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INTRODUCTION 

The purpose of this textbook is to present the most common computational 
mathematics problems in engineering practice, along with solution examples and 
program fragments in the modern algorithmic language Python. The authors have 
attempted to summarize their many years of experience teaching courses in 
computer mathematics for students and postgraduates in specialties related to 
computer science, cybernetic systems, and information technologies. There are a 
large number of fundamental textbooks and manuals on computational 
mathematics, which serve as the methodological basis for this textbook. 

The textbook consists of an introduction and six chapters: Introduction. 
Problems of linear algebra. Problems of nonlinear mathematics. Differential 
calculus problems. Differential equations of mathematical physics. Data 
processing tasks. Numerical integration and differentiation. 

The authors limited themselves to computing tasks that are most often 
encountered in the practice of designing computer systems and information 
technologies. Moreover, the emphasis was placed precisely on the 
algorithmization of the problem-solving process. The textbook is primarily aimed 
at specialists in the field of technical sciences. Therefore, attention was paid to 
bringing all the described calculation methods to specific practical algorithms. 
Consequently, some methods and formulas are provided without derivation, 
which can be found in specialized literature. These program fragments can be 
easily interpreted with minimal training in the field of programming. 
Authors have provided illustrative examples in the popular programming 
languages of today, C++ and Python. The textbook is aimed at scientists and 
engineers in the field of computer science, information technology, robotic 
complexes, and computer-integrated automation and control systems. Also, 
the textbook will be useful for students and postgraduates of all majors in the 
"Information Technologies" and "Electronics and Telecommunications" fields. 

At the end of the textbook, we include a list of educational literature that can 
be used for studying computer calculation methods. In addition to manuals and 
textbooks published by domestic authors and colleagues, we have also included 
well-known English-language sources from around the world. These works are 
readily available in their entirety in the information space today. 

The authors show great gratitude to their colleagues who have worked with 
them for many years in the same team to develop a methodology for teaching 
disciplines related to computational methods and algorithms and their application 
in engineering and scientific applications.  



6 

Chapter 1. LINEAR ALGEBRA PROBLEMS 

This section deals with the solution of one of the most common computational 
problems in linear mathematics – the solution of linear algebraic equations 
systems (LAES). Moreover, it is assumed that the user is already familiar with 
the main information on matrix theory. 

The study of many physical systems leads to mathematical models in the form 
of LAES. They can appear in the process of mathematical modeling as an 
intermediate stage during the solution of a more complex task. There is a 
significant number of scientific and technical tasks in which mathematical models 
of complex nonlinear systems, in the form of discretization or linearization, are 
reduced to solving LAES. 

Examples of tasks that use mathematical models in the form of LAES: 
− during the simulation of economic tasks, such as management and

production planning, determining the optimal placement of equipment, the 
optimal production plan, the optimal plan for the transportation of goods, and the 
distribution of personnel, a linear representation of the real world can be 
hypothesized. Mathematical models of such problems are described by a system 
of linear equations; 

− during the design and operation of electrical devices, it is necessary to
calculate and analyze their operation in steady-state modes. The task is reduced 
to the calculation of equivalent circuits, which is based on the formation and 
solution of LAES; 

− during the construction of a mathematical model that links some parameters
xі and yі of the object under study by functional dependence, the basis is formed 
by the data obtained as a result of the experiment, where i = 1, 2, ..., n (setting of 
data approximation); 

− for the study of physical processes in complex systems, mathematical
models are built based on partial differential equations. As a result of 
approximating the original model using difference methods, under certain 
conditions, mathematical relations in the form of LAES are obtained. 

− the essence of many physical processes is mathematically displayed using
integral equations. Considering the complexity of solving many of them, it is 
better for the researcher to reduce the problem to solving a mathematical model 
in the form of LAES, using known approximation methods;  

− the study of automatic control systems in a steady state often leads to static
models in the form of LAES. 
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1.1  Solving systems of linear algebraic equations 

The statement of the problem of solving LAES is to determine the unknown 
values 1 2, , ..., nx x x  that satisfy a system of m linear algebraic equations: 

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

... ;
... ;

.............................................;
... ,

n n

n n

m m mn n m

a x a x a x b
a x a x a x b

a x a x a x b

+ + + =
 + + + =


 + + + =

 (1.1) 

where a11, a12, …, amn – coefficients with unknown values xij; b1, b2, …, bm – free 
members. 

A system (1.1) is called homogeneous if all of its free terms are equal to zero 
(b1=b2=…=bm=0), otherwise – heterogeneous. A quadratic LAES is a system in 
which the number of equations coincides with the number of unknowns (m=n). 
The system of equations is indeterminate if n>m and such LAES are called 
rectangular. If n<m, then the system is overdetermined.  

Also, the solution of LAES is a set of n numbers с1, с2, …, сn, such that when 
substituted into system (1.1) instead of 1 2, , ..., nx x x , all of its equations become 
identities. System (1.1) is called compatible if it has at least one solution, and 
incompatible if it has no solutions. Solutions are considered different if at least 
one of the values of the variables does not match. A compatible system with a 
single solution is called determinate, and in the case of multiple solutions, it is 
called indeterminate. 

Also, LAES (1.1) can be written in matrix form: 
=AX B ,  

where 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

a a a

 
 
 =
 
 
 





   



Α  – square or rectangular matrix with real or 

complex coefficients, 

1

2

m

b
b

b

 
 
 =
 
 
 



B  – column of free members (given vector), 

1

2

m

x
x

x

 
 
 =
 
 
 



Χ  – column of unknowns (searched vector). 
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In this section of the textbook, we will consider the methods of solving the 
quadratic LAES, specifically when m = n. 

The geometric meaning of the LAES solution consists in finding the point 
of intersection of n-dimensional hyperplanes in an m-dimensional hyperspace. 
The solution is the column (vector) X. If there are only two equations, then we 
have the case of two lines on a plane that can intersect, be parallel, or coincide. 
Therefore, any LAES can have: a single solution; an infinite set of solutions; or 
no solution at all. 

A necessary and sufficient condition for the existence of a unique solution of 
the quadratic LAES (1.1) is the non-zero determinant A (linear independence of 
the equations): 

11 12 1

21 22 21

1 2

det 0

n

n n nn

a a a
a a a

a a a

= ≠









A . 

Methods of solving LAES can be divided into direct and iterative. Direct 
methods include methods that allow you to obtain an exact solution (Cramer’s 
rule, Gaussian elimination, Tridiagonal matrix algorithm). Iterative methods 
include methods based on obtaining and refining successive approximations to 
the exact solution. Iterative methods are effective when there are many zero 
coefficients or a high order of the system (Gauss method is effective up to order 
104, iterative – up to 106). 

1.2 Direct calculation methods 

The most popular direct methods include the Gaussian elimination and its 
variants, the Cramer’s rule (determinants), the Methods of matrix inversion, and 
Tridiagonal matrix algorithm used in problems with diagonal matrices. However, 
Cramer’s rule (determinants), which is discussed in detail in standard courses of 
higher mathematics, cannot be applied in most practical problems due to the great 
complexity of calculating the determinants even in the case of a small increase in 
the order of the system. Therefore, this section will focus on considering the 
Gaussian elimination, which, while inferior to iterative methods in certain 
practical areas, is nevertheless the most universal. Tridiagonal matrix algorithm 
used in problems with diagonal matrices will also be considered.  

Gaussian elimination 

This method is one of the most common methods of solving LAES. It is based 
on the idea of successively excluding unknown variables. This process transforms 
the original system into a triangular form, where all coefficients below the main 
diagonal are zero. There are various computational schemes that can be used to 
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implement this method. The most common schemes involve selecting the main 
element by row, by column, or by the entire matrix. 

 The classical Gaussian elimination is based on reducing the matrix A of the 
coefficients of system (1.1) to triangular form: 

* * * ... * *
0 * * ... * *
0 0 * ... * *

...
0 0 0 ... * *
0 0 0 ... 0 *

       

and consists of two staches: a direct may and an inverted substitution. The direct 
run step ends when one of the system’s equations becomes an equation with only 
one unknown. Next, the inverse substitution is performed to determine all 
unknown xij values. In order to minimize calculation errors, the Gaussian 
elimination is used with the selection of the main element. By main element, we 
refer to the maximum element max

ija  of matrix A, chosen from a given set of rows 
and columns. The algorithm of this method is as follows: first, identify the main 
element max

ija  of matrix A and rearrange the corresponding equations and columns 
to position it in the place of the element a11 (remember to record the 
rearrangement of columns to correctly match the variables with the obtained 
values). Then, normalize the first equation by dividing it by a11= max

ija : 

 12 1 1
1 2max max max... n

n
ij ij ij

a a bx x x
a a a

+ + + = . (1.2) 

By successively multiplying (1.2) by а21, а31, …, аn1, and subtracting the 
respective 2nd, ..., n-th equations from system (1.1), we obtain a LAES of the 
form А1Х=В1: 

1 1 1
1 12 2 1 1

1 1 1
22 2 2 2

1 1 1
2 2

;
0 ;
.........................................;
0 ,

n n

n n

n nn n n

x a x a x b
a x a x b

a x a x b

 + + + =
 + + + =


 + + + =







  

where 1 1
1 1ij ij j ia a a a= − ⋅ , 1 1

1 1i i ib b b a= − ⋅  ∀ ( 2,i n=  і 2,j n= ); 1 max
1 1 /j n ija a a= ; 

1 max
1 1 / ijb b a= .  
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Let the matrices Ак and Вк be obtained at some step (the initial matrices 
correspond to А0 and В0), and the diagonal element 1, 1

k
k ka + +  is the maximum 

modulus element of the matrix Ак for rows i > k and columns j > k (if necessary, 
the corresponding equations and columns are rearranged). 

We will provide formulas for calculating matrices  Аk+1 and Вk+1: 

 
1

, 1, , 1
1

, 1,

( або );
/ ( 1, );

( 1, ),

k
ij

k k k k
ij i j k j i k

k k k
ij i j k j

a i k j k
a m a a i k j k

a m a i k j k

+
+ +

+
+

 ≤ ≤
= = = + >
 − ⋅ > + >

 (1.3) 

 
1

1 1, 1
1
1 , 1

( );
/ ( 1);

( 1).

k
i

k k k
i k k k

k k k
i k i k

b i k
b b a i k

b b a i k

+
+ + +

+
+ +

 ≤
= = +
 − ⋅ > +

 (1.4) 

When programming the method, it is sufficient to use a two-dimensional array 
with n rows and n + 1 columns to store the information of the coefficient values 
of the matrices. This array will hold the extended matrix of the system (A|B). 

Conditions for terminating the direct run of the Gaussian elimination 

A problem may arise during the calculation process:  

element 01,1 =++
k

kkа . 

This situation occurs when all elements of the matrix Аk in rows i > k are 
equal to zero. The system in this case looks like this: 

1 12 2 1 1

22 2 2 2

1

1 1 1

... ;

0 ... ;
.......................................................;
0 ...0 ... ;

0 ...0 0 0 ... 0 ;
...........................

k k k
n n

k k k
n n

k k k
k kk k kn n k

k
k k k n k

x a x a x b

a x a x b

x a x a x b

x x x x b
−

− + +

+ + + =

+ + + =

+ + + + =

+ + + + + =

1 1

....................................;
0 ...0 0 0 ... 0 .k

k k k n nx x x x b− +












+ + + + + =

 

If the application of formulas (1.3) and (1.4) is impossible, then the system 
has an infinite set of solutions or none at all, which can be determined from the 
matrix Вk. 
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If all elements bi
k = 0 under the condition i ≥ k+1, then the system has an 

infinite set of solutions, and the roots х1, …, хk are called dependent and are 
expressed through the values хk+1, …, xn, which are called independent. If at least 
one element bi

k ≠ 0 for i ≥ k+1, then the system has no solutions. 
In the absence of the case of the problem of dividing by zero and obtaining 

the triangular matrix Аn, the system has a unique solution. Then the Gaussian 
elimination is used to find its inverse: 

 
1 1

1

;

( 1, 1).

n
n n

i
n n

n i n i n k n k
k

x b

x b a x i n− − − + − +
=

 =



= − ⋅ = −
∑

 (1.5) 

 
 
Example 1.1. Solve the LAES by the Gaussian elimination with the selection 

of the main element: 

1 2 3 4

1 2 3 4

1 2 3 4

1 3 4

5 6 7 8 1;
10 10 11 12 2;
15 4 3 5 3;
2 20 2 4.

x x x x
x x x x
x x x x

x x x

⋅ + ⋅ + ⋅ + ⋅ =
 ⋅ + ⋅ + ⋅ + ⋅ =
 ⋅ + ⋅ − ⋅ + ⋅ =
 ⋅ + ⋅ − ⋅ =

 

 
Solution: 

A matrix of coefficients A and a column of free members B are formed: 

5 6 7 8 1
10 10 11 12 2

; .
15 4 3 5 3
2 0 20 2 4

   
   
   = =
   −
   −   

A B  

The main element of matrix A is equal to max
13 43 20a a= = . After rearranging 

the rows, a new value of a11 is obtained, namely a11=20, and the values of the new 
matrices will be obtained. 

2 0 20 2 4
10 10 11 12 2

; .
15 4 3 5 3
5 6 7 8 1

−   
   
   = =
   −
   
   

A B  
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Let’s calculate the elements of matrix A1 and column B1: 

3 31 2 4 2 1 4

3 32 1 4 2 1 4

4 42 0 2 0 2 220 20
2 210 10 11 12 11 10 10 12
3 315 4 3 5 3 4 15 5
1 15 6 7 8 7 6 5 8

4 / 200 / 20 2 / 20 2 / 20 0 0,1 0,120 / 20 1
211 10 10 12 11 10 1
33 4 15 5
17 6 5 8

x b x bx x x x x x

x b xx x x x x x

   
   − −   
   = =
   

− −   
   
   

 
 − − 
 = =
 

− 
 
 

3 2 1 4

0,2
2,00,0 12,0
3,03 4 15,0 5,0
1,07 6 5,0 8,0

0,20 0,1 0,11
2 (0,2 11)11 (1 11) 10 (0 11) 10 (0,1 11) 12 ( 0,1 11)

3 (1 3) 4 (0 3) 15 (0,1 3) 5 ( 0,1 3)
7 (1 7) 6 (0 7) 5 (0,1 7) 8 ( 0,1 7)

b

x bx x x

 
 
 
  =
 
− 
 
 

−
= − ⋅− ⋅ − ⋅ − ⋅ − − ⋅

− − ⋅ − − ⋅ − − ⋅ − − − ⋅ −
− ⋅ − ⋅ − ⋅ − − ⋅

3 2 1 4

3 (0,2 3)
1 (0,2 7)

0,20 0,1 0,11
0,2 .0 10 8,9 13,1
3,60 4 15,3 4,7
0,40 6 4,3 8,7

x bx x x

 
 
 
  =
 

− ⋅ − 
 − ⋅ 

 
 − 
 = −
 
 
 − 

 

3 2 1 4

1 1

0,2
0 0,1 0,11

0,2
; .0 10,0 8,9 13,1

3,6
0 4,0 15,3 4,7

0,4
0 6,0 4,3 8,7

x x x x 
  −    −  = =
  
   −  

 

A B  

The main element of the new matrix max 1
33 33 15,3a a= = . 

Similarly, the elements of matrix A2 and column B2 are calculated: 
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3 1 2 4

2 2

0,200
0,1 0,000 0,1001

0,240
; .0 1,0 0,260 0,310

2,292
0 0,0 7,677 10,368

1,411
0 0,0 4,878 7,380

x x x x 
  −   
  = =
 − 
   −  

 

A B  

The main element of the new matrix max 2
34 34 10,368a a= = . 

Similarly, the elements of matrix A3 and column B3 are calculated: 
 

3 1 4 2

3 3

0,200
0,1 0,10 0,0001

0,240
; .0 1,0 0,310 0,260

0,23
0 0,0 1,000 0,740

0,220
0 0,0 0,000 0,598

x x x x 
  −   
  = =
 − 
  
  − 

A B

 

The A3 matrix has a triangular shape. The system has a unique solution. To 
find it, the inverse of the Gaussian elimination is used:  

 
3 4

2 4 44
3 3

4 3 34 2
3 3 3

1 2 24 2 23 4
3 3 3 3

3 1 14 2 13 4 12 1

/ 0,220 / 0,598 0,377;
0,23 0,74 0,377 0,058;

0,24 (0,26 0,377) (0,310 0,058) 0,316;

0,2 (0 0,377) ( 0,10 0,058) (0,1 0,

x b a
x b a x

x b a x a x

x b a x a x a x

= = − = −

= − ⋅ = − − ⋅ − =

= − ⋅ − ⋅ = − ⋅ − − ⋅ =

= − ⋅ − ⋅ − ⋅ =

= − ⋅ − − ⋅ − ⋅ 316) 0,174.=  

Solution: 

0,316
0,377
0,174
0,058

 
 − =
 
 
 

X . 

 
The algorithm of the method is presented in Figure 1.1. 
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Figure 1.1 – Scheme of the Gaussian elimination algorithm 
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Mechanical interpretation of the Gaussian elimination 

Consider an arbitrary elastic static system S fixed at the edges (for example, 
a string, an elastic rod, a multi-span rod, a membrane, a plate, or a discrete 
system), and take n points x1, x2, ..., xn on it. 

We consider the displacement (deflections) y1, y2, ... , yn of points x1, x2, ..., xn, 
xp of the system S under the action of forces F1, F2, ... , Fn applied at these points. 
It is assumed that forces and displacements are parallel to one and the same 
direction and are therefore determined by their algebraic values (Fig. 1.2). 

 

 
Figure 1.2 – Calculation diagram of the deflection of an elastic beam 

 
In addition, it is necessary to accept that the principle of linear imposition of 

forces applies: 
1) with the total superposition of two systems of forces, the corresponding 

deflections add up; 
2) when the values of all forces are multiplied by the same real number, all 

deflections are multiplied by this number. 
Let aij denote the coefficient of influence of point xj on point xi, that is, the 

deflection at point xi under the action of a unit force applied at point xj (i, j=1, 2, 
…, n) (Fig. 1.3). Then, with the joint action of forces F1, F2, ... , Fn deflections y1, 
y2, ... , yn are determined by the formulas: 

                                              
1

n

ij j i
j

a F y
=

=∑  (i=1, 2, …, n).                               (1.6) 

 
Figure 1.3 – Calculation diagram of deflection under the action of a unit force 

 
By comparing the system of equations (1.6) with the original system of 

equations (1.1), we can interpret the problem of finding a solution to the system 
of equations as determining the deflections y1, y2, ..., yn to the corresponding forces 
F1, F2, ..., Fn. 
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Let us denote by Sp the static system obtained from S by introducing p fixed 
hinged supports at points x1, x2, ..., xp ( p n≤ ). The influence coefficients for the 
remaining moving points xp+1, ..., xn of the system Sp will be denoted by p

ija  (i, 
j=p+1, …, n) (Fig. 1.4 for p=1). 

