  
Out[6]: 5 
In [7]: len(LB) 
Out[7]: 5 
In [8]: len(LA)==len(LB) 
Out[8]: True 

End of program 1 

A Python program for finding the sum of sets and their union excluding 
common elements, as well as for determining the difference and intersection of sets  

 (Program 2): 
In [1]: dLA = {} 
In [2]: dLA['a']=1 
In [3]: dLA['b']=2 
In [4]: dLA['c']=3 
In [5]: dLA['e']=4 
In [6]: dLA['h']=5 
In [7]: dLA 
Out[7]: {'a': 1, 'b': 2, 'c': 3, 'e': 4, 'h': 5} 
In [8]: dLB={} 
In [9]: dLB['e']=4;dLB['h']=5;dLB['p']=6;\ 
          dLB['q']=7; dLB['r']=8 
In [10]: dLB 

Out[10]: {'e': 4, 'h': 5, 'p': 6, 'q': 7, 'r': 8}  
In [11]: dLA.keys() | dLB.keys() 
Out[11]: {'a', 'b', 'c', 'e', 'h', 'p', 'q', 'r'} 
In [12]: dLA.keys() - dLB.keys() 
Out[12]: {'a', 'b', 'c'} 
In [13]: dLB.keys() - dLA.keys() 
Out[13]: {'p', 'q', 'r'} 
In [14]: dLA.keys() & dLB.keys() 
Out[14]: {'e', 'h'} 
In [15]: dLA.keys() ^ dLB.keys() 
Out[15]: {'a', 'b', 'c', 'p', 'q', 'r'} 

End of program 2. 
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 A Python program for determining the norm and metric of Banach spaces 
whose elements are numbers 

 (Program 3): 
In [1]: import numpy as np 
In [2]: a2=np.array([1,2]) 
In [3]: a3=np.array([1,2,3]) 
In [4]: a4=np.array([1,2,3,4]) 
In [5]: c2=np.array([2,1]) 
In [6]: c3=np.array([3,2,1]) 
In [7]: c4=np.array([4,3,2,1]) 
In [8]: e2=a2-c2;e2 
Out[8]: array([-1,  1]) 
In [9]: e3=a3-c3;e3 
Out[9]: array([-2,  0,  2]) 
In [10]: e4=a4-c4;e4 
Out[10]: array([-3, -1,  1,  3]) 
In [11]: import scipy 
In [12]: import scipy.linalg as la 
In [13]: la.norm(a2) 
Out[13]: 2.23606797749979 

In [14]: la.norm(a3) 
Out[14]: 3.7416573867739413 
In [15]: la.norm(a4) 
Out[15]: 5.477225575051661 
In [16]: la.norm(c2) 
Out[16]: 2.23606797749979 
In [17]: la.norm(c3) 
Out[17]: 3.7416573867739413 
In [18]: la.norm(c4) 
Out[18]: 5.477225575051661 
In [19]: m2=la.norm(e2);m2 
Out[19]: 1.4142135623730951 
In [20]: m3=la.norm(e3);m3 
Out[20]: 2.8284271247461903 
In [21]: m4=la.norm(e4);m4 
Out[21]: 4.47213595499958 

End of program 3. 
 
 
 A Python program for determining the norms and metrics of Banach spaces 
C[0,1] whose elements are functions 
(Program 4): 

In [1]: import numpy as np 
In [2]: x=np.linspace(0,1,11) 
In [3]: g1=lambda x: -1+3*x-x**2 
In [4]: g1vec=np.vectorize(g1) 
In [5]: g11=g1vec(x) 
In [6]: g11 
Out[6]: array([-1.  , -0.71, -0.44, -0.19, 0.04,   

         0.25, 0.44,  0.61,  0.76,  0.89,  1.])       
In [7]: g111=np.piecewise(g11,[g11<0,g11>=0],\ 
         [lambda g11:-g11,lambda g11: g11]) 
In [8]: g111 
Out[8]: array([1.  , 0.71, 0.44, 0.19, 0.04, 0.25,  
                      0.44, 0.61, 0.76, 0.89, 1.  ]) 
In [9]: ng1=g111.max( );ng1 
Out[9]: 1.0 
In [10]: ig1=g111.argmax( );ig1 
Out[10]: 0 
In [11]: g2=lambda x: 5*x-6*x**2 
In [12]: g2vec=np.vectorize(g2) 
In [13]: g22=g2vec(x);g22 
Out[13]: array([ 0.   , 0.44, 0.76, 0.96,1.04,1.   , 
                         0.84,  0.56,  0.16,  -0.36, -1.   ])                     
In [14]: g222=np.piecewise(g22,[g22<0,\ 
            g22>=0], [lambda g22:-g22,\ 
            lambda g22: g22]) 

In [15]: g222 
Out[15]: array([0.   , 0.44, 0.76, 0.96, 1.04,1.   , 
                        0.84, 0.56, 0.16, 0.36, 1.   ]) 
In [16]: ng2=g222.max( ); ng2 
Out[16]: 1.0399999999999998 
In [17]: ig2=g222.argmax( ); ig2 
Out[17]: 4 
In [18]: g3=lambda x: -1-2*x+5*x**2 
In [19]: g3vec=np.vectorize(g3) 
In [20]: g33=g3vec(x);g33 
Out[20]: array([-1.   , -1.15, -1.2  , -1.15, -1.   , 
                         -0.75, -0.4  , 0.05, 0.6 , 1.25, 2. ]) 
In [21]: g333=np.piecewise(g33,[g33<0,\ 
                     g33>=0], [lambda g33:-g33,\ 
                     lambda g33: g33]) 
In [22]: g333 
Out[22]: array([1.  , 1.15, 1.2 , 1.15, 1.  , 0.75, 
                        0.4 , 0.05, 0.6 , 1.25, 2.  ]) 
In [23]: mg3=g333.max( );mg3 
Out[23]: 2.0 
In [24]: ig3=g333.argmax( );ig3 
Out[24]: 10 
 
 
End of program 4. 
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