 

 
Figure 1.4 – Calculation diagram of the effect of neighboring points on the 

overall deflection of an elastic beam 
 

Coefficient p
ija  can be considered as the deflection at point xi of system S 

under the action of a unit force at point xk and reaction forces R1, R2, ..., Rn at fixed 
points x1, x2, ..., xn. Therefore: 

                                               1 1
p

ij i p ip ija R a R a a= + + + .                               (1.7) 

With the same forces, the deflections of system S at points x1, x2, ..., xn are 
equal to zero: 

                                          
1 11 1 1

1 1

0;

0.

p p j

p p pp pj

R a R a a

R a R a a

+ + + =


 + + + =







                                (1.8) 

If 

                                                  
1 2

0
1 2

p
A

p
 

≠ 
 





,                                    (1.9) 

then we can determine R1, R2, ..., Rp from (1.8) and substitute the obtained 
expressions in (1.7). This exception R1, R2, ..., Rp can also be done. To the system 
of equalities (1.8), we add equality (1.7), written in the form: 

                                       1 1 0p
i p ip ij ijR a R a a a+ + + − = .                               (1.10) 

Considering (1.8) and (1.10) as a system p+1 of homogeneous equations with 
a nonzero solution R1, R2, ..., Rp+1=1, we obtain that the determinant of this system 
is zero: 
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11 1 1

1

1

0.

p j

p pp pj
k

i ip ij ij

a a a

a a a
a a a a

=

−



   





                                (1.11) 

Where from 

                                     

1 2
1 2

1 2
1 2

p
ij

p i
A

p j
a

p
A

p

 
 
 =
 
 
 









 (i, j=p+1, …, n).              (1.9) 

According to these formulas, the influence coefficients of the «support» 
system Sp are expressed through the influence coefficients of the initial system S. 

For any p≤n-1, the coefficients p
ija  (i, j=p+1, …, n) in the Gaussian 

elimination are the coefficients of the influence of the support system Sp. 
To confirm this basic premise, it is possible to ensure this through purely 

mechanical considerations. To do so, we will first consider the special case of one 
support: p=1 (see Fig. 1.4). In this case, the influence coefficients of system S1 are 
defined as: 

                                  1 1
1

11

1
1

1
1

i
ij ij j

i
A

j aa a a
aA

 
 
 = = −
 
 
 

 (i, j=1, 2, …, n).              (1.10) 

Thus, if the coefficients aij (i, j=1, 2, …, n) in the system of equations (1.1) 
represent the coefficients of influence of static system S, then the coefficients 1

ija  
(i, j=2, …, n) in the Gaussian elimination are the coefficients of influence of 
system S1. By applying the same considerations to system S1 and introducing the 
second resistance at point x2, it can be concluded that the coefficients 2

ija  (i, j=3, 
…, n) in the system of equations (1.2) are the coefficients of influence of the 
support system S2. In general, for any p≤n–1, the coefficients p

ija  (i, j=p+1, …, 
n) in the Gaussian elimination are the coefficients of influence of the support 
system Sp. 

From mechanical considerations, it is evident that the sequential introduction 
of p supports is equivalent to the simultaneous introduction of these supports. 

Consider the implementation of the Gaussian elimination in the С++ 
programming language: 

 
int main() 
{ 
    int i, j, n, m; 
    // we create an array 
    cout << "Number of equations: "; 
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    cin >> n; 
    cout << "Number of variables: "; 
    cin >> m; 
    m += 1; 
    float **matrix = new float *[n]; 
    for (i = 0; i<n; i++) 
        matrix[i] = new float[m]; 
    for (i = 0; i<n; i++) 
        for (j = 0; j<m; j++) 
        { 
            cout << " Element " << "[" << i + 1 << " , " << j + 1 << "]: "; 
            cin >> matrix[i][j]; 
        } 
    // we output the array 
    cout << "matrix: " << endl; 
    for (i = 0; i<n; i++) 
    { 
        for (j = 0; j<m; j++) 
            cout << matrix[i][j] << " "; 
        cout << endl; 
    } 
    cout << endl; 
    // Gauss method, straight line 
    float  tmp; 
    int k; 
    float *xx = new float[m]; 
    for (i = 0; i<n; i++) 
    { 
        tmp = matrix[i][i]; 
        for (j = n; j >= i; j--) 
            matrix[i][j] /= tmp; 
        for (j = i + 1; j<n; j++) 
        { 
            tmp = matrix[j][i]; 
            for (k = n; k >= i; k--) 
                matrix[j][k] -= tmp*matrix[i][k]; 
        } 
    } 
       // Gauss method, reverse course 
    xx[n - 1] = matrix[n - 1][n]; 
    for (i = n - 2; i >= 0; i--) 
    { 
        xx[i] = matrix[i][n]; 
        for (j = i + 1; j<n; j++) xx[i] -= matrix[i][j] * xx[j]; 
    }  
     // We make a decision 
    for (i = 0; i<n; i++) 
        cout << xx[i] << " "; 
    cout << endl; 
    delete[] matrix; 
    system("pause"); 
    return 0; 
}. 

Modified Gaussian elimination 

In many cases, it is necessary to solve the LAES with a matrix of variable 
coefficients and constant values of the column of free members. Most often, the 
modified Gaussian elimination is used to solve such problems. In this method, the 
matrix of coefficients A from the matrix equation (1.1) is presented as a product 
of left and right triangular matrices: 



19 

L⋅R = A. 
Since the diagonal elements of one of the matrices are equal to one, they 

cannot be memorized. This then allows both matrices to be stored in the memory 
of the computer system in place of the matrix of coefficients. 

In a variant of Crout matrix decomposition, the following sequence is used to 
find elements of matrices L and R: 

1

1

1

1

1,  2,  , ; , 1, ,

1

( );

1 ;

( ),

.

;,  

1

k

ik ik ip pk
p

kk
kk

k

kj kk kj kp p

k

j
p

k

l a k n i kl r

l
l

k n

j k n

r

r l a l r

−

=

−

=


= −




=

  
 = − 
 

= … = + …

= + …

=





∑

∑

 

The system AX=C is reduced to the system LRX = C, the solution of which 
is replaced by the solution of two systems with triangular matrices: 

;
.

=
 =

LY C
RX Y

 

The elements of the matrices Y and X are determined from the following 
ratios: 

1 11 1

1

1

1

;

( 2, , );

( , 1, ,1).

i

i ii i ip p
p

n

i i ip p
p i

y l c

y l c l y i n

x y r x i n n

−

=

= +


 =

  = − =  

 


= − = −

∑

∑





 

The number of arithmetic operations required to solve the LAES by this 
method is 22nN = . 

 
Example 1.2. Three pipelines with corresponding capacities of x1, x2, and x3 

are connected to a measuring tank that can be filled with liquid. To determine the 
capacities of the connected pipelines, three experiments are carried out on filling 
and emptying this tank. Additionally, the pipelines operate for different periods 
of time. In the first case, the liquid is drained from the filled container, as indicated 
by the «minus» sign before the volume value. In the second case, the tank is filled, 
as indicated by the «plus» sign before the volume value. In the third case, the 
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cavity remains empty when the three pipelines work together. It will determine 
the values of the throughput of the connected pipelines x1, x2, and x3. Data on the 
time and volume of filling the container are indicated in Table 1.1. 

 
Table 1.1 – Filling tank data 

Method of 
filling 

Pipeline operation time (min) / type of operation 
(filling / draining) 

Filling 
volume 

(m3) 1 2 3 
1 1 (filling) 3 (draining) 2 (filling) –5 
2 3 (draining) 1 (filling) 3 (draining) 3 
3 3 (draining) 3 (draining) 1 (filling) 0 

Solution: 

According to the problem statement and based on the data provided in Table 
1.1, we formulate a system of equations: 

1 2 3

1 2 3

1 2 3

3 2 5;
2 3;

2 3 0.

x x x
x x x

x x x

− + = −
− + − =
− − + =

 

Solve the system of equations using the modified Gaussian elimination with 
calculation of the forward and backward steps. 

Straight stroke: 
1) exclude x1 from the 2nd and 3rd equations: 

–m2
(1) = –a21/a11 = 2/1 = 2;    a21

(1) = a21+m2
(1)⋅a11 = –2+2⋅1 = 0; 

a22
(1 ) = a22+m2

(1)⋅a12 = 1–2⋅3 = –5;   a23
(1) = a23+m2

(1)⋅a13 = –1+2⋅2 = 3; 
b2

(1) = b2+m2
(1)⋅b1 =3–2⋅5 =  –7. 

–m3
(1)

 = –a31/a11 = 1/1 = 1;   a31
(1) = a31+m3

(1)⋅a11 = –1+1⋅1 = 0;   
a32

(1) = a32+m3
(1)⋅a12 = –2–1⋅3 = –5;   a33

(1) = a33+m3
(1)⋅a13 = 3+1⋅2 = 5; 

b3
(1) = b3+m3

(1)⋅b1 = 0–1⋅5 =  –5; 

1 2 3

1 2 3

1 2 3

3 2 5;
0 5 3 7;
0 5 5 5.

x x x
x x x
x x x

− + = −
 ⋅ − + = −
 ⋅ − + = −

 

2) exclude x2 from the 3rd equation: 
–m3

(2) = –a32
(1)/a22

(1) = –5/5 = –1;  a32
(2)=a32

(1)+m3
(2)⋅a22

(1)= –5+1⋅5 = 0;  
a33

(2) = a33
(1)+a33

(2) = a33
(1)+m3

(2)⋅a23
(1) = 5–1⋅3 = 2;    

b3
(2) = b3

(1)+m3
(2)⋅b2

(1) = –5+1⋅7 = 2;  
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1 2 3

2 3

3

3 2 5;
5 3 7;

2 2.

x x x
x x

x

− + = −
 − + = −
 =

 

Reverse stroke: 

x3 = b3
(2)/a33

(2) = 2/2 = 1,0 m3/min; 
x2 = (b2

(2) –a23
(2)⋅x3)/ a22

(2) = ( –7–3⋅1)/( –5) = 2,0 m3/min; 
x1 = (b1

(2) ⋅a33
(1)+a13

(2)⋅x3 a33
(1)+a12

(2)⋅x2)/a11
(2)

 = ( –5 –(2⋅1) – (–3⋅2))/1 = 
           = –1,0 m3/min. 

The «minus» sign, at the value of pipeline capacity x1, means that the first 
pipeline was working all the time to drain the liquid. 

Consider the implementation of the modified Gaussian elimination in the С++ 
programming language: 

 
const int n = 3; 
float A[n][n]= {2, 4, 1, 
                1, 1, 2, 
                4, 2, 1}; 
float B[n] =   {8, 6, 8}; 
int main(int argc, char *argv[]) { 
  // Derivation of the initial matrix 
  for (int i=0; i<n; i++) 
  { 
    for (int j=0; j<n; j++) 
      cout << A[i][j] << "  "; 
    cout << B[i] << endl; 
  }  
    cout << endl; 
// Modified Gauss method 
  for (int i=0; i<n; i++) 
  { 
    for (int j=0 ; j<n; j++) 
     if (i!= j) 
     { 
        float d = A[j][i]/A[i][i]; 
        for (int k=0; k<n; k++) 
               A[j][k]= A[i][k]*d - A[j][k]; 
           B[j] = B[i]*d - B[j];  }  
// Derivation of intermediate results 
  for (int i=0; i<n; i++) 
  { 
    for (int j=0; j<n; j++) 
      cout << A[i][j] << "  "; 
    cout << B[i] << endl; 
  }    
  cout << endl; } 
// Print х                 
  for (int j=0; j<n; j++) 
      cout << "x[" << j << "] = " << B[j]/A[j][j] << endl;      
  system("PAUSE"); 
  return 0; 

}. 
 

The algorithm of the modified Gaussian elimination is shown in Figure 1.5. 
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Figure 1.5 – Scheme of the modified Gaussian elimination algorithm 

 

Application of the Gaussian straight line elimination for finding 
determinants 

Two approaches are used to calculate the determinants of matrices: 
– recursive calculation using the expansion of the matrix of coefficients by 

row or column; 
– calculation based on the direct course of the Gaussian elimination. 
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The first method is based on the use of the property of determinants, where 
the determinant of the matrix is equal to the sum of the products of the elements 
of any row or column by their algebraic complement: 

1
det( ) , 1,

n

ij ij
j

a i n
=

= ⋅ ∀ =∑A A . 

Thus, the calculation of one determinant of the n-th order is reduced to the 
calculation of n determinants of the n–1 order. This method is implemented using 
recursion. 

The recursive method is convenient for applying to rows or columns with a 
large number of zero elements. If there are no or very few zero elements in the 
matrix, then using this method is extremely inefficient. For a determinant of order 
n, it will be necessary to calculate n!/2 determinants of the second order. 

The second method is based on the Gaussian straight-line elimination, which 
uses the property of the determinant of a triangular matrix. For such a matrix, the 
determinant is equal to the product of the elements on the main diagonal. 

To calculate the determinant, the algorithm for constructing the sequence of 
matrices А→А1→А2→…→Аn of the Gaussian elimination is used, with the 
difference that the sign of the determinant changes to the opposite during the 
permutation of rows or columns. The value of the determinant is calculated 
according to the formula: 

1 1
11 22det( ) ( 1) ...m n

nna a a −= − ⋅ ⋅ ⋅ ⋅A , 
where m – number of permutations. 

This method allows you to calculate the determinants of matrices of high order. 

Methods of matrix inversion 
If the problem of solving LAES is addressed in an application package that 

implements the function of calculating the inverse matrix, then the formula can 
be used to find a solution: 

1−=X A B , 
where A-1 – inverse matrix. 

Recall the definition of the inverse matrix. 
The inverse of the square matrix A is the matrix A-1 for which the relation 

holds: 
1 1− −⋅ = ⋅ =A A A A E , 

where Е – unit matrix. 

Cramer’s rule 
This method consists of calculating the determinant det(A) of the coefficient 

matrix A, as well as the determinants det(Ak) of the matrices Аk ( 1,k n= ). The 
matrices Ak are obtained from matrix A by replacing the k-th column of 
coefficients with the column B of the free members of the system of linear 
equations LAES. 
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In this case, the following variants of the determinants' values themselves are 
possible: 

1. If detA≠0, then the system has a unique solution 1( , ..., )nx x x= , which is 
determined by the formula : 

det( ) ( 1, )
det( )

k
kx k n= =

A
A

. 

2. If det(A)=0, as well as all det(Аk)=0 for 1,k n= , then the system has an 
infinite set of solutions. 

3. If det(A)=0 and at least one det(Аk) ≠0, then the system has no solutions. 
Cramer’s rule (determinants) cannot be applied to most practical problems 

due to the complexity of directly calculating the determinants themselves, even in 
the case of a small increase in the system's order. 

 
Example 1.3. The trading network consists of three different trading 

enterprises with profitability x1, x2, and x3, respectively. Over the course of three 
days, the trading network accumulates a total profit based on the sales results of 
each enterprise. We need to determine the value of the profitability of the different 
trading enterprises. Table 1.2 displays the data on the turnover of the enterprises 
and the trading network as a whole on a daily basis. 

 
Table 1.2 – Data on the total turnover of retail chain funds 

Number of 
working 

days 

Purchase of differential trade enterprises 
(million USD) 

Total network 
revenue (million 

USD) 1 2 3 
1 3,0 –1,0 1,0 12,0 
2 5,0 1,0 2,0 3,0 
3 1,0 1,0 2,0 3,0 

Solution: 
Based on the data in Table 1.2, we compile the LAES: 

1 2 3

1 2 3

1 2 3

3 12;
5 2 3;  

2 3.

x x x
x x x
x x x

− + =
 + + =
 + + =

  

We solve LAES using the Gaussian elimination, the matrix method, and the 
Cramer’s rule. Let’s solve the system using the matrix method. For this, we will 

calculate the inverse matrix 
11 12 13

1
21 22 23

31 32 33

1
A A A
A A A
A A A

−

 
 =  ∆  
 

A
A

, where Aij – algebraic 

addition to the elements of the matrix of coefficients A (i, j=1, 2, 3). 
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Matrix of coefficients: 
3 1 1
5 1 2
1 1 2

− 
 =  
 
 

A . 

The matrix determinant value: 
3 1 1
5 1 2 (3 1 2) (3 2 1)
1 1 2

−
∆ = = ⋅ ⋅ − ⋅ ⋅ −A  

( 1 5 2) ( 1 2 1) (1 5 1) (1 1 1) 12 0− − ⋅ ⋅ + − ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ = ≠  – the matrix is nondegenerate. 
Algebraic matrix complements А: 

( 1) det( )j i j j
i iA += − C , 

where j
iC  – the matrix that is obtained from the coefficient matrix A by deleting 

the row numbered i and the column numbered j. 
Then: 

– (i=1, j=1) 1 1
11

1 2
( 1) (2 2) 0

1 2
A += − = − = , (i=1, j=2) 

1 2
12

5 2
( 1) (10 2) 8

1 2
A += − = − − = − , (i=1, j=3) 1 3

13

5 1
( 1) 5 1 4

1 1
A += − = − = ; 

– (i=2, j=1) 2 1
21

1 1
( 1) ( 2 1) 3

1 2
A + −

= − = − − − =  , (i=2, j=2)  

2 2
22

3 1
( 1) 6 1 5

1 2
A += − = − =  , (i=2, j=3) 2 3

23

3 1
( 1) (3 1) 4

1 1
A + −

= − = − + = − ; 

– (i=3, j=1) 3 1
31

1 1
( 1) 2 1 3

1 2
A + −

= − = − − = − , (i=3, j=2)   

3 2
32

3 1
( 1) (6 5) 1

5 2
A += − = − − = − , (i=3, j=3) 3 3

33

3 1
( 1) 3 5 8

5 1
A + −

= − = + = . 

The value of the inverse matrix: 

11 12 13
1

21 22 23

31 32 33

0 3 3
1 1 8 5 1

12
4 4 8

A A A
A A A
A A A

−

−   
   = = − −   ∆    −  

A
A

. 

The value of the matrix (vector) of unknown arguments X: 

1

0 3 3 12 0 12 3 3 ( 3) 3 0
1 18 5 1 3 8 12 5 3 ( 1) 3 7

12 12
4 4 8 3 4 12 ( 4) 3 8 3 5

−

− ⋅ + ⋅ + − ⋅       
       = ⋅ = − − ⋅ = − ⋅ + ⋅ + − ⋅ = −       
       − ⋅ + − ⋅ + ⋅       

X A B . 

The actual values of the profitability of different trading enterprises were 
obtained, namely: x1 = 0 million USD; x2 = –7,0 million USD; x3 = 5 million USD. 
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That is, only one enterprise is profitable, namely the enterprise with a profitability 
of x3 = 5,0 million USD. 

Solving LAES by Cramer’s rule. 

The main determinant of the coefficient matrix A: 
3 1 1

det 5 1 2
1 1 2

−
∆ = =A . 

The main determinant of the matrix of coefficients A can be decomposed into 
the elements of the first row: 

11 12 13

21 22 23 11 11 12 12 13 13

31 32 33

det
a a a
a a a a A a A a A
a a a

∆ = = = ⋅ + ⋅ + ⋅A , 

( )1 1 1 2 1 3

3 1 1
1 2 5 2 5 1

5 1 2 3 1 ( 1) ( 1) 1 ( 1) 12 0
1 2 1 2 1 1

1 1 2

+ + +

−
∆ = = ⋅ − ⋅ + − ⋅ − + ⋅ − = ≠ . 

Let’s write down and calculate the auxiliary determinants: 

1 12 13

1 2 22 23

3 32 33

b a a
b a a
b a a

∆ = ; 
11 1 13

2 21 2 23

31 3 33

a b a
a b a
a b a

∆ = ; 
11 12 1

2 21 22 2

31 32 3

a a b
a a b
a a b

∆ = ; 

( ) 0
13
13

11
23
23

11
21
21

112
213
213
1112

Δ 312111
1 =−⋅+−⋅−+⋅−⋅=

−
= +++ )()()(x ; 

( )1 1 1 2 1 3
2

3 12 1
3 2 5 2 5 3

Δ 5 3 2 3 1 12 ( 1) 1 ( 1) 84
3 2 1 2 1 3

1 3 2
x + + += = ⋅ − ⋅ + ⋅ − + ⋅ − = − ; 

( )1 1 1 2 1 3
3

3 1 12
3 2 5 3 5 1

Δ 5 1 3 3 1 ( 1) ( 1) 12 ( 1) 60
3 2 1 3 1 1

1 1 3
x + + +

−
= = ⋅ − ⋅ + − ⋅ − + ⋅ − = . 

Then: 1
1

0 0
12

xx ∆
= = =

∆
, 2

2
84 7
12

xx ∆
= = − = −

∆
, 3

3
60 5
12

xx ∆
= = =

∆
. 

So, when solving the same LAES by all the above methods, the same answer 
was obtained. 

Consider the implementation of Cramer’s rule in the С++ programming 
language: 

 
void Print_Arr(double** arr, double* barr, const int& rows){ 
    for(int i = 0; i < rows; ++i){ 
        for(int j = 0; j < rows;  ++j){ 
            cout << arr[i][j] << " "; 
        } 
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        cout << barr[i] << endl; 
    } 
} 
double Det(double** a, const int& rows, const int& columns){  
   // the determinant search function  
   // square matrix of size n*n 
    double** B = new double* [rows]; 
    for(int i = 0; i < rows; ++i){ 
        B[i] = new double[columns]; 
        for(int j = 0; j < columns; ++j){ 
            B[i][j] = a[i][j]; 
        } 
    } 
    int n = rows; 
    // bringing the matrix to the upper triangular form 
    for(int step = 0; step < n - 1; step++) 
        for(int row = step + 1; row < n; row++){ 
            double coeff = -1 * (B[row][step]) / B[step][step]; // Gauss 

method 
            for(int col = step; col < n; col++) 
                B[row][col] += B[step][col] * coeff; 
        } 
    // Calculation of the determinant as a product of the elements of the 

main diagonal 
    double det = 1.; 
    for(int i = 0; i < n; i++) 
        det *= B[i][i]; 
    return det; 
} 
void MethodKramer(double** arr, double* barr, const int& n){ // function of 

Cramer’s rule 
    double det = Det(arr, n, n); 
    int j = 0; 
    while(j < n){ 
        for(int i = 0; i < n; ++i){ 
            swap(arr[i][j], barr[i]); 
        } 
        double detj = Det(arr, n, n); 
        cout << "x" << j + 1 << " = " << detj/det << endl; 
        for(int i = 0; i < n; ++i){ 
            swap(arr[i][j], barr[i]); 
        } 
        ++j; }}. 

 

The Cramer’s rule algorithm is shown in Figure 1.6. 

Tridiagonal matrix algorithm 
The Tridiagonal matrix algorithm is used to decouple LAES from a 

tridiagonal matrix. This system of equations is written in the form: 
  1 1 ( 1, 2, ..., )i i i i i i ia x b x c x d i n− ++ + = =  (1.11) 
where a1=0, cn=0. 

The tridiagonal matrix algorithm, which can be shortened to the Gaussian 
elimination, consists of a direct and reverse calculation method. The direct 
calculation path lies with the derived elements of the system matrix (1.11), which 
lie below the main diagonal. Each step will involve no more than two unknowns, 
and the formula for the reverse calculation can be written in this form: 
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Figure 1.6 – Scheme of the Cramer’s rule algorithm                                  
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                                          1 ( , 1, , 1)i i i ix U x V i n n+= + = −  .                            (1.12) 

If we express 111 −−− += iiii VxUx  and substitute into the system (1.11), we will 
have 1 1 1( )i i i i i i i i ia U x V b x c x d− − ++ + + = , whence: 

                                         1
1

1 1

i i i i
i i

i i i i i i

c d aVx x
aU b aU b

−
+

− −

−
= − +

+ + .                         (1.13) 

Equating (1.12) and (1.13), we get: 

                        1

1 1

, ( 1, 2, ..., )i i i i
i i

i i i i i i

c d aVU V i n
aU b aU b

−

− −

−
= − = =

+ +
.       (1.14) 

As a1 = 0, then: 
 1 1 1 1 1 1/ , /U c b V d b= − = .  (1.15) 

Now, according to formulas (1.14) and (1.15), the running coefficients Ui and 
Vi (i=1, 2, …, n) can be calculated during the course of running. Knowing the 
sweep coefficients, you can calculate all xi (reverse stroke of sweep) using formula 
(1.7). 

The Tridiagonal matrix algorithm can be easily algorithmized, making it 
frequently used in the standard mathematical support of computer systems. The 
implementation of the sweep method allows for a significant reduction in the 
number of arithmetic operations compared to the Gaussian elimination N ≈ 3n. 

 
Example 1.4. Solve LAES using the Tridiagonal matrix algorithm: 

1 2

1 2 3

2 3 4

3 4

10 5;
2 9 1;

0,1 4 5;
8 40.

x x
x x x

x x x
x x

+ =
− + + = −
 + − = −
 − + =

 

Solution: 
Coefficients for unknown variables are recorded in the form of Table 1.3. 
 
Table 1.3 – Values of LAES coefficients 
i ai bi ci di 

1 0,0 10,0 1,0 5,0 
2  – 2,0 9,0 1,0 – 1,0 
3 0,1 4,0 – 1,0 – 5,0 
4 – 1,0 8,0 0,0 40,0 

 
Sweep forward run. Formulas (1.14) and (1.15) determine the driving 

coefficients Ui and Vi: 
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1 1 1/ 1 /10 0,1;U c b= − = − = −   

1 1 1/ 5 /10 0,5;V d b= = =   

2 2 2 1 2/ ( ) 1 / (2 0,1 9) 0,1087;U c a U b= − + = − ⋅ + = −  

2 2 2 1 2 1 2( ) / ( ) ( 1 2 0,5) / (2 0,1 9) 0;V d a V a U b= − + = − + ⋅ ⋅ + =  

3 3 3 2 3/ ( ) 1 / ( 0,1 0,1087 4) 0,2507;U c a U b= − + = − ⋅ + =  

3 3 3 2 3 2 3( ) / ( ) ( 5 0,1 0) / ( 0,1 0,1087 4) 1,2534;V d a V a U b= − + = − − ⋅ − ⋅ + = −  

4 4 4 3 4/ ( ) 0U c a U b= − + = , because c4=0; 

4 4 4 3 4 3 4( ) / ( ) (40 1 1,2534) / ( 1 0,2507 8) 5,0V d a V a U b= − + = − ⋅ − ⋅ + = .  

The reverse course of the sweep. Formulas (1.13) calculate all unknown 
values xi: 

 x4 = V4 = 5,0 (U4 = 0); 

3 3 4 3 0,2507 5 1,2534 0,0001 0;x U x V= + = ⋅ − = ≈  

2 2 3 2 1,1087 0,0001 0 0,0001 0;x U x V= + = − ⋅ + = − ≈  

1 1 2 1 0,1 0,0001 0,5 0,5001 0,5.x U x V= + = ⋅ + = ≈  

We will present the implementation of the Tridiagonal matrix algorithm in 
the С++ programming language: 
// Straight course of the Tridiagonal matrix algorithm 
int N1 = N - 1; 
y = matA[0][0]; 

a[0] = -matA[0][1] / y; 
B[0] = matB[0] / y ; 

for (int i = 1; i < N1; i++) { 
y = matA[i][i] + matA[i][i - 1] * a[i - 1]; 
a[i] = -matA[i][i + 1] / y; 
B[i] = (matB[i] - matA[i][i - 1] * B[i - 1]) / y; 
} 

// On the return stroke, the roots of the equation system are calculated: 
matRes[N1] = (matB[N1] - matA[N1][N1 - 1] * B[N1 - 1]) / (matA[N1][N1] + 
matA[N1][N1 - 1] * a[N1 - 1]); 
for (int i = N1 - 1; i >= 0; i--) { 
matRes[i] = a[i] * matRes[i + 1] + B[i]; 
} 

The algorithm of the Tridiagonal matrix algorithm is given in Figure 1.7. 

1.3 Iterative method 

In the case when the LAES has a large number of unknowns and also contains 
a matrix of highly sparse coefficients (a large number of coefficients with zero 
values), the use of the Gaussian elimination, which gives an exact solution, 
becomes very difficult. In this case, it is convenient to use Iterative method to 
determine the roots of the system. For this purpose, the LAES is reduced to this 
form: 
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Figure 1.7 – Scheme of the algorithm for the tridiagonal matrix algorithm 
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1 1, 1, 1 1 1,1 1 1,0

2 2, 2, 1 1 2,1 1 2,0

, , 1 1 ,1 1 ,0

... ;
... ;

;
... .

n n n n

n n n n

n n n n n n n n n

x b x b x b x b
x b x b x b x b

x b x b x b x b

− −

− −

− −

= + + + +
 = + + + +


 = + + + +



    (1.16) 

or in matrix form:  

X = BX+B0, 

where 

11 12 1

21 22 2

1 2

n

n

n n nn

b b b
b b b

b b b

=





   



B , 

10

20
0

0n

b
b

b

=


B . 

There are several main types of iterative methods, which include Jacobi 
method (simple iteration), Gauss–Seidel method, and successive over-relaxation. 
These methods are based on the systematic refinement of the values of the 
variables specified at the beginning of the calculation. 

Jacobi method (simple iteration) 

In the Jacobi (simple iteration) method, the initial values of the variables are 
used to calculate the new values x1, x2, …, xi-1 using the following equations. The 
process stops when all the new values are close enough to the original values. 
Otherwise, the new values are used instead of the original values. This procedure 
is repeated until the convergence condition is satisfied or the process diverges. In 
this method, the replacement of the values of all variables is performed 
simultaneously (simultaneous displacement). 

Let LAES be given in the following form: 

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

... ;
... ;

...........................................;
... .

n n

n n

n n nn n n

a x a x a x b
a x a x a x b

a x a x a x b

+ + + =
 + + + =


 + + + =

     (1.17) 

To solve such a system using the Jacobi method (simple iteration), it is 
necessary to reduce the system (1.17) to the following form: 
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12 13 1 1
1 2 3

11 11 11 11

21 23 2 2
2 1 3

22 22 22 22

1 2 1
1 2 1

... ;

... ;

............................................................;

... .

n
n

n
n

n n nn n
n n

nn nn nn nn

a a a bx x x x
a a a a
a a a bx x x x
a a a a

a a a bx x x x
a a a a

−
−

 = − − − − +

 = − − − − +



 = − − − − +


 (1.18) 

In the system (1.17), the i-th equation is the i-th equation of the system (1.18), 
solved with respect to the i-th unknown ( ni ,1= ). 

The method of solving LAES (1.17) by means of reduction to system (1.18), 
followed by its solution using an iterative method, is called the Jacobi (simple 
iteration) method for system (1.17). 

Thus, the formulas for the Jacobi method (simple iteration) for solving system 
(1.17) will have the following form: 

 
11 12 13 1 1 1

1 2 3
211 11 11 11 11 11

21 21 23 2 2 2
2 1 3

1, 222 22 22 22 22 22

;

;

..............................................................

n jk k k k kn
n j

j

n jk k k k kn
n j

j j

aa a a b bx x x x x
a a a a a a

aa a a b bx x x x x
a a a a a a

+

=

+

= ≠

= − − − − + = − +

= − − − − + = − +

∑

∑





1
1 1 2 1

1 2 1
1

.......................................; (1.19)

( 0,1, 2, ... .).
n njk k k k kn n nn n n

n n j
jnn nn nn nn nn nn

aa a a b bx x x x x k
a a a a a a

−
+ −

−
=











= − − − − + = − + =


∑

  

Formulas (1.19) can be written in the following form: 

      1

1,

n ijk k i
i j

j j i ii ii

a bx x
a a

+

= ≠
= − +∑  (i=1, 2, …, n; k=0, 1, 2, …). 

 

Example 1.5. Solve the LAES (system with dominant diagonal coefficients) 
using the numerical Jacobi method (simple iteration) with the specified accuracy 
Δ = 0,065: 

1 2

1 2 3

2 3 4

3 4

4,300 0,217 2,663;
0,100 3,400 0,207 2,778;
0,090 2,500 0,197 2,533;
0,080 1,600 1,928.

x x
x x x
x x x
x x

+ =
 − − =
 + + =
 − =
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Solution: 
Let’s write down the equivalent system of equations: 

1 2 2

2 4 1 4 1

3 4 2 4 2

4 3 3

2,663 0,217 0,6193 0,050 ;
4,300 4,300

2,778 0,207 0,1 0,817 0,061 0,029 ;
3,4 3,4 3,4

2,533 0,197 0,09 1,013 0,079 0,036 ;
2,500 2,500 2,50

1,928 0,08 1,205 0,05 .
1,600 1,60

x x x

x x x x x

x x x x x

x x x

 = − = −

= − − + = − − +


= − − = − −

= − + = − +












  

 
Since the sum of the coefficients in each row on the right-hand side of the 

system is obviously less than one, the «weak» convergence condition will be 
satisfied. The following values can be considered as an initial approximation of 
zero: ( )0

1 0,619x = ; ( )0
2 0,8170x = − ; ( )0

3 1,013x = ; ( )0
4 1,205x = − . 

Based on the system, the calculation of the first iteration is performed: 

( ) ( )

( ) ( )

1 0
1 2

1 0 (0)
2 4 1

(1) (0) (0)
3 4 2

0,6193 0,050 0,6193 0,050 ( 0,817) 0,6604;

0,817 0,061 0,029 0,817 0,061 ( 1,205)
0,029 0,619 0,8606;

1,013 0,079 0,036 1,013 0,079 ( 1,205)
0,036 (0,817) 1,1373;

x x

x x x

x x x

= − = − ⋅ − =

= − − + = − − ⋅ − +
+ ⋅ = −

= − − = − ⋅ − −

− ⋅ =
(1) (0)
4 31,205 0,05 1,205 0,05 1,013 1,155.x x









 = − + = − + ⋅ = −

 

After that, the calculation for the second iteration is performed: 

( )2 (1)
1 2
(2) (1) (1)
2 4 1

(2) (1) (1)
3 4 2

0,6193 0,050 0,6193 0,050 ( 0,8606) 0,6623;
0,817 0,061 0,029 0,817 0,061 ( 1,155)

0,029 0,6604 0,8678;
1,013 0,079 0,036 1,013 0,079 ( 1,155)

0,036 ( 0,860

x x
x x x

x x x

= − = − ⋅ − =

= − − + = − − ⋅ − +
+ ⋅ = −

= − − = − ⋅ − −

− ⋅ −
(2) (1)
4 3

6) 1,072;
1,205 0,05 1,205 0,05 1,1373 1,148.x x







 =
 = − + = − + ⋅ = −

 

The calculation of the third iteration is performed: 
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(3) (2)
1 2
(3) (2) (2)
2 4 1

(3) (2) (2)
3 4 2

0,6193 0,050 0,6193 0,050 ( 0,8678) 0,6623;
0,817 0,061 0,029 0,817 0,061 ( 1,148)

0,029 0,6623 0,862;
1,013 0,079 0,036 1,013 0,079 ( 1,148)

0,036 ( 0,86

x x
x x x

x x x

= − = − ⋅ − =

= − − + = − − ⋅ − +
+ ⋅ = −

= − − = − ⋅ − −

− ⋅ −
(3) (2)
4 3

78) 1,133;
1,205 0,05 1,205 0,05 1,072 1,1218.x x







 =

 = − + = − + ⋅ = −

 

We will evaluate the calculation error: 
( ) ( )

( )

( ) ( )

( )

{ }

2 1
1 1

2 (1)
2 2

2 1
3 3

2 (1)
4 4

1

0,6623 0,6604 0,0019;

0,8678 ( 0,8606) 0,0072;

1,072 1,1373 0,0653;

( 1,148) ( 1,155) 0,0070;

max 0,0019; 0,0072; 0,0653; 0,0070 0,0653 0,065;

x x

x x

x x

x x

 − = − =

 − = − − − =


− = − =

 − = − − − =
∆ = = > ∆ =

 

( )2 (3) (2)
1 1 1

(2) (3) (2)
2 2 2

(2) (3) (2)
3 3 3

(2) (3) (2)
4 4 4

2

0,6623 0,6623 0,0000;

( 0,8620) ( 0,8678) 0,0058;

1,133 1,072 0,0610;

( 1,1218) ( 1,1480) 0,0262;

max 0,0000; 0,0058; 0,0610;

x x

x x

x x

x x

∆ = − = − =

∆ = − = − − − =

∆ = − = − =

∆ = − = − − − =
∆ = { }0,0262 0,0610 0,065.= < ∆ =

 

The fulfillment of the condition Δ2 < 0,065 indicates the achievement of the 
specified accuracy of the calculation. Therefore, the solution of the system with 
an error of Δ = 0,065: 

( ) ( )

( ) ( )

3 3
1 2

3 3
3 4

0,6623; 0,8620;

1,1330; 1,1218.

x x

x x

 = = −


= = −
  

In the method of successive upper relaxation, the new values of each variable 
are calculated as follows: 

, 

where  – refined value  using the Gauss-Seidel method, ω – relaxation 
parameter (1,0 2,0ω≤ ≤ ). 

When the value of the parameter ω = 1.0, this method is identical to the 
Gauss-Seidel method. The rate of convergence depends on the value of the 
relaxation parameter ω. The algorithm for the numerical implementation of the 

)( )()1()()1( m
i

m
i

m
i

m
i xxxx −ω+= ++

)1( +m
ix )(m

ix
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Jacobi method (simple iteration) for solving the LAES is presented in Figure 1.8. 
 

            
Figure 1.8 – Scheme of the algorithm of the 
 Jacobi method (simple iteration) for LAES 

 
Consider the implementation of the simple iteration method in the С++ 

programming language: 
 

float G1 (float x1, float x2, float x3, float x4) 
  { return -0.6 + 0.7*x1 - 0.5*x2 - 0.3*x3- 0.5*x4;} 
float G2 (float x1, float x2, float x3, float x4) 
  { return -0.3 - 0.3*x1 + 0.6*x2 -0.1*x3 -0.2*x4;} 
float G3 (float x1, float x2, float x3, float x4) 
  { return  -0.8 - 0.6*x1 -0.2*x2 +0.2*x3 - 0.2*x4;} 
float G4 (float x1, float x2, float x3, float x4) 
  { return  -0.8 - 0.3*x1 -0.5*x2 -0.3*x3 + 0.3*x4;} 
int main(int argc, char *argv[]) { 
   float delta = 0.01; 
   float x1 = 1, x2 = 1, x3 = 1, x4 = 1; 

 

Start 

X0=( ),  (i=1, 2, …, 

k=0 

For all  is calculated: 

 

 

Print: 
Xk  or Xk+1 

Stop 

 

1 

3 

4 

5 

6 7 

8 

9 

Input: A, B 
2 
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   float x10, x20, x30, x40; 
   do 
    { 
        x10 = x1; 
        x20 = x2; 
        x30 = x3; 
        x40 = x4; 
        x1 = G1(x10, x20, x30, x40); 
        x2 = G2(x10, x20, x30, x40); 
        x3 = G3(x10, x20, x30, x40); 
        x4 = G4(x10, x20, x30, x40); 
    } 
 while ((fabs(x1-x10) >= delta) && (fabs(x2-x20)>= delta) && (fabs(x3-x30) 

>= delta)&&(fabs(x4-x40) >= delta));    
   // 
   cout << "x1 = " << x1 << endl; 
   cout << " x2 = " << x2 << endl;  
   cout << " x3 = " << x3 << endl;  
   cout << " x4 = " << x4 << endl << endl; 
   system("PAUSE"); 

   return 0;} 

Gauss-Seidel method 

In the case of using the Gauss-Seidel method, when calculating the (k+1)-th 
approximation of the unknown value xi (i > 1), the previously calculated (k+1)-th 
approximations of the unknowns x1, x2, …, xi-1 are used. 

Let’s consider this method using the example of solving LAES: 

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

;
;
.

a x a x a x b
a x a x a x b
a x a x a x b

+ + =
 + + =
 + + =

  

Assume that the diagonal elements а11, а22, and а33 are different from zero. 
Then, expressing the unknown values x1, x2 and x3, respectively, from the first, 
second and third equations of the original system, we get: 

   

1 1 12 2 13 3
11

2 2 21 1 23 3
22

3 3 31 1 32 2
33

1 ( );

1 ( );

1 ( ).

x b a x a x
a

x b a x a x
a

x b a x a x
a


= − −




= − −



= − −


     (1.20) 

If we specify some initial (zero) approximations of the values of the 
unknowns (0)

1 1x x= , (0)
2 2x x= , and x3, and substitute them into the right-hand side 

of the system equations (1.20), we will obtain a new approximation (first iteration) 
for x1, x2, and x3, respectively: 
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(1) (0) (0)
1 1 12 2 13 3

11

(1) (1) (0)
2 2 21 1 23 3

22

(1) (1) (1)
3 3 31 1 32 2

33

1 ( );

1 ( );

1 ( ).

x b a x a x
a

x b a x a x
a

x b a x a x
a


= − −




= − −



= − −


   

For the second iteration, the new values for x1, x2, and x3 will be used, namely: 
)2(

33
)2(

22
)2(

11 ,, xxxxxx === etc. 
Then the k-th approximation can be given in the form: 

( ) ( 1) ( 1)
1 1 12 2 13 3

11

( ) ( ) ( 1)
2 2 21 1 23 3

22

( ) ( ) ( )
3 3 31 1 32 2

33

1 ( );

1 ( );

1 ( ).

k k k

k k k

k k k

x b a x a x
a

x b a x a x
a

x b a x a x
a

− −

−


= − −




= − −



= − −


   

The iterative process continues until the ( )
1

kx , ( )
2
kx , ( )

3
kx  values become close to 

the ( 1)
1

kx − , ( 1)
2
kx − , ( 1)

3
kx −  values within a given error. 

Now consider a system of n linear equations with n unknowns (i = 1, 2, ..., n). 
Assume that all diagonal elements are nonzero. Let’s write the i-th equation: 

1 1 , 1 1 , 1 1... ...i i i i ii i i i i in n ia x a x a x a x a x b− − + ++ + + + + + = . 

Then, according to the Gauss-Seidel method, the k-th approximation of the 
solution can be written in the form: 

( ) ( ) ( ) ( 1) ( 1)
1 1 , 1 1 , 1 1

1 ( ... ... )k k k k k
i i i i i i i i i in n

ii

x b a x a x a x a x
a

− −
− − + += − − − − − − .  

The iterative process will continue until all values of xi
(k) become close to 

xi
(k-1). The proximity of these values is characterized by the maximum absolute 

value of their difference δ. Then, with a given permissible error Δ>0, the condition 
for the termination of the iterative process can be written in the form: 

( ) ( 1)

1
max k k

i ii n
x xδ −

≤ ≤
= − < ∆ . 

This condition is a criterion based on absolute deviation, which can be 
replaced by a criterion based on relative differences. That is, the termination 
condition of the iterative process can be written in the form (for |xi| >> 1): 

( ) ( 1)

1
max

k k
i i

ki n
i

x x
x

ε
−

≤ ≤

−
< .  
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If one of these conditions is fulfilled, the iterative process of solving by the 
Gauss-Seidel method is called convergent. In this case, the maximum differences 
δ  between the values of the variables in the next two iterations decrease, and these 
values themselves will approach the solution of the system of equations. 

One of the main conditions for the application of iterative methods is the 
fulfillment of the convergence condition. The analysis of the convergence of 
iterative methods for solving the LAES is connected with the use of the concept 
of matrix norm. The norm of a matrix B is a characteristic number B , that has 
the following properties: the norm is always greater than zero ( B >0) and is equal 
to zero only for the zero matrix; if the matrix B is multiplied by a real coefficient 
λ, then the norm must be multiplied by the modulus of this coefficient – λ ⋅ B ; 
the norm of the sum of two matrices A, B is not greater than the sum of the norms 
(the condition of additivity of the norm – + ≤ +A B A B ), and the norm of 
the product of two matrices A, B is not greater than the product of the norms (the 
condition of multiplicativity of the norm – ≤ ⋅AB A B ). 

The following matrix norms have become the most widespread: 

1 1 1
max

n
ijj n i

b
≤ ≤ =

= ∑B  – the first norm; 
2 1 1

max
n

ijj n j
b

≤ ≤ =
= ∑B  – the second norm; 

2

1 1

n n

ij
i jE

b
= =

= ∑∑B  – E-norm (Euclidean norm). 

There are several approaches to determining convergence using norm 
estimation. In the general case, it is enough that at least one of the norms of the 
matrix B is less than one, namely: ||B||<1. 

In mathematics, such a condition is called «ordinary» or «strong». In many 
cases, convergence is ensured by the fulfillment of the so-called «weak» feature. 
For example, a «weak» sign of convergence based on row sums is as follows: for 

all row coefficient sums (i = 1, 2, ..., n), the relation – | | 1
n

ij
j i

b
=

≤∑  holds, but there 

is one row p for which .1||∑ <
=

n

ij
pjb  

Similarly, the «weak» sign of the sums for the columns of the matrix is 
determined. 

The «weak» sign is used in those cases when the coefficient matrix A of the 
LAES is not decomposable. In other words, it is a square matrix A that cannot be 
reduced to the form of a decomposable matrix: 

1 2

3

,
0

 
 
 

A A
A

 

where  A1, A2, A3 – square matrices. 
For decomposable matrices, LAES decomposes into two systems of equations 

that are solved sequentially. The primary sources listed at the end of this textbook 
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contain many more detailed proofs and analyses of properties and features for 
evaluating convergence. However, for a general engineering approach to solving 
many practical problems, the above data is sufficient. 

In practice, for the convergence of the iterative process, it is sufficient that the 
magnitudes of the diagonal coefficients of each equation in the system are not less 
than the sum of the magnitudes of all other coefficients: 

∑
≠

≥
ji

ijij aa , 

This condition is sufficient for the convergence of the method, but it is not 
necessary because for some systems, the iterations converge even if these 
conditions are violated. 

 
Example 1.6. A manufacturing enterprise produces four types of products 

using four types of technological equipment. Each type of equipment has its own 
coefficient of useful action (CUE), namely: x1, x2, x3, and x4. Table 1.4 presents 
the energy consumption required for each type of equipment to produce the 
different products. To calculate the CUE of the technological equipment, refer to 
Table 1.4. 

 
Table 1.4 – Energy consumption data for manufacturing products 

Product 
type 

Energy consumption by technological equipment, 
MJ 

Total energy 
consumption, 

MJ 1 2 3 4 
I 0,401 0,301 0,000 0,000 0,122 
II 0,029 0,500  0,018 0,000 0,253 
III 0,000  0,050  1,400  0,039 0,988 
IV 0,000 0,000  0,007  2,300 2,082 

 
Solution: 

Based on the data in Table 1.4, we will compile the characteristic equation for 
energy consumption by technological equipment in the manufacturing of various 
types of products. 

1 2

1 2 3

2 3 4

3 4

0,401 0,301 0,122;
0,029 0,5 0,018 0,253;
0,050 1,4 0,039 0,988;
0,007 2,3 2,082.

x x
x x x
x x x
x x

+ =
 + + =
 + + =
 + =

 

The obtained LAES must be solved using the Gauss-Seidel method with the 
given accuracy Δ=0,001. 

Let’s reduce the system to an equivalent form: 
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1 2 2

2 3 1 3 1

3 2 4 2 4

4 3 3

1 (0,122 0,301 ) 0,304 0,751 ;
0,401
1 (0,253 0,018 0,029 ) 0,506 0,036 0,058 ;

0,5
1 (0,988 0,050 0,039 ) 0,706 0,036 0,028 ;

1,4
1 (2,082 0,007 ) 0,905 0,003 .

2,3

x x x

x x x x x

x x x x x

x х х

 = − = −

 = − − = − −

 = − − = − −


 = − = −


  

Since the sum of the coefficients in the rows on the right side of the system is 
obviously less than unity, the «weak» convergence condition will be fulfilled. 

All xi values equal to zero in the right part of the system are taken as initial 
approximations, namely: x1

(0)=x2
(0)=x3

(0)=x4
(0)=0. 

Then the values of the unknown arguments at the first iteration: 
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 0
1 2

1 0 1
2 3 1

1 1 0
3 2 4

1 1
4 3

0,304 0,751 0,304 0,751 0 0,304;

0,506 0,036 0,058 0,506 0,036 0 0,058 0,304 0,488;

0,706 0,036 0,028 0,706 0,036 0,488 0,028 0 0,688;

0,905 0,003 0,905 0,003 0,688 0,90

x x

x x x

x x x

x х

= − = − ⋅ =

= − − = − ⋅ − ⋅ =

= − − = − ⋅ − ⋅ =

= − = − ⋅ = 3.









 

Based on the results of the first iteration, the second calculation iteration is 
performed: 
 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 1
1 2

2 1 2
2 3 1

2 2 1
3 2 4

2 2
4 3

0,304 0,751 0,304 0,751 0,488 0,062;

0,506 0,036 0,058 0,506 0,036 0,688
0,058 ( 0,062) 0,485;

0,706 0,036 0,028 0,706 0,036 0,485 0,028 0,903 0,663;

0,905 0,003 0,905

x x

x x x

x x x

x х

= − = − ⋅ = −

= − − = − ⋅ −

− ⋅ − =

= − − = − ⋅ − ⋅ =

= − = 0,003 0,663 0,903.








 − ⋅ =

 

Based on the results of two iterations, the accuracy of the current calculation 
is checked: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

{ }

2 1
1 1

2 1
2 2

2 1
3 3

2 1
4 4

1

-0,062-0,304 0,366;

0,488 0,485 0,003;

0,663-0,688 0,025;

0,903-0,903 0;

max 0,366; 0,003; 0,025; 0 0,366 0,001.

x x

x x

x x

x x

 − = =

 − = − =


− = =

 − = =
∆ = = > ∆ =
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The value Δ1 > 0,001  means that the specified calculation accuracy has not 
yet been achieved, indicating the need to perform the third calculation iteration: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

3 2
1 2

3 2 3
2 3 1

3 3 2
3 2 4

3 3
4 3

0,304 0,751 0,304 0,751 0,485 0,060;

0,506 0,036 0,058 0,506 0,036 0,663 0,058 ( 0,060) 0,486;

0,706 0,036 0,028 0,706 0,036 0,486 0,028 (0,903) 0,663;

0,905 0,003 0,90

x x

x x x

x x x

x х

= − = − ⋅ = −

= − − = − ⋅ − ⋅ − =

= − − = − ⋅ − ⋅ =

= − = 5 0,003 0,663 0,903.








− ⋅ =

 

Checking the accuracy of the current calculation is performed: 
( ) ( )

( ) ( )

( ) ( )

( ) ( )

{ }

3 2
1 1

3 2
2 2

3 2
3 3

3 2
4 4

2

0,060 0,062 0,002;

0,486 0,485 0,001;

0,663 0,663 0;

0,903 0,903 0;

max 0,002; 0,001; 0; 0 0,002 0,001.

x x

x x

x x

x x

 − = − − =

 − = − =


− = − =

 − = − =
∆ = = > ∆ =

 

Since Δ2 > 0,001, the specified accuracy of the calculation was also not 
achieved, which indicates the need to perform the fourth iteration: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

4 3
1 2

4 3 4
2 3 1

4 4 3
3 2 4

4 4
4 3

0,304 0,751 0,304 0,751 0,486 0,060;

0,506 0,036 0,058 0,506 0,036 0,663
0,058 ( 0,060) 0,486;

0,706 0,036 0,028 0,706 0,036 0,486
0,028 (0,903) 0,663;

0,905 0,003 0,

x x

x x x

x x x

x х

= − = − ⋅ = −

= − − = − ⋅ −

− ⋅ − =

= − − = − ⋅ −

− ⋅ =

= − = 905 0,003 0,663 0,903.










 − ⋅ =

 

Checking the accuracy of the current calculation is performed: 
( ) ( )

( ) ( )

( ) ( )

( ) ( )

{ }

4 3
1 1

4 3
2 2

4 3
3 3

4 3
4 4

3

0,060 0,060 0;

0,486 0,486 0;

0,663 0,663 0;

0,903 0,903 0;

max 0; 0; 0; 0 0 0,001.

x x

x x

x x

x x

 − = − − =

 − = − =


− = − =

 − = − =
∆ = = < ∆ =

 

Now Δ3 < 0,001, which indicates that the specified calculation accuracy has 
been achieved. Therefore, the solution of the system with an error of Δ=0,001: 
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( )

( )

( )

( )

4
1

4
2

4
3

4
4

0,060;

0,486;

0,663;

0,903.

x

x

x

x

 = −


=


=


=

 

The «minus» sign in the obtained CUE value shows that an exothermic 
chemical reaction with heat release is taking place on the first technological 
equipment. This type of technological equipment with CUE x1 refers to chemical 
devices. 

The algorithm for the numerical implementation of the Gauss-Seidel method 
for solving the LAES is presented in Figure 1.9. 

 
 

 
Figure 1.9 – Scheme of the Gauss-Seidel method algorithm 
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Consider the implementation of the Gauss-Seidel method in the С++ 
programming language: 

public class GauseZeydel { 
public static void GauseZeydelMethod() 
{ 
Scanner scanner = new Scanner(System.in);  
PrintWriter printWriter = new PrintWriter(System.out); 
 int size; 
System.out.println("Enter the number of unknowns"); size = scanner.nextInt(); 
double[][] matrix = new double[size][size + 1]; System.out.println("Enter the 

matrix "); 
for (int i = 0; i < size; i++) 
{ 
for (int j = 0; j < size + 1; j++) 
{ 
matrix[i][j] = scanner.nextDouble(); 
} 
} 
double eps; 
System.out.println("Input the precision"); eps = scanner.nextDouble(); 
double[] previousVariableValues = new double[size]; for (int i = 0; i < size; 

i++) 
{ 
previousVariableValues[i] = 0.0; 
} 
while (true) 
{ 
double[] currentVariableValues = new double[size]; for (int i = 0; i < size; 

i++) 
{ 
currentVariableValues[i] = matrix[i][size]; for (int j = 0; j < size; j++) 
{ 
if (j < i) 
{ 
currentVariableValues[i] -= matrix[i][j] * currentVariableValues[j]; 
} 
if (j > i) 
{ 
currentVariableValues[i] -= matrix[i][j] * previousVariableValues[j]; 
} 
} 
currentVariableValues[i] /= matrix[i][i]; 
} 
double error = 0; 
for (int i = 0; i < size; i++) 
{ 
error += Math.abs(currentVariableValues[i] - previousVariableValues[i]); 
} 
if (error < eps) 
{ 
break; 
} 
previousVariableValues = currentVariableValues; 
} 
for (int i = 0, j=1; i < size; i++, j++) 
{ 
printWriter.print("X" + j + "=" + previousVariableValues[i] + " "); 
} 
scanner.close(); printWriter.close(); 
} 
}. 
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Conclusions regarding the application of LAES solution methods 

In cases of small orders of the system (up to 6–7), you can use Cramer’s rule, 
which allows you to obtain an exact solution and which, for such orders, does not 
require too many computational operations. Such problems often arise during 
calculations of small electrical networks or subsystems of automatic control. 
However, with the increase in the number of equations in the system, the number 
of operations to calculate determinants of matrices begins to increase very 
quickly, which leads to a decrease in the efficiency of the method. 

Starting with the 9th-10th order of LAES, the use of Gaussian methods and 
their modifications has advantages and is the most reliable method. However, if 
the coefficient matrices are very sparse, meaning they contain many zeros, 
implementing the Gaussian elimination starts to require a large computational cost 
to change the order of the rows of the matrices in order to ensure a nonzero value 
of the main element at a certain step. 

Sparse matrix problems often arise in data processing and mathematical 
physics problems, in which a sufficiently dense discretization with a small step is 
performed to ensure accuracy. In general, for problems of solving LAES of large 
order (tens, hundreds, thousands, etc.), iterative methods have no competitors, 
provided that convergence is ensured. It should be noted that in many practical 
problems, the condition of convergence is ensured by the very formulation of the 
problem (for example, in the process of solving the Laplace’s equation in 
problems of mathematical physics). 

Control questions and tasks 
1.  What is the difference between direct and indirect methods of solving 

LAES? Provide a comparative assessment. 
2.  To reveal the essence of the Cramer’s rule, Gaussian elimination (and its 

variants), and Tridiagonal matrix algorithm. 
3.  In what form is the LAES presented and which iterative methods are used 

for its solution? 
4.  Solve the following system of equations using Cramer’s rule. Write an 

algorithm and a solution program. 

5. 














=+−+
=++−

−=−+−
=+−

=++++

.5010
;2032

;10432
;267

;15

5431

5321

4321

431

54321

xxxx
xxxx
xxxx

xxx
xxxxx

 

5.  Solve the LAES from example 4 using the Gaussian elimination. Compose 
a computational algorithm and program. 

6.  Solve the LAES from example 4 using the modified Gaussian elimination. 
Compose a computational algorithm and program. 
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7.  Solve the following LAES using the Jacobi method (simple iterations). 
Compose a computational algorithm and program. Check the convergence 
condition. 

2 3 4
1

1 2 3 4
2

1 2 3 4
3

3 4
4

;
2 3 4

;
10 10 10 2

;
5 5 3 10

2.
3 4

x x xx

x x x xx

x x x xx

x xx

 = + −

 = + − +


 = + + +


 = + +


 

 

8.  Solve the LAES from example 4 using the Gauss-Seidel method. Develop a 
computational algorithm and program. Verify the convergence condition. 

9.  How to check the convergence condition of iterative algorithms for 
calculating LAES? 

10.  What is the difference between the Jacobi and Gauss-Seidel iterative 
algorithms? 

11.  Solve LAES using Cramer’s rule: 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 4

2 3 1;
4 6;

3 4;
3 3 5.

x x x x
x x x x
x x x x

x x x

− + + = −
 + − − =
 − + + =
 − + = −

  

12.  Solve LAES using the Gaussian elimination: 

а) 
0,542 2,43 3,75 0,208 0;
2,31 3,68 4,51 4,08 0;
13,4 2,36 9,75 36,4 0.

x y z
x y z
x y z

+ − − =
 − − + =
 + − − =

  

b) 
0,542 2,43 3,75 0,208 0;
2,31 3,68 4,51 4,08 0;
13,4 2,36 9,75 36,4 0.

x y z
x y z
x y z

+ − − =
 − − + =
 + − − =

 

c) 

1 2 4

1 2 3 4

1 2 3

1 2 3

4 6;
2 3 1;

3 5 4 0;
17 4 0.

x x x
x x x x
x x x

x x x

− − =
 + + + = −
 − + =
 + + =
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13.  Solve the system of equations using the method of iterations: 

а) 
0,12 0,06 0,09 0,32;
0,17 0,11 0,07 0,21;
0,14 0,15 0,08 0,18.

x x y z
y x y z
z x y z

= − + +
 = + − −
 = − − +

  

b) 
0,12 0,06 0,09 0,32;
0,17 0,11 0,07 0,21;
0,14 0,15 0,08 0,18.

x x y z
y x y z
z x y z

= − + +
 = + − −
 = − − +

 

c) 
60 2 6 30;
10 80 4 20;
12 6 90 45.

x y z
x y z
x y z

− + =
 − − =
 + − =

 

14.  Solve LAES by Gauss-Seidel iterative method with calculation error 
Δ=0,0001: 

а) 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

0,63 1,00 0,71 0,34 2,08;
1,17 0,18 0,65 0,71 0,17;
2,71 0,75 1,17 2,35 1,28;
3,58 0,28 3,45 1,18 0,05.

x x x x
x x x x
x x x x
x x x x

+ + + =
 + − + =
 − + − =
 + − − =

  

b) 
1 2 3

1 2 3

1 2 3

7,6 0,5 2,4 1,9;
2,2 9,1 4,4 9,7;

1,3 0,2 5,8 1,4.

x x x
x x x
x x x

+ + =
 + + =
− + + = −

 

15.  Solve LAES using the method of iterations with a calculation error of 
Δ=0,001: 

а) 

1 2 3

1 2 3

1 2 3

8 26;
5 7;

5 7.

x x x
x x x
x x x

+ + =
 + − =
 − + =

 

b) 
1 2 3

1 2 3

1 2 3

7,6 0,5 2,4 1,9;
2,2 9,1 4,4 9,7;

1,3 0,2 5,8 1,4.

x x x
x x x
x x x

+ + =
 + + =
− + + = −

 

 
16.  Solve LAES using the Gaussian elimination with a calculation error of 

Δ=0,001: 
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а) 
1 2 3

1 2 3

1 2 3

1,14 2,15 5,11 2,05;
0,42 1,13 7,05 0,80;

0,71 0,83 0,02 1,07.

x x x
x x x
x x x

− − =
 − + =
− + − = −

 

b) 
1 2 3

1 2 3

1 2 3

1,14 2,15 5,11 2,05;
0,42 1,13 7,05 0,80;

0,71 0,83 0,02 1,07.

x x x
x x x
x x x

− − =
 − + =
− + − = −

 

17.  Solve the LAES given in the matrix form X=CX+d (Table 1.5) using the 
method of simple iteration with calculation error Δ=0,001.  

 
Table 1.5 – Output data for the task 

№ С d № С d 
1 2 3 1 2 3 
1 0 0,3 0,1 0,2

0,2 0 0,21 0,2
0,3 0,1 0 0,3
0,3 0,1 0,2 0

− 
 − 
 −
 − − 

 
1
4

2
0,1

− 
 − 
 
 
 

 2 0 0,13 0,4 0,2
0,25 0 0,14 0,2
0,3 0,1 0 0,3
0,3 0,4 0,2 0

− 
 − 
 −
 − − 

 
1
4

2
0,1

− 
 − 
 
 
 

 

3 0 0,27 0,1 0,2
0,2 0 0,26 0,2
0,3 0,1 0 0,5
0,2 0,1 0,2 0

− 
 − 
 −
 − − 

 
1
4

2
0,1

− 
 − 
 
 
 

 
4 0 0,23 0,2 0,2

0,1 0 0,24 0,1
0,2 0,1 0 0,2
0,23 0,4 0,2 0

− 
 − − 
 −
 − − 

 
1
2

2
0,1

− 
 − 
 
 
 

 

5 0 0,3 0,1 0,2
0,2 0 0,1 0,2
0,3 0,1 0 0,3
0,3 0,1 0,2 0

− 
 − 
 −
 − 

 
1
4

2
0,1

− 
 − 
 
 
 

 
6 0 0,3 0,4 0,2

0,1 0 0,14 0,14
0,1 0,1 0 0,3
0,3 0,4 0,2 0

 
 − 
 
 − − 

 
1
1

2
0,1

− 
 − 
 
 
 

 

7 0 0,3 0,4 0,2
0,1 0 0,14 0,1
0,1 0,1 0 0,3
0,3 0,4 0,2 0

− 
 − − 
 −
 − − 

 
1
1

2
0,1

− 
 − 
 
 
 

 
8 0 0,1 0,1 0,2

0,2 0 0,2 0,1
0,13 0,2 0 0,3
0,1 0,1 0,2 0

− 
 − 
 −
 − − 

 
1
1

2
0,1

− 
 − 
 
 
 

 

9 0 0,1 0,4 0,2
0,15 0 0,1 0,2
0,3 0,1 0 0,3
0,1 0,14 0,2 0

− 
 
 
 −
 − − 

 
1
2

2
0,1

− 
 − 
 
 
 

 
10 0 0,3 0,1 0,2

0,2 0 0,1 0,2
0,1 0,2 0 0,1
0,1 0,2 0,2 0

− 
 − 
 −
 − 

 
1

0,5
2

0,1

− 
 − 
 
 
 

 

11 0 0,3 0,1 0,2
0,2 0 0,1 0,2
0,1 0,2 0 0,1

0,1 0,2 0,2 0

− 
 − − 
 − −
 − 

 
1

0,5
2

0,1

− 
 
 
 −
 
 

 
12 0 0,3 0,14 0,2

0,11 0 0,41 0,1
0,1 0,1 0 0,13

0,13 0,4 0,2 0

 
 − − 
 
 − − 

 
1
1

2
0,1

− 
 − 
 
 
 
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18. Solve the LAES AX=B (Table 1.6) using the Gauss-Seidel method with a 

calculation error of Δ=0,001: 
 
Table 1.6 – Output data for the task 

№ А B № A B 
1 2 3 1 2 3 
1 0,9 0,3 0,1 0,2

0,2 2 0 0,2
0,1 0,2 1 0,1
0,1 0,2 0,2 1

− 
 − − 
 − −
 − − 

 
1
5
2

0,1

 
 
 
 
 
 

 
2 9 3 1 2

2 7 1 1
1 2 6 2
1 1 2 9

− 
 − − 
 − −
 − − 

 
1
5
2
1

 
 
 
 
 
 

 

3 1 0,1 0 0,2
0,2 1 0 0,2
0,1 0,2 1 0,1
0,1 0,2 0,2 1

 
 − − 
 − −
 − − 

 
1
5
2

0,1

 
 
 
 
 
 

 
4 
 

7 3 0 2
1 4 0 1
1 1 6 2
1 2 2 9

 
 − 
 − −
 − − 

 
1
6
2

11

 
 
 
 
 
 

 

5 1 0,23 0,1 0,2
0,2 1 0 0,2
0,1 0,2 1 0

0,14 0,2 0,2 1

− 
 − 
 −
 − − 

 
1
2
2
1

 
 
 
 
 
 

 
6 12 3 2 2

1 7 1 1
1 2 11 2

11 2 2 19

− 
 − − 
 − −
 − − 

 
1
6
2

11

 
 
 
 
 
 

 

7 2 0,3 0,1 0,2
0,2 3 0,1 0,2
0,1 0,52 2 0,1
0,1 0,2 0,2 2

− 
 − − 
 − −
 − − 

 
1
5
2

0,1

 
 
 
 
 
 

 
8 7 3 1 2

1 7 1 0
1 0 6 2
1 2 2 9

− 
 − 
 −
 − − 

 
1
6
2

11

 
 
 
 
 
 

 

9 4 0,2 0,1 0,3
0,1 3 0,2 0,3

0,1 0,5 2 0,1
0,3 0,2 0,2 2

− 
 − − 
 − −
 − − 

 
1
2
5

0,1

 
 
 
 
 
 

 
10 6 1 1 2

3 5 1 0
2 1 6 1
1 4 3 8

− 
 
 
 −
 − 

 
1
3
2
5

 
 
 
 
 
 

 

11 1 0,13 0,15 0,24
0,2 1 0,11 0,42
0,11 0,2 1 0,11
0,1 0,12 0,42 1

− 
 − − 
 − −
 − 

 
1
5
2

0,1

 
 
 
 
 
 

 
12 7 3 1 0

1 7 0 1
1 1 6 2
1 2 0 9

− 
 − − 
 − −
 − 

 
1
6
2

11

 
 
 
 −
 
 

 

 
19. The movement of the crankshaft mechanism (Fig. 10) is described by the 

equation: 
2

1 2 3cos( ) sin( )i i i iK s K K sϕ ϕ+ − =  (i=1, 2, 3), 

where 1
1 2

Ka = , 2 2
2 1 3 2a a a K= + − , 3

3
12

Ka
a

= . 
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The crankshaft mechanism must satisfy the following conditions presented in 
Table 1.7. 
 

Table 1.7 – Mechanism design data 
i Si φi 

1 1,0 20o 

2 1,2 45o 

3 2,0 60o 

 
Design a device that meets all three conditions above. To do this, you need to 

write down an equation describing the operation of the mechanism and find the 
values of Ki. What values of a1, a2, a3 correspond to the desired solution? 

 

 
Figure 1.10 – The principal diagram of the crank mechanism 

 
20. Two direct current sources with parameters E1=11,5 V, R1=2,5 Ohm, 

E2=16,5 V, R2=6,0 Ohm are connected in parallel to each other, along with a load 
resistor with resistance RH=30,0 Ohm (Fig. 1.11). Determine the value and 
direction of the currents through the direct current sources and the load resistor. 
To create a system of equations, it is necessary to use Kirchhoff's law and the 
conditions for equality of currents and voltages for parallel and series connections 
of electrical elements. 

 
Figure 1.11 – Circuit diagram 
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Chapter. 2 TASKS OF NON-LINEAR MATHEMATICS 
 

At the current stage, the development of many fundamental and applied 
sciences is closely related to the use of methods and means of mathematical and 
computer modeling. The ideology of mathematical modeling involves the 
formalization of the original object using a mathematical and/or algorithmic 
description (model), and the study of the object's behavior based on software-
implemented computing experiments. This has made it possible to move from 
simple calculations and evaluations of various structures or processes to a new stage 
of work – detailed mathematical modeling (computational experiment), which 
significantly reduces the need for natural experiments and, in some cases, can 
replace them altogether. The computational experiment is based on the solution of 
a mathematical model by numerical methods. Often, a mathematical model is 
reduced to nonlinear equations, algebraic or transcendental, and the presence of any 
non-linear function other than a power polynomial turns the equations into 
transcendental ones. In practice, the task is reduced to finding one root on a given 
interval or all existing roots. Such a problem arises, for example, when assessing 
the stability of automatic control systems. There are many examples of such 
problems arising in the process of designing and researching objects of various 
nature. 

In particular, in the field of science known as ballistics, the task of 
determining the flight parameters of an artillery projectile is important. The 
mathematical model of projectile flight is defined by the equations of body 
motion, assuming that the force of air resistance acting on the projectile is 
proportional to its speed (R = – kmν): 

–   in parametric form (with parameter t representing projectile flight time) 
in the projection on the vertical axis of the ordinate y: 

  ( )( )02
1 sin 1 kt gy g k e t
k k

υ α −= + − − ;    (2.1) 

– in projections on the horizontal and vertical axes xy: 

  0
2

0 0

1 sin ln 1
cos cos

g k g ky x x
k k

υ α
υ α υ α

   +
= + −   

   
,  (2.2) 

where m is the mass of the projectile, α is the angle to the horizon at which the 
projectile flew out of the artillery barrel with the initial speed υ0, k is the 
proportionality factor, t is the projectile flight time, g=9,82 m/sec2 is the 
acceleration of free fall. 

Using equation (2.1), you can determine the total flight time of the projectile, 
t, by equating the left side to zero and solving the corresponding transcendental 
equation. From equation (2.2), by also equating the left side to zero and solving 
the corresponding transcendental equation, one can find either the initial velocity, 
υ0, of the projectile or the range of the projectile flight x = S. 
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The problem of modeling in the field of economics, particularly in finance, is 
especially relevant today. A typical task involves determining the interest rate and 
yield of bonds. The mathematical model of profitability is represented by the 
following transcendental equation: 

  1( ) (1 ) (1 ) (1 ) ( ) 0n n
n nI P i P i A i A I− − ++ ⋅ + + ⋅ + + ⋅ + − + = ,   (2.3) 

where An is the current value of the bond (in monetary units), P is the nominal 
value (in monetary units); N is the term that has passed since the bond was issued 
(in years); T is the maturity (in years); n=T–N is the term remaining until the 
bond’s maturity (in years); k is the coupon interest rate (in fractions of a unit); 
I = P·k is the amount of coupon payments (the product of the nominal value P by 
the coupon interest rate k) (in monetary units). 

A well-known problem in the construction industry is to determine the critical 
force (loss of vertical balance of the rod) applied along a rod. One end of the rod 
is fixed while the other end can move in the vertical direction. This problem can 
be defined by the equation: 

   0PL PLtg
EI EI

 
− = 

 
,    (2.4) 

where P is the critical force (N), EI is the bending stiffness of the rod (N·m2), L 
is the length of the rod (m). 

Metrologists often solve the problem of finding the zero point of a nonlinear 
measuring or grading characteristic, which boils down to solving the same set of 
nonlinear equations.  

The presented and mentioned mathematical models (2.1) – (2.4) cannot be 
investigated by the methods of exact solution of equations, since the variable 
arguments are under the sign of a transcendental function or a nonlinear function 
of high order (and it is known that exact analytical formulas for calculating the 
roots exist only for algebraic equations not higher than the third order). However, 
the exact solution of the equation in technical problems is not absolutely 
necessary. The task of finding the roots of the equation can be considered 
practically solved if it is possible to determine the roots with guaranteed accuracy 
and indicate the limits of possible error. If there are exact analytical formulas for 
power functions, then for transcendental equations and any systems of equations, 
such methods do not exist at all, and only approximate iterative methods and 
algorithms need to be used, the most common of which will be discussed below. 

This section deals with solving computational problems in nonlinear 
mathematics: solving transcendental equations and systems of nonlinear 
equations, as well as finding complex roots of algebraic equations (polynomial 
equations). 
 
 



53 

2.1 Generalized formulation of the problem and the procedure for 
localizing the roots of the equation 

The study of mathematical models (2.1) – (2.4) involves the task of 
calculating the real roots of equations of the type f(x) = 0 on a given interval 
[a; b], where f:R1 R2 is an algebraic or transcendental function. It is assumed 
that the function f(x) is a piecewise continuous function of a real argument, which 
is continuous on the interval [a; b] and has a piecewise continuous derivative. 

The number x = ξ is called the root of the function f(x) if f(ξ) ≡ 0. 
The number ξ is called the root of the k-th multiplicity if, for x = ξ, all its 

derivatives up to and including the order k-1, together with the function, are equal 
to zero: 

 1( ) ( ) ( ) 0kf f fξ ξ ξ−′= = = = , but ( ) ( ) 0kf ξ ≠ .   (2.5) 

When determining the approximate values of the roots of the equation 
f(x) = 0, two problems must be solved: 

1)  separation of roots, i.e. determination of sufficiently small intervals, in 
each of which there is one and only one root of the equation (simple or multiple): 

2)  refinement of roots with a predetermined number of correct signs. 
In the case of a graphical separation of the roots of the equation f(x) = 0, it is 

necessary to convert this equation into the form: 

   1 2( ) ( )x xϕ ϕ= ,   (2.6) 

and plot graphs of functions: y1 = φ1(x), y2 = φ2(x). 
Indeed, the roots of the equation f(x) = φ1(x) – φ2(x) = 0 are the abscissas of 

the points of intersection of these graphs. 
Of all the ways in which the equation f(x) = 0 can be transformed into the 

form (2.6), the one that provides the simplest construction of graphs y1 = φ1(x) and 
y2 = φ2(x) is chosen. In particular, we can take φ2(x) = 0, and then we will plot the 
graph of the function y = f(x), where it intersects (or is tangent to) the line 
y2 = φ2(x), which represents the x-axis. These points of intersection or tangency 
are the roots of the equation f(x) = 0 that we are seeking. 

In general, when plotting graphs: 
   y1 = φ1(x);   y2 = φ2(x),   (2.7) 
first of all, it is necessary to determine the behavior of each of the functions φ1(x) 
and φ2(x)  under the conditions x→−∞  and x→+∞ . Find the values of x for which 
φj(x) = ∞  (j=1, 2). Determine the points of intersection of these functions with 
the x and y axes and calculate a number of intermediate, most characteristic 
values, starting with the values of φj(x)  for x = ± 1, for which it is usually easier 
to calculate the values of any function. 

Example 2.1. Separate the real roots of the equation: 

    1 sin 0
1

x x
x
+

− =
−

.  (2.8) 
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Solution: 

Having written equation (2.8) in the form 1sin
1

xx
x
+

=
−

, we construct graphs  

y1 = sin(x), 2
1
1

xy
x
+

=
−

. The abscissas of the intersection points determine all the 

real roots of the original equation (Fig. 2.1). In this case, all roots are negative, 

since the right-hand side of the hyperbola 2
1
1

xy
x
+

=
−

 does not intersect the 

sinusoid y1 = sin(x) anywhere. Although the number of roots is infinite, they are 
all isolated because only one root occurs in each of the intervals (0; -π/2), (-π/2; -
3π/2), …, ((1-2k)π/2; (-1-2k)π/2), where k = 1, 2, 3, …. 

 

 
Among the analytical methods of separating roots, the two most common 

general methods are used, which are equally suitable for both algebraic and 
transcendental equations. One of them is to find a simpler equation that has roots 
that are approximately equal to the unknown roots of this equation. This can often 
be achieved by neglecting the small terms in the given equation. The second 
method uses theorems that directly follow from known properties of continuous 
functions. 

Theorem 2.1 (theorem about the root of a continuous function). If the 
function f(x) is continuous on the segment [a, b] and its values at the endpoints of 
the segment, f(a) and f(b), have opposite signs, then there is at least one real root 
of the equation f(x) = 0 between the points a and b. 

Theorem 2.2. If the function f(x) is strictly monotonic on the segment [a; b], 
that is, it strictly increases or decreases on [a; b], then on this segment the equation 
f(x) = 0 cannot have more than one root. 

 
Figure 2.1 – Diagram illustrating the graphical determination of the 

equation’s roots 
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Example 2.2. For the function f(x) = x3-4x+2 it is necessary to find the 
intervals. Solving the inequality f’(x) = 3x2-4 > 0, we get: 

2 2; ;
3 3

x    ∈ −∞ − ∪ +∞   
   

. The function increases on these two intervals. It is 

clear that the function decreases on the interval 
2 2;
3 3

x  ∈ − 
 

. 

The value of the function at the extremum points: 

 

means that the root ξ** is separated on the descent segment 
2 2;
3 3

 −  
. Since it 

is obvious that ( )f x →−∞  for x →−∞  and ( )f x →+∞  for x →+∞ , there are 

two more roots: * 2;
3

ξ  ∈ −∞ − 
 

 and *** 2 ;
3

ξ  ∈ + ∞ 
 

. 

To separate these roots, the values at points -3 and 3 are additionally 
calculated. For example, we have : f(-3)=-13<0 and f(3) = 17 > 0. Consequently, 
the following segments are obtained on which the roots are separated: 

* ***2 2[ 3; ]; [ ; 3]
3 3

ξ ξ∈ − − ∈ . 

The function f(x) changes sign when passing through the root ξ*, i.e. if 
*( ) 0f ξ′ ≠ . 
In the general case, if the specified procedures are complicated for analysis, 

the entire definition area or a certain part of it, which for some reasons is of 
interest, is divided into segments by points xi located at a conditionally 
insignificant distance h. Having determined the values at all these points, the 
fulfillment of the condition f(xi-1)·f(xi)≤ 0 is checked. If the number of roots in the 
studied area is previously known, then by narrowing down the step h of the search, 
one can either localize all of them or assert that the presence of pairs of roots not 
determined with accuracy h = ε is possible. 

2.2 Numerical methods of solving nonlinear algebraic equations 

After the study of the equation f(x) = 0 is finished and for each real root ξ the 
interval in which this root is located is established, we proceed to the solution of 
the second problem – refinement of the found roots. 

Separation of the root ξ, i.e. the establishment of the double inequality 
a < ξ < b, by itself makes it possible to obtain its rough approximate value. For 
example, you can take the center of the interval [a; b]. In this case, the absolute 

error will be less than 
2

a b
ε

−
< . 

2 16 2 16 8( 3 2)2 0, 2 0
3 3 3 3 3 3 3 3

f f −   − = + > = − = <   
   
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After substituting the value of ξ1 into the equation f(x)=0 and ensuring that it 
does not yield the desired accuracy, either f(ξ1) = a1 or f(ξ1) = b1 is chosen. As a 
result, a more precise inequality is satisfied: a1<ξ<b or a<ξ<b1. 

Method of dividing in half (dichotomy) 

Suppose that the root ξ of the equation  f(x)=0 is determined in the interval 
[a; b], and in this case, the signs of the functions f(a) and f(b) are different (the 
function f(x) changes its sign when crossing the value of the root ξ). 

Let’s assume that a0 = a and b0 = b, and calculate the value of the function at 

the left end of the segment f(a0), as well as at its middle f(c0), where 0 0
0 2

a bс +
= . 

We compare the signs of the values of f(a0) and f(c0). If these signs are different, 
then the value of the root ξ lies in the interval [a0; c0]. If they are the same, then 
the signs of the values of f f(c0) and f(b0) are different, and the root lies in the 
interval [c0; b0]. There is a possible case when f(c0) = 0, then the value of the root 
ξ = с0 will already be considered found. In both cases of sign change, the value of 
the root will be in the segment [a0; c0] or [c0; b0], the length of which will be two 
times smaller than the length of the original segment a0; b0] = [a; b]. This segment 
is denoted as half the length by [a1; b1] (that is, a1 = a0, b1 = c0 is assumed in the 
case when the values of f(a0) and f(c0) have different signs; a1 = с0, b1 = b0 in the 
case when f(a0) and f(c0) have the same sign). 

Afterwards, the standard process is 
repeated for the segment [a1; b1]. 
Specifically, the middle of c1 is 
searched for, as well as the value of the 
function f(c1), while simultaneously 
comparing the sign of this number 
with the sign of the value of the 
function f(a1). If these signs differ, 
then the value of the root lies within 
the segment [a2; b2] = [a1; b1]; if they 
are the same, then it lies within  
[a2; b2] = [c1; b1] (if f(c1) = 0, then the 
value of the root is considered found). 
Additionally, the length of the segment 
on which the root is located is reduced 

by another two times. 
Repeating the typical process, we find that after k divisions, the length of the 

segment on which the root is located is reduced by 2k times, and is equal to 

2k k
b aδ −

= . If the value of the root ξ was not precisely determined at some previous 

stage, that is, if it does not coincide with the value of ci for some i. 
The algorithm of dividing in half (dichotomy) is shown in figure 2.3. 

 
Figure 2.2 – Diagram of halving the 
segment and approximation to the 

value of the root ξ 
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Figure 2.3 – Scheme of the algorithm for the method of dividing in half 

(dichotomy) 
 
 
Example 2.3. Solve equations by the numerical method of dividing in half 

(dichotomy) with an accuracy of ε = 0,001: 
x3+2x2+3x+5 = 0. 

Solution: 
The solution begins with the use of the method of halving on the segment 

[–2; –1], on which the root ξ is separated by the method of graphically 
constructing the graph of the function φ(x) = x3+2x2+3x+5 (Fig. 2.4). 
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The values of the function in the middle 
of the obtained segments are determined 
sequentially: f(–1,5) = 1,625; f(–1,75) =   
= 0,515625;  f(–1,875) = –0,185547; …; 
 f(–1.841797) = 0.011269, after which the 
calculation stops at the ninth step because 
the next segment has a length

9
1 1 12
2 512 500

ε= < = . In this case, the 

middle of the last segment is a point –
1,842773. It was found that the approximate 
value of the x  root ξ with an accuracy of 
0.001 is 1,843x ≈ − . 

Please note that the method of dividing 
a segment in half, as well as the method of 
simple sorting, does not require the 
smoothness of the function (i.e., the 
existence of its derivative). It is sufficient 
for the function to be continuous. 

Consider the implementation of the 
method of half division (dichotomy) in the PYTHON programming language: 
 
%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import * 
from sympy import * 
x = np.arange(-5, 3, 0.1) 
# we define a function 
func_x=(x**3)+(2*x**2)+(3*x)+5 
# we construct a graph and localize the roots of the equation 
plt.figure(figsize=(7, 7)) 
plt.xlabel('x',fontsize=15, color='blue') 
plt.ylabel('y',fontsize=15, color='blue') 
plt.plot(x, func_x) 
plt.legend(['f(x)=X^3+2x^2+3x+5'], loc=1) 
plt.grid(True) 
plt.xlim([-4, 1]) 
plt.ylim([-5, 5]) 
plt.show() 
# we set the initial limits of localization of the root of the equation 
a=-2; b=-1; e=0.001 
# we set the function itself 
def f(x): 
    return (x**3)+(2*x**2)+(3*x)+5 
from timeit import default_timer as timer 
# we determine the root of the equation 
i=0 
start= timer() 
while abs(b-a)>=e: 
    i=i+1 
    z = (a+b)/2 

 
Figure 2.4 – Graphical 

determination of the interval of 
the roots’ ownership of the 

equation 
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    if f(a)*f(z)<=0: 
        b=z 
    else: 
        a=z 
end = timer() 
print("x =", z, "Time taken:", end-start, 'Number of iterations:', i). 

Newton’s method (tangents) 

Newton’s method, or the method of tangents, is one of the most widely used 
methods for refining roots, equally suitable for both algebraic and transcendental 
equations. 

Let the arc PAQ be the arc of the 
curve y = f(x) (Fig. 2.5), which intersects 
the axis Ox at point A, such that the 
abscissa x =ξ of point A is the root of the 
equation f(x) = 0. 

Suppose that the arc AP is inverted by 
convexity to the axis Ox. Let's draw a 
tangent to the curve y = f(x) through the 
point P with coordinates (x0, y0 = f(x0)). 
The slope of the tangent is equal to the 
value of the derivative of the function 
f(x). The slope of the tangent is equal to 
the value of the derivative of the function 
f(x) at the point of contact; k = fʹ(x0), 
respectively, the equation of the tangent 

passing through the point P(x0, y0): 
 0 0 0( )( )y y f x x x′− = − .    (2.9) 

Putting y = 0 and y0 = f(x0) into equation (2.9), we can determine the point of 
intersection with the x-axis (y = 0), which we denote as x1. 

  0
1 0

0

( )
( )

f xx x
f x

= −
′

.   (2.10) 

Through the point P1 (x1, y1=f(x1)), it is necessary to draw a tangent line. By 
continuing this process, we arrive at Newton's formula: 

 1
( ) ( 0,1, 2, )
( )

n
n n

n

f xx x n
f x+ = − =
′



, (2.11) 

which makes it possible to calculate increasingly accurate root values step by step. 
In other words, the values x0, x1, x2, … calculated by formula (2.11) form a 
sequence that approaches the value of the root f(x) = 0. 

If we start the process from the point Q, where the curve is concave to the  
Ox-axis, then the first step will lead to the other side of the Ox-axis, where the 
curve is convex to it. In the future, we will approach the value of the root in the 
same way as earlier. 

 
Figure 2.5 – Scheme for 

determining the roots of the 
equation using Newton’s method 
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In those cases when the calculation of the second derivative for the function 
f(x) is inverted by convexity on the Ox axis at those points for which the relation 
holds: 

 ( ) ( ) 0f x f x′′⋅ > ,    (2.12) 

then this condition must be satisfied by the selected initial value x0. 
In the process of calculating the root according to Newton’s method, the error 

of each new approximation decreases in proportion to the square of the error of 
the previous approximation. 

The algorithm of Newton’s (tangent) method is shown in Figure 2.6. 
 

 
 

Figure 2.6 – Scheme of the Newton’s method algorithm (tangents) 
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Example 2.4. Calculate the smallest positive root of the equation: 

   3 0xe x− =       (2.13) 
with precision ε=0,0001. 

Solution: 
In order to separate the roots, equation 

(2.13) is reduced to the form ex = 3x, and 
graphs of the functions are constructed: 
y1 = ex and y2 = 3x (Fig. 2.7). The scales along 
the Ox and Oy axes may be different. 

According to Figure 2.7, the smallest 
positive root lies in the interval [0; 1]. Moving 
on to clarification in this example, it is 
necessary to define: 

( ) 3 ; ( ) 3; ( )x x xf x e x f x e f x e′ ′′= − = − = , 

then formula (2.11) takes the form: 

                      1n n nx x α+ = − ,                (2.14) 

where ( )
( )

n
n

n

f x
f x

α =
′

. 

because according to the criterion (2.12): 

0 0
( ) ( ) ( 3 ) 1 0x x

x x
f x f x e x e

= =
′′⋅ = − = > , 

whereas 

1 1
( ) ( ) ( 3 ) ( 3) 0x x

x x
f x f x e x e e e

= =
′′⋅ = − = − < . 

All further approximations calculated by formula (2.14) are listed in 
Table 2.1. Thus, the unknown root with the required precision ε = 0,0001 is 
x3 = 0,6191.  

 
Table 2.1 – Results of solving the equation 

n x=xn ex 3x f(xn) f'(xn) αn 

0 0,10000 1,0000 0,0000 1,0000 – 2,00 – 0,500000 
1 0,50000 1,6500 1,5000 0,1500 – 1,35 – 0,110000 
2 0,61000 1,8404 1,8300 0,0104 – 1,16 – 0,009000 
3 0,61900 1,8571 1,8570 0,0001 – 1,14 – 0,000088 
4 0,61909 1,8573 1,8573 0,0000 – – 

 

Figure 2.7 – Graphical 
depiction of the range of values 

for which the roots of the 
equation belong 
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After performing one more calculation step, we get a more accurate value of 
this root: x4 = 0,61906129. 

When calculating the roots of the equation f(x) = 0 using Newton's method, 
the process of successive approximations always coincides if the initial 
approximation x0 is taken so close to the root x = ξ that on the interval [ξ; x0]: 

1) the slope of the curve y = f(x) is not equal to zero, i.e. ( ) 0f x′ ≠ ; 
2) the curve y = f(x) has no inflection points, i.e. ( ) 0f x′′ ≠  . 
Practically, this means that according to formula (2.11), the root of the 

equation f(x) = 0 can be calculated with any arbitrarily high degree of accuracy, if 
only the root x = ξ is not a multiple ( ( ) 0f x′ ≠ ) and if the zero approximation x0 
is taken sufficiently close to the sought root ξ. 

Multiple roots can also be defined by Newton’s formula as corresponding to 
the roots of the equation ( ) 0f x′ = , or, more generally, ( ) ( ) 0kf x =  
(k = 1, 2, 3, ...). 

 
Consider the implementation of Newton’s (tangent) method in the PYTHON 

programming language: 
 
%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import * 
from sympy import * 
x = np.arange(-5, 5, 0.1) 
# we define a function 
value_funcm=[] 
for i in x: 
    value_funcm.append(math.exp(i)-(3*i)) 
M = np.array(value_funcm) 
# we construct a graph and localize the roots of the equation 
plt.figure(figsize=(7, 7)) 
plt.xlabel('x',fontsize=15, color='blue') 
plt.ylabel('y',fontsize=15, color='blue') 
plt.plot(x, M) 
plt.legend(['f(x)=exp(x)-3*x'], loc=1) 
plt.grid(True) 
plt.xlim([0, 2]) 
plt.ylim([-2, 2]) 
plt.show() 
# we set the function itself 
def f(x): 
    return math.exp(x)-(3*x) 
from sympy import * 
# we define the first derivative of the function 
x_arg = Symbol('x_arg') 
func_m=exp(x_arg)-(3*x_arg) 
m_first=func_m.diff(x_arg) 
func_m = lambdify(x_arg, m_first) 
# we define the second derivative of the function 
m_second=m_first.diff(x_arg) 
func_mm = lambdify(x_arg, m_second) 
# we define the first derivative of the function 
print("The first derivative of a function f'(x)=",m_first,". The second 

derivative of a function f''(x)=",m_second) 
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# we set the initial iteration point and the accuracy for determining the 
#root of the equation. 
x_n=0; e=0.001 
if f(x_n)*func_mm(x_n)<0: 
    print("Invalid starting point value. Choose another point value!") 
from timeit import default_timer as timer 
# definition of Newton's iterative formula 
def x_nn(x): 
    return x_n-(f(x_n)/func_m(x_n)) 
k=0 
# we determine the root of the equation 
start= timer() 
while abs(x_nn(x_n)-x_n)>=e: 
    k=k+1 
    x_n=x_nn(x_n) 
    
end = timer() 
print("x =", x_n, "Time taken:", end-start, "Number of iterations:", k). 

Secant method (linear interpolation) 

The idea of the method is that, from two points Mi-1(xi-1, f(xi-1)) and 
Mi(xi,  f(xi)), it is necessary to construct a straight line Mi-1Mi (a chord connecting 
two points on the function y=f(x) on the Cartesian coordinate axis) and take as the 
next approximation xi+1 the abscissa of the point of intersection of this line with 
the Ox axis. That is, at this step, the function f(x) is replaced by its linear 
interpolation determined by two values of x: xi-1 and xi. It will be considered that 
the linear interpolation of the function f(x) is such a linear function l(x), the values 
of which coincide with the values of f(x) at two fixed points, in this case – at the 
points xi-1 and xi. 

Depending on whether the points xi-1 and xi lie on different sides of the root ξ 
or on the same side, the following principle schemes for determining the roots of 
the equation in the Cartesian coordinate system, which are shown in Figure 2.8, 
will be obtained. 

 

 

Figure 2.8 – Schemes for determining the roots of the equation using the secant 
method 
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The next successive approximation will depend on the previous two values, 

xi+1 = φ(xi-1, xi). The interpolated linear function l(x) will be defined as a function 
with a slope equal to the difference ratio: 

 1

1

( ) ( )i i
i

i i

f x f xk
x x

−

−

−
=

−
,  (2.15) 

constructed for the segment between xi-1 and xi, the graph passes through the point 
Мі: 

  1
1

1

( ) ( )( ) ( ) ( )i i
i i i

i i

f x f xl x f x x x
x x

−
−

−

−
= + −

−
.  (2.16) 

Solving equation (2.16) under the condition that l(x) = 0, we determine:  

 1 1
1

11

1

( ) ( ) ( )
( ) ( )( ) ( )

i i i i i
i i

i ii i

i i

x f x x f x f xx x f x f xf x f x
x x

− −
+

−−

−

−
= = −

−−
−

   (2.17) 

or 

 1
( )i

i i
i

f xx x
k+ = − .    (2.18)  

The value ki can be considered as a difference approximation for the 
derivative f'(x) at the point xi. That is, the obtained formula (2.17) is a difference 
analogue of Newton’s method’s iterative formula. 

The calculation according to formula (2.18) is much more acceptable than the 
calculation according to formula (2.17), even though both are mathematically 
identical. This is because using formula (2.18) in calculations with rounding 
results in less loss of significant figures. 

There are two ways to apply formula (2.18). The first method involves 
carrying out the calculation directly according to formula (2.18) for i = 1, 2, 3, ..., 
starting from two approximations x0 and x1 that are as close as possible to the root 
ξ. It is important to note that it is not assumed that ξ lies between x0 and x1 (the 
values of the function f(x) at the points x0 and x1 may have different signs), and 
there is also no guarantee that the root will fall between xi-1 and xi at any 
subsequent step (although it is not impossible). In such a case, it is difficult to give 
an estimate of the error with which xi+1 approximates the true value of the root ξ, 
and therefore we settle for the following empirical rule: calculations stop when 
the inequality 1i ix x ε+ + <  is fulfilled, where ε is the established accuracy of 
finding the root of the equation. In this case, the approximate value of the root is 
chosen, which is equal to 1ixξ += . 

Note that the sufficient conditions that ensure the calculation of the root of 
the equation f(x) = 0 by the chord method with an arbitrary given degree of 
accuracy will be the same as those for Newton’s method. However, Newton’s 
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method generally offers better convergence than the chord method in most cases. 
In cases where the calculation of f(x) and its derivative f’(x) is time-

consuming, the secant method provides greater cost savings. In this case, the main 
factor affecting the acceleration of process convergence is the size of the segment 
[x1; ξ] under consideration, where ξ is the true value of the root. Therefore, all 
other conditions being equal, it is necessary to give preference to the segment  
[xn-1; xn], which is smaller in absolute value. 

The secant method (linear interpolation) algorithm is shown in Figure 2.9. 
 
 

 
Figure 2.9 – Scheme of the secant method algorithm (linear interpolation) 
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Example 2.5. Determine the value of the real root of the equation: 

    3 2 5 0x x− − =     (2.19) 
with precision ε=0,00001. 

Solution: 

To begin with, it is advisable to present 
equation (2.19) in the form y1=x3, y2=5+2x. Then 
the graph in Figure 2.10 allows you to choose two 
initial values necessary for the chord method: 
x1=2,2 and x2=2,0. Using the formula (2.17), we 
determine the root step by step with the required 
accuracy. At the same time, x1=2.200000 has a 
fixed value, and x2 is refined in each subsequent 
step. The numbers x1 and f(x1)=1.248, which are 
used in all subsequent steps, can be considered 
exact and selected with as many decimal places as 
necessary in this step. All the necessary 
calculations are given in table 2.2, according to 
which the root of the equation x = 2,09455 is 
determined with the specified accuracy. 

 
 

 
Table 2.2 – Results of solving the equation 
n x=xn 3

nx  f(xn) f(xi) – f(xi-1) 

0 2,200000 10,648000 1,248000 – 
1 2,000000 8,000000 – 1,000000 2,248000 
2 2,090000 9,129000 – 0,051000 1,299000 
3 2,094300 9,185790 – 0,002810 1,250810 
4 2,094530 9,188820 – 0,000240 1,248240 
5 2,094550 9,189084 – 0,000016 – 

 
Consider the implementation of secant method (linear interpolation) in the 

PYTHON programming language: 
 

%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import * 
from sympy import * 

 
Figure 2.10 – Diagram 
illustrating the graphic 
determination of the 

interval of ownership of 
the roots of the equation 
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x = np.arange(-5, 4, 0.1) 
# we define a function 
func_x=(x**3)-(2*x)-5 
# we construct a graph and localize the roots of the equation 
plt.figure(figsize=(7, 7)) 
plt.xlabel('x',fontsize=15, color='blue') 
plt.ylabel('y',fontsize=15, color='blue') 
plt.plot(x, func_x) 
plt.legend(['f(x)=X^3-2x-5'], loc=1) 
plt.grid(True) 
plt.xlim([-2, 4]) 
plt.ylim([-7, 4]) 
plt.show() 
# we set the function itself 
def f(x): 
    return (x**3)-(2*x)-5 
from timeit import default_timer as timer 
# we set the initial limits of localization of the root of the equation 
x_n=1; x_nm=2; e=0.000001 
# definition of the iterative formula of the chord method 
def x_np(x_n, x_nm): 
    k=(f(x_n)-f(x_nm))/(x_n-x_nm) 
    return x_n-(f(x_n)/k) 
k=0 
# we determine the root of the equation 
start= timer() 
while abs(x_np(x_n, x_nm)-x_n)>=e: 
    k=k+1 
    x_n=x_np(x_n, x_nm) 
    if f(x_n)*f(x_np(x_n, x_nm))>0: 
        x_nm=x_np(x_n, x_nm) 
    else: 
        x_n=x_np(x_n, x_nm) 
end = timer()  
print("x =", (x_n+x_np(x_n, x_nm))/2,"Time taken:", end-start, "Number of 

iterations:", k). 

Fixed-point iteration 

The algebraic or transcendental equation f(x)=0 can be reduced to this form: 
  x = φ(x),  

which can be done in different ways and obtain different expressions for the 
function φ(x). 

For the approximate value of the root x0, a more accurate result is determined 
using the formula x1 = φ(x0) or in a more general form: 
  1 ( ) ( 0,1, 2, )n nx x nϕ+ = =  . (2.20) 

Repeating this process, that is, integrating several times, it is possible to 
obtain the value of the root with any degree of accuracy, if a sufficient condition 
is met:  

    ( ) 1xϕ′ <  on the segment [ξ; x0],   (2.21) 

where x = ξ  – the exact value of the root. 
If condition (2.21) is not fulfilled, then the equation f(x) = 0 can always be 
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written as x = x–c·f(x), and the constant c can be chosen in such a way that 
condition (2.21) holds for the function φ(x) = x–c·f(x). Then, using formula (2.20), 
we obtain: 
  1 ( )n nx x cf x+ = − .   (2.22) 

The fixed-point iteration makes it possible to «guess» new values of xn during 
any step n, which is equivalent to starting iterations with a new, more successful 
value of x0. Accordingly, in cases where the process converges slowly, 
appropriate adjustments can be made, taking into account the results of the 
previous steps. 

The mentioned properties of the method of iterations, its simplicity, and 
unlimited possibilities laid down in formula (2.22), made it possible to use it 
effectively when solving differential, integral, and integro-differential equations. 

The geometric content of the solution to the equation x = φ(x) using the fixed-
point iteration is shown in Figure 2.11. 

 

  
а) b) 

Figure 2.11 – Scheme for determining the roots of the equation using the method 
of simple iterations: 

 а) 0 < φʹ(x) <1;    b)  –1 <φʹ(x) <0 
 
 
Figure 2.11, a) plots the functions y = φ(x) and y = x. The root of the equation 

is the x-coordinate of the point of intersection of the curve y = φ(x) with the 
bisector of the coordinate angle. If x0 is an initial approximation of the root, then 
x1 = φ(x0) is equal to the y-coordinate of the corresponding point M on the curve 
or the x-coordinate of the point M1. The following approximations are determined 
in a similar manner (see Fig. 2.11, a). The role of the ( ) 1xϕ′ <  condition can also 
be established. 
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Figure 2.11, a) depicts the case when 0<φʹ(x)<1, so that the curve intersects 

the bisector from left to right and the right side lies under the bisector. In this case, 
the iterative process converges, and the approximations decrease monotonically 
if 0x x>  or increase monotonically for 0x x< . Figure 2.11, b) shows the case 
when the derivative ( )xϕ′  is negative (–1 < φʹ(x) < 0). If at the same time 

( ) 1xϕ′ < , then the iterative process converges, but the approximations fluctuate 
around the true value of the root. 

To determine the loss of accuracy in the fixed-point iteration, it is necessary 
to analyze the effect of rounding errors on the final results of intermediate 
calculations. 

In particular, when solving the equation using the fixed-point iteration for 
two successive approximations, the following relationship can be established: 
  1 ( )( )n nx xξ ϕ ξ ξ+ ′− ≈ − ,   (2.23)  

where ξ – the exact value of the sought root. 
Thus, the accuracy of the result in the process of determining the root by the 

fixed-point iteration increases approximately like a geometric progression with 
the denominator φ’(ξ). 

The algorithm for the fixed-point iteration is shown in Figure 2.12. 
 
Example 2.6. Determine the value of the roots of the equation: 

 4 5ln 5x x− =   (2.24) 
with precision ε=0,00001. 

Solution: 

Having written the equation in the form 
4 5ln

5
xx −

= , the zero approximation 

is determined graphically (Fig. 2.13), finding the intersection of the logarithmic 

curve y2 with the straight line 1
4 1
5

y x= − . From Figure 2.13, two approximate 

root values are determined: x0 = 2,28 and x0 = 0.57, which will be taken as the 
initial approximation. 

For a more accurate search for the correct root, equation (2.24) is written in 
the form x = 1,25(1+lnx), where φ(x) = 1,25(1+lnx). The iterative process is 

convergent, as the value of the derivative function 
1,25( )x

x
ϕ′ =  in the vicinity of 

the correct root is positive and less than unity under condition (2.21). The 
calculation is presented in Table 2.3. 
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Figure 2.12 – Scheme of the algorithm for the Fixed-point iteration 
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Figure 2.13 – Diagram illustrating the graphical determination of the interval 

properties of the roots of the equation 
 

Table 2.3 – Results of solving the equation 
n xn ln(xn)+1 1,25(ln(xn)+1) 
0 2,28000 1,82418 2,28022 
1 2,28022 1,82427 2,28034 
2 2,28034 1,82432 2,28040 
3 2,28040 1,82435 2,28044 
4 2,28044 1,82437 2,28046 
5 2,28046 1,82438 2,28048 
6 2,28048 1,82439 2,28049 
7 2,28049 1,82439 2,28049 

 
Eight steps were taken to find the root of the equation to five digits. The fast 

convergence is due to the small value of the derivative around the root of 0.55, as 
well as the successful choice of the initial approximation. 

In the process of finding the left root, the iterative process is divergent because 
φʹ(x) = 1,25/x in the region x = 0,57 has a value of about 2.2. Therefore, the initial 
equation (2.24) must be rewritten in the form: 

 0,8 1xx e −= ,   (2.25) 

then 0,8 1( ) xx eϕ −=  and 0,8 1( ) 0,8 xx eϕ −′ = . 
For x0 = 0.57, the value of the function φʹ(x) ≈ 0,46 <1 and the iterative 

process converges. As shown in Table 2.4, it takes eleven steps to find the root 
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with an accuracy of five decimal places. In this case, the process converges more 
slowly compared to the previous case, despite the smaller value of the derivative. 
The reason for this slowdown is a less accurate choice of the initial approximation 
compared to the previous case. In the first case, the initial approximation differed 
from the true root by a value on the order of 10-4, while in the second case, it 
differed by a value on the order of 10-2. 
 

Table 2.4 – Results of solving the equation 
n xn 0,8xn 0,8xn-1 0,8 1nxe −  
0 0,57000 0,45600 – 0,55500 0,58042 
1 0,58042 0,46434 – 0,53566 0,58528 
2 0,58528 0,46822 – 0,53178 0,58756 
3 0,58756 0,47005 – 0,52995 0,58863 
4 0,58863 0,47090 – 0,52910 0,58913 
5 0,58913 0,47130 – 0,52870 0,58937 
6 0,58937 0,47150 – 0,52850 0,58949 
7 0,58949 0,47159 – 0,52841 0,58954 
8 0,58954 0,47163 – 0,52837 0,58957 
9 0,58957 0,47166 – 0,52834 0,58958 

10 0,58958 0,47166 – 0,52834 0,58958 
 

Consider the implementation of the fixed-point iteration in the PYTHON 
programming language: 
 
%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import * 
from sympy import * 
x = np.arange(-5, 4, 0.1) 
from numpy import log as ln 
# we define a function 
func_x=(4*x)-(5*ln(x))-5 
# we construct a graph and localize the roots of the equation 
plt.figure(figsize=(7, 7)) 
plt.xlabel('x',fontsize=15, color='blue') 
plt.ylabel('y',fontsize=15, color='blue') 
plt.plot(x, func_x) 
plt.legend(['f(x)=(4*x)-(5*ln(x))-5'], loc=1) 
plt.grid(True) 
plt.xlim([-2, 4]) 
plt.ylim([-2, 4]) 
plt.show() 
# the first form of expressing a function in terms of x 
def f_first(x): 
    return 1.25*(1+ln(x)) 
# the second form of expressing the function in terms of x 
def f_second(x): 
    return math.exp((0.8*x)-1) 
from sympy import * 
# we determine the derivatives of the functions through which the desired # 
argument x can be expressed 
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x_arg = Symbol('x_arg') 
func_first=1.25*(1+ln(x_arg)) 
func_second=exp((0.8*x_arg)-1) 
d_first=func_first.diff(x_arg) 
d_second=func_second.diff(x_arg) 
print("Derivative of the 1st function f1'(x)=",d_first,". Derivative of the 

2nd function f2'(x)=",d_second) 
from timeit import default_timer as timer 
#we set the point of zero approximation to determine the root of the equation 
x[0]=2.2; x[1]=0.55; e=0.00001; k_1=0; k_2=0 
func_first = lambdify(x_arg, d_first) 
func_second = lambdify(x_arg, d_second) 
for i in range(0,2): 
    if abs(func_first(x[i]))<1: 
        # we determine the root of the equation 
        start= timer() 
        x_first=x[i] 
        while abs(f_first(x_first)-x_first)>e: 
            k_1=k_1+1 
            x_first=f_first(x_first) 
        end = timer() 
        time_1=end-start 
    if abs(func_second(x[i]))<1: 
        x_second=x[i] 
        # we determine the root of the equation 
        start= timer() 
        while abs(f_second(x_second)-x_second)>e: 
            k_2=k_2+1 
            x_second=f_second(x_second) 
        end = timer() 
        time_2=end-start 
print("x1 =", x_first, "Time taken for x1:",time_1, "Number of iterations 

for x1:",k_1) 
print("x2 =", x_second, "Time taken for x2=:",time_2, "Number of iterations 
for x2:",k_2). 

2.3 Method of determining complex roots 

To determine complex roots, the same methods as for real roots can be used, 
but the arithmetic of complex numbers is used. Convergence and error control are 
carried out by the modulus of the complex number, which may not always be 
convenient for the user. 

There are a number of special methods that allow you to evaluate complex 
roots by performing calculations with real numbers. One of the well-known 
approaches is Lin’s method, which is based on the transformation of the initial 
algebraic equation Pn(x) = anxn+an-1xn-1+…+a1x+a0 = 0 into a product of quadratic 
coefficients of the type x2+px+q, namely: 
  Pn(x) = (x2+px+q)Qn-2(x) + R(x),  (2.26) 
where Qn-2(x) = bn-2xn-2+bn-3xn-3+…+bn-2-jxn-2-j+…+b1x+b0 (j = 0, 1, 2, …, n–2), 
and the residual term R(x) is zero.  

If the polynomial Pn(x) contains complex roots, then they can be expressed in 
terms of coefficients p and q, namely:  

x1,2 = α± iβ (α = –0,5p;   20,25 )q pβ = − ). 
To separate the real and complex roots of a polynomial equation: 
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   Pn(x) ≡ xn+an-1xn-1+…+a1x+a0 = 0,    (2.27) 
the presence and number of roots are determined in advance using such theorems. 

Theorem 2.3 (on the number of roots of an algebraic equation). The algebraic 
equation (2.27) of the n-th degree has n roots (real or complex), provided that each 
root is counted as many times as its multiplicity. 

Theorem 2.4 (on the even conjugation property of complex roots of equation 
(2.43)). If x*i=α+iβ is a root of the algebraic equation (2.27) with multiplicity k, 
then the number *ix iα β= −  is also a root of the same multiplicity. A 
consequence of this theorem is that an algebraic equation of odd degree has at 
least one real root. 

Theorem 2.5 (Descartes’ rule of signs on the number of real roots of algebraic 
equations).  

The number S1, which represents the number of positive roots (accounting for 
multiplicity) of the algebraic equation Pn(x)=0, is equal to the number of sign 
changes in the sequence of coefficients an, an-1, …, a0 (excluding coefficients that 
are equal to zero) of the polynomial Pn(x)=0. Alternatively, it can be less than this 
number by an even number. The number S2, on the other hand, denotes the number 
of negative roots (taking into account their multiplicity) of the algebraic equation 
Pn(x)=0. It is also determined by the number of sign changes in the sequence of 
coefficients an, an-1, …, a0 (excluding coefficients that are equal to zero) of the 
polynomial Pn(–x)=0. Similarly, it could be less than this number by an even 
number. 

Theorem 2.6 (De Gua’s theorem on the necessary condition for the validity 
of all roots of an algebraic equation). If the algebraic equation (2.27) has all real 
roots, then the square of each nonextreme coefficient is greater than the product 
of its two adjacent coefficients. A consequence of this theorem is that if the 
inequality 2

1 1k k ka a a− +≤  holds for any k, then equation (2.27) has at least one pair 
of complex roots. 

Opening the brackets in equation (2.26) and equating the coefficients with the 
same powers of x, we obtain: 

   

2

3 1 2

2 1

1 0 1

0 0

,
,

,
,

,
2, 3, , 2.

n n

n n n

j j j j

b a
b a pb
b a pb qb
qb b p a
qb a
j n n

−

− − −

− −

=
 = −
 = − −


+ =
 =


= − − 

   (2.28) 

Solving the system of linear equations (2.28), determine the values of the 
quadratic equation p and q, as well as the coefficients of the polynomial b, which 
now has an order two lower than the original (b1 = b0 = 0). The search for the roots 
of the quadratic equation x2+px+q = 0 is also carried out according to the classical 
scheme. 
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Lin’s method uses the running method or simple iteration method to find a 
solution to the system of equations (2.28). 

Given the initial values of p0 and q0, the 0 0 0
1 2 2, , ,n nb b b− − 

 values, as well as the 
values of p1 and q1, are determined sequentially. Choosing the values of p and q 
as the next approximation, repeat the procedure of finding b, p, and q until 
convergence. Figure 2.14 shows the scheme of the algorithm for finding complex 
roots of an algebraic equation of the n-th order using Lin’s method. 

It should also be noted that the method of simple iterations is conditionally 
convergent, but there are no practically acceptable criteria for the convergence of 
this method. During the practical implementation of Lin’s method, it is necessary 
to monitor the number of iterations. If it goes beyond a reasonable limit, it should 
be considered that the method is divergent for the selected algebraic equation. 

 
Example 2.7. Determine the value of the complex roots of the algebraic 

equation:    
  4 3 22 18 3 5 0x x x x− + + − = ,    (2.29)  
with precision ε = 0,0001. 

Solution: 
To begin with, it is necessary to determine the presence of real and complex 

roots of the algebraic equation (2.29). According to Theorem 2.3, the algebraic 
equation (2.29) has four roots, since the degree of the polynomial is n=4. Given 
that 2

1 1k k ka a a− +≤ , where k = 2, a1 = 1, a2 = –2 and a3 = 18, according to Theorem 
2.6, the algebraic equation (2.29) has one pair of complex roots. 

We write the algebraic equation (2.29) in the form (2.26): 
 ( )( )4 3 2 2 2

0
2

12 18 3 5 0x x x x x p xx bq x b− + + − + + += + = .  (2.30) 

Opening the brackets in equation (2.30) and equating the coefficients with the 
same powers of x, we obtain: 

 

1 3

0 2 1

1 0 1

0 0

;
;

;
,

b a p
b a pb q
qb b p a
qb a

= −
 = − −
 + =
 =  

(2.31) 

where a0= –5, a1=3, a2=18 and a3= –2. 
For the initial approximation values p = 1 and q = 1, the iterative solution of 

the system of equations (2.31) is performed. The results of solving the system of 
equations (2.31) by iterations are presented in Table 2.5. 
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Figure 2.14 – Scheme of the Lin’s method algorithm 
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Table 2.5 – Results of the iterative solution of the system of equations 
n p q b0 b1 b2 
0 1,00000 1,00000 24,0000 – 4,00000 1,0 
1 0,45833 – 0,20833 19,33507 – 2,45833 1,0 
2 0,12867 – 0,25860 18,52349 – 2,12867 1,0 
3 0,13217 – 0,26980 18,55161 – 2,13070 1,0 
4 0,13070 – 0,26957 18,54801 – 2,13070 1,0 
5 0,13078 – 0,26957 18,54800 – 2,13070 1,0 
6 0,13077 – 0,26956 18,54824 – 2,13078 1,0 

 
Based on the results of the iterative solution of the system of equations (2.31), 

the decomposition of the polynomial (2.29) into the following quadratic factors 
was obtained: 

    
( )( )

( )( )

4 3 2 2 2
1 0

2

2

2 2

2 18 3 5

0,13077 0,26956 2,13078 18,54824 0.

x b xx x x x x px q

x x

b

x x

− + + − = + + =

+= + − − =

+ +
   (2.32) 

The result of solving the quadratic equation (2.32) is the real and complex 
roots of equation (2.29): 

x1= 0,45791;   x2= –0,58868;   x3= 1,06539±i⋅4,17291. 
Consider the implementation of Lin’s method in the PYTHON programming 

language: 
 

n=4 # the value of the power of the polynomial 
a=[-5, 3, 18, -2, 1] # the value of the coefficients of the polynomial 
# general form of the polynomial 
print(' It is necessary to determine the complex roots of an algebraic 

equation of the form:') 
print('({0}*x^{1})'.format(a[n],n),end='') 
for j in range(n-1,0,-1): 
    print('+({0}*x^{1})'.format(a[j],j),end='') 
print('+({0})=0'.format(a[0])) 
# we determine the conditions for the presence of complex roots of the 
#equation 
for k in range(1,n): 
    if (a[k]^2)<=a[k-1]*a[k+1]: 
        print('An algebraic equation has at least one pair of complex 

 roots ') 
        break 
p=1; q=1 # Initial approximation values for numbers p and q 
e=0.00001 # The value of the degree of accuracy of the calculation of the # 
complex roots of the equation 
b=[0]*(n+1) 
p_new=p+1; q_new=q+1 
reg=0 
while (abs(p_new-p)>=e) and (abs(q_new-q)>=e): 
    p=p_new; q=q_new 
    for i in range(n-2,-1,-1): 
        b[i]=a[i+2]-(p*b[i+1])-(q*b[i+2]) 
    reg=reg+1 
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    print(' The value of the coefficients of the polynomial factor (x^2+px+q) 
on', reg, 'iterations-', b) 

    q_new=a[0]/b[0] 
    p_new=(a[1]/b[0])-((b[1]/b[0])*q) 
    print(' The value of the coefficients of the multiplier p_new=', p_new, 

'q_new=', q_new) 
    print('----------------------------------------------------------------

-----------------------') 
# Checking for complex roots of the quadratic factor of the polynomial # 
equation (x^2+px+q) 
import math 
discr=(p_new*p_new)-(4*q_new) 
if discr<0: 
    alfa=-0.5*p_new 
    bet=math.sqrt(abs(discr)) 
    print(' The value of the complex roots of the equation:') 
    print('x1={0}+i*{1}'.format(alfa,bet)) 
    print('x2=({0})-i*({1})'.format(alfa,bet)) 
else: 
    print(' The value of the real roots of the equation:') 
    print('x1=',(-0.5*p_new)+(0.5*math.sqrt(discr))) 
    print('x2=',(-0.5*p_new)-(0.5*math.sqrt(discr))) 
# determination of complex roots of the equation from the residual factor of 
# the polynomial (x^2+px+q) 
c=[] 
for cell in b: 
    if cell!=0: c.append(cell) 
print (c) 
discr_2=(c[1]*c[1])-(4*c[0]*c[2]) 
if discr_2<0: 
    alfa=(-0.5*c[1])/c[2] 
    bet=0.5*math.sqrt(abs(discr_2))/c[2] 
    print(' The value of the complex roots of the equation:') 
    print('x3={0}+i*{1}'.format(alfa,bet)) 
    print('x4=({0})-i*({1})'.format(alfa,bet)) 
else: 
    print(' The value of the real roots of the equation:') 
    print('x3=',(alfa)+(0.5*math.sqrt(discr_2)/c[2])) 
    print('x4=',(alfa)-(0.5*math.sqrt(discr_2)/c[2])). 

2.4 Numerical methods for solving systems of nonlinear algebraic 
equations 

In the general case, a system of n nonlinear equations with n unknowns is 
given in the form: 

  

( )
( )

( )

1 1 2

2 1 2

1 2

, , ..., 0;

, , ..., 0;

, , ..., 0.

n

n

n n

f x x x

f x x x

f x x x

 =


=


 =



   (2.33) 

Since the nonlinear functions included in the system (2.33) cannot be 
described by any specific general form, no analytical direct method can be 
proposed for solving such a system. Of the approximate iterative methods, the 
simplest is the simple iteration method, which is based on reducing the system 
(2.33) to a system of nonlinear equations in the form: 
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( )
( )

( )

1 1 1 2

2 2 1 2

1 2

, , ..., ,

, , ..., ,
..............................

, , ..., .

n

n

n n n

x g x x x

x g x x x

x g x x x

 =


=


 =

   (2.34) 

Or in matrix form: 
 X=G(X),   (2.35) 

where ( )

( )
( )

( )

1 1 2

2 1 2

1 2

, , ..., ,

, ,..., ,
.

..........................
, , ...,

n

n

n n

g x x x

g x x x

g x x x

 
 
 =  
 
  

G X  

Next, an algorithm similar to the Gauss-Seidel method for systems of linear 
equations can be applied. It is based on iterative equations connecting (m+1) and 
m iterations: 

 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1
1 1 1 2

1 1
2 2 1 2

1 1 1
1 2

, , ..., ,

, , ..., ,

, , ..., .

m m m m
n

m m m m
n

m m m m
n n n

x g x x x

x g x x x

x g x x x

+

+ +

+ + +

 =

 =




=



   (2.36)   

For this method, it is very difficult to ensure convergence, and the 
convergence interval can be so narrow that the selection of initial approximations 
becomes much more challenging. 

In the general case, this method will match if ( ) 1′ <G X , where ( )′G X  is 
the norm of the matrix of partial derivative functions with respect to the variables 
x1, x2, …, xn: 

  ( )

1 1 1

1 2

1 2

n

n n n

n

g g g
x x x

g g g
x x x

∂ ∂ ∂ 
 ∂ ∂ ∂ 
 

′ =  ∂ ∂ ∂ 
∂ ∂ ∂ 

 
 



   



G X .   (2.37) 

A more stable method – Newton’s method – has become widely used for 
solving systems of nonlinear equations. It is an analogue of Newton’s method for 
one equation and is based on the expansion of all equations into a Taylor series: 
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( ) ( )

( ) ( )

1 1
1 1 1 1 1 1

1

1 1 1 1
1

, ..., , ..., ... ;

;

, ..., , ..., ... ,

n n n n n
n

n n
n n n n n n n

n

f ff x x x x f x x x x R
x x

f ff x x x x f x x x x R
x x

∂ ∂ + ∆ + ∆ = + ∆ + + ∆ + ∂ ∂

 ∂ ∂ + ∆ + ∆ = + ∆ + + ∆ +

∂ ∂

  

where Rn – members of the second and higher orders, who are subsequently 
rejected. 

The problem boils down to solving a system of linear equations: 

 

1 1
1

1 1
2

1

n

n n n
n

n

f f
f

x x x
f

f f x
fx x

∂ ∂  −  ∂ ∂ ∆     −   =        ∂ ∂ ∆     − ∂ ∂  



   





.  (2.38)   

In this system, the matrix of partial derivatives is called the Jacobian matrix 
and denoted by W(X). 

The values of Δxi found for a certain (m+1) iteration step are used as 
corrections to the previous approximations: 

   
( ) ( )

( ) ( )

1
1 1 1

1

;
;

.

m m

m m
n n n

x x x

x x x

+

+

 = + ∆


 = + ∆



  (2.39) 

The general iterative formula in matrix representation looks like this: 

    ( ) ( ) ( ) ( )1 1m m m m+ −    = −    X X W X F X ,    (2.40) 

where ( )m  F X  – column vector of function values  f1, f2, …, fn  for 

approximations X(m), 1 ( )m−   W X  – inverse Jacobi matrix. 
Certain difficulties arise in the process of implementing Newton’s method 

algorithm, particularly during the inversion of the Jacobi matrix. To address this, 
matrix inversion methods known from linear algebra are employed. 

There are also many options for applying Newton’s method. For example, a 
modified Newton method: 

   ( ) ( ) ( ) ( )1 01m m m+ −    = −    X X W X F X .   (2.41) 

In this method, it is not necessary to calculate the inverse Jacobi matrix at 
each step of the calculation, which simplifies the algorithm but slows down the 
convergence and makes the method more sensitive to the choice of initial 
approximation. 
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There is also Newton’s method with the parameter τ: 

  ( ) ( ) ( ) ( )1 1m m m mτ+ −    = −    X X W X F X .   (2.42) 

This method is somewhat similar to the method of successive over-relaxation 
for systems of linear equations. A variety of hybrid methods are also used, in 
which Newton’s method is combined with the method of simple iteration. 

The convergence of Newton’s method is evaluated by calculating the 
exponent: 

    
2

1
2

M LPq = < ,    (2.43) 

where 1( )M −≥ W X , ( )L ≥ W X , ( )P ≥ F X , moreover 2 1

0
lim 0

ml

l m
MP q −

→∞ =
→∑

. 
The error at the mth iteration is determined by the inequality:  

   
2 1

21

m

m

qMP
q

−

∆ ≤
−

.  (2.44) 

The algorithm of the method is shown in the Figure 2.15. 

 
 

Figure 2.15 – Scheme of the Newton’s solution method algorithm for systems of 
nonlinear equations 
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Example 2.8. Determine the values of the roots of the system of nonlinear 
equations: 

 

2 2 2

2 2 2

2 2

1;
2 4 0;
3 4 0.

x y z
x y z
x y z

 + + =


+ − =
 − + =

  (2.45) 

with precision ε = 0,001. 

Solution: 
Enter the notation: 

x
y
z

=X ;  

2 2 2
1

2 2 2
2

2 2
3

1
( ) 2 4

3 4

x y zf
f x y z
f x y z

+ + −

= = + −

− +

F X ; 

1 1 1

2 2 2

3 3 3

2 2 2
( ) 4 2 4

6 4 2

f f f
x y z x y z
f f f x y
x y z

x z
f f f
x y z

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

= = −
∂ ∂ ∂

−
∂ ∂ ∂
∂ ∂ ∂

W X . 

An initial approximation is selected: 

0
0

0

0

0,5
0,5
0,5

x
y
z

= =X ;   

( )

( )

( )

0 2 2 2
1 0 0

0(0) 2 2 2
2 0 0 0

2 20
0 0 03

1 0,25
( ) 2 4 0,25

1,003 4

f x y z

f x y z

x y zf

+ + − −
= = + − = −

−− +

F X ; 

0 0 0

0 0 0

0 0

2 2 2 1 1 1
( ) 4 2 4 2 1 4

3 4 16 4 2

x y z
x y
x z

= − = −
−−

W X . 

The value of the inverse Jacobian matrix of the function F(X) is determined: 

1
0

0,375 0,125 0,125
( ) 0,350 0,050 0,150

0,275 0,175 0,025

− = −
−

W X . 

Using Newton’s modified method, we perform iterative calculations based on 
the iterative formula (2.41): 
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( ) ( ) ( ) ( )1 0 0 01−    = − =   X X W X F X
  

0,5 0,375 0,125 0,125 0,25 0,750
0,5 0,350 0,050 0,150 0,25 0,450 ,
0,5 0,275 0,175 0,025 1,00 0,550

−
= − − − =

− −  
( )

( )

( )

1
1

1(1)
2

1
3

0,0675
( ) 0,1175

0,1900

f

f

f

= =F X ; 

( ) ( ) ( ) ( )2 1 0 11

0,750 0,375 0,125 0,125 0,0675 0,68625
0,450 0,350 0,050 0,150 0,1175 0,44900 ,
0,550 0,275 0,175 0,025 0,1900 0,54725

−    = − =   

= − − =
−

X X W X F X
 

; …; ( )7

0,70641
0,44896
0,54748

=X ;

( )

( )

( )

3
1

3(7)
2

3
3

0,000786
( ) 0,001571

0,002357

f

f

f

−
= = −

−
F X . 

At this step of the calculations, the measurement error was obtained: 

( )(7) (6)

0,70641 0,70563
0,44896 0,44896 max 0,00078; 0; 0 0,00078
0,54748 0,54748

xE ε= − = − = = ≤X X . 

Consider the implementation of Newton’s method for solving a system of 
nonlinear equations in the PYTHON programming language: 

 
import numpy as np 
from scipy import * 
from sympy import * 
# we determine the column vector of the values of the functions of the system 
of nonlinear equations 
def F_X(x_num,y_num,z_num):    
    F_x=np.array([(x_num**2)+(y_num**2)+(z_num**2)-1, 
                  (2*(x_num**2))+(y_num**2)-(4*(z_num**2)), 
                  (3*(x_num**2))-(4*y_num)+(z_num**2)]) 
    return F_x 
def Yak_Xrev(x_num,y_num,z_num): 
    x,y,z=symbols('x y z') 
    f_1=(x**2)+(y**2)+(z**2)-1 
    f_2=(2*(x**2))+(y**2)-(4*(z**2)) 
    f_3=(3*(x**2))-(4*y)+(z**2)  
    g_1=[diff(f_1,var) for var in [x,y,z]] 
    g_2=[diff(f_2,var) for var in [x,y,z]] 

( )

( )

( )

2
1

2(2)
2

2
3

0,0279
( ) 0,0545

0,0837

f

f

f

−
= = −

−
F X
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    g_3=[diff(f_3,var) for var in [x,y,z]] 
    g_1num = lambdify([x,y,z], g_1) 
    g_2num = lambdify([x,y,z], g_2) 
    g_3num = lambdify([x,y,z], g_3) 
    Yak = np.array([g_1num(x_num,y_num,z_num), 
                    g_2num(x_num,y_num,z_num),g_3num(x_num,y_num,z_num)]) 
    return np.linalg.inv(Yak) 
# solution of the iterative equation 
X=np.array([0.4,0.4,0.4]) 
X_1=np.array([0.5,0.5,0.5]) 
e=0.001 
k=0 
while np.linalg.norm(X-X_1,np.inf)>=e: 
    X=X_1 
    X_1=X-(Yak_Xrev(0.5,0.5,0.5).dot(F_X(X[0],X[1],X[2]))) 
    k=k+1 
    print('k=',k) 
    print('X',X) 
    print('F_X(X[0],X[1],X[2])=',F_X(X[0],X[1],X[2])) 
    print('X_1=',X_1) 
    print('Current error value',np.linalg.norm(X-X_1,np.inf)) 
    print('----------------------------'). 

 
Conclusions on the application of methods for solving transcendental 

equations, systems of nonlinear equations, as well as finding complex roots 
of polynomial equations 

To solve finite nonlinear equations, it is advisable to use the following 
methods: dividing in half (dichotomy), Newton (tangents), secant (linear 
interpolation), fixed-point iteration. Before applying these methods, the roots are 
separated using analytical methods such as finding a simpler equation that has 
roots approximately equal to the unknown roots of this equation (neglecting the 
small terms of the equation) and using theorems based on known properties of 
continuous functions. It should be noted that the method of dividing the segment 
in half does not require any smoothness conditions for the function; it is only 
necessary that the function is continuous. This makes it very popular in simple 
problems involving finding a single root within a given interval (for example, in 
the field of metrology). When calculating the roots of an equation using Newton’s 
method, the process of successive approximations always converges if the initial 
approximation is taken to be very close to the root on a certain interval. Therefore, 
it is particularly useful for problems where the root is only roughly known. The 
calculation of the equation’s root using the secant method with any desired level 
of accuracy will yield the same result as Newton’s method. However, Newton’s 
method generally exhibits better convergence than the secant method in most 
cases. In situations where computing the function and its derivative is time-
consuming, the secant method offers greater efficiency. Along with the above-
mentioned methods, the fixed-point iteration makes it possible to «guess» new 
values during the implementation of each step. The properties mentioned of the 
iteration method, its simplicity and limitless possibilities expressed in the formula, 
allow for its effective use in solving differential, integral, and integro-differential 
equations. Such tasks often arise in the process of ballistic calculations, space 
travel, or determining credit conditions in the financial sector. 
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Problems with finding complex roots of polynomial equations are relevant in 
the field of automatic control of complex objects. When determining complex 
roots, the control of convergence and error is carried out by the modulus of the 
complex number. In these types of problems, it is effective to use Lin's method, 
which allows you to estimate complex roots by calculating with real numbers. 
Before applying this method, the real and complex roots of the polynomial 
equation are also separated using the De Gua’s theorem and Descartes’ rule. Lin’s 
method uses the running method or the simple iteration method to find the solution 
to the system of iterative equations. It should be noted that the method of simple 
iterations is conditionally convergent, but there are no practically acceptable 
criteria for the convergence of this method. In the process of practical 
implementation of Lin’s method, it is necessary to monitor the number of 
iterations. If it exceeds a reasonable limit, it is necessary to consider that the 
method is divergent for the selected algebraic polynomial equation. 

It is also common to solve problems in the dynamics of complex systems and 
solid state physics using a mathematical model in the form of a system of 
nonlinear equations. The most effective and stable method for solving systems of 
nonlinear equations is Newton’s method, which is based on expanding all 
component equations into a Taylor series. Generally, the problem of solving a 
system of nonlinear equations is reduced to solving a system of linear equations, 
which is accomplished by using the inverse Jacobi matrix. To simplify the overall 
algorithm, a modified Newton method can be employed, which eliminates the 
need to calculate the value of the inverse Jacobi matrix at each step. However, a 
disadvantage of this approach is that it slows down convergence and becomes 
more sensitive to the choice of the initial approximation. Various hybrid methods, 
combining Newton’s method with a simple iteration method, are also used. 

Control questions and tasks 

1.  What number is called the root of a function? 
2.  What are the known methods for separating the roots of a function? 
3.  What is the condition for the existence of the roots of the equation in a 

certain domain of the function’s definition? 
4.  To reveal the essence of numerical methods dividing in half (dichotomy), 

Newton (tangents), secant (linear interpolation), as well as simple iterations for 
solving nonlinear algebraic equations? 

5.  How to check the convergence of iterative algorithms for solving nonlinear 
algebraic equations? 

6.  What are the differences between algorithms dividing in half (dichotomy), 
Newton (tangents), secant (linear interpolation), fixed-point iteration? 

7.  Using the half-division method, determine the flight time of the projectile 
with an accuracy of ε=0.00001, provided that the force of air resistance to the 
movement of the projectile is proportional to its speed (R= –kmν). The equation 
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of motion of the projectile is given by a function in a parametric form (parameter 
t is the flight time of the projectile) in the projection on the vertical axis of the 
ordinate y: 

  ( )( )02
1 sin 1 kt gy g k e t
k k

υ α −= + − − ,   

where g=9,82 m/sec2 – acceleration of gravity. The initial data for the options are 
presented in Table 2.6. 

 
Table 2.6 – Output data for the task 

Version 

Air 
resistance 
coefficient 
(k, sec-1) 

Initial 
velocity 

(υ0, m/sec) 

The angle between the 
initial velocity vector 

and the horizontal 
surface 

(α, grad) 
1 0,25 1200,0 30o 

2 0,33 1300,0 45o 
3 0,15 1450,0 50o 
4 0,42 1560,0 60o 
 

8.  Using Newton’s method (tangents) determine the flight range of the 
projectile with an accuracy of ε=0.00001, provided that the force of air resistance 
to the movement of the projectile is proportional to its speed (R= –kmν). The 
equation of motion of the projectile is given by a function in projections on the 
horizontal and vertical xy axes  

0
2

0 0

1 sin ln 1
cos cos

g k g ky x x
k k

υ α
υ α υ α

   +
= + −   

   
,   

where g=9,82 m/sec2 – acceleration of gravity. The initial data for the options is 
presented in Table 2.7. 
 

Table 2.7 – Output data for the task 

Version 
Air resistance 

coefficient 
(k, sec-1) 

Initial 
velocity 

(υ0, m/sec) 

The angle between the initial 
velocity vector and the 

horizontal surface 
(α, grad) 

5 0,25 1200,0 30o 

6 0,33 1300,0 45o 
7 0,15 1450,0 50o 
8 0,42 1560,0 60o 
 
9. Using the method of chords (linear interpolation) determine the interest rate 

and yield of bonds with an accuracy of ε = 0,0001. The yield function is given by 
the following transcendental equation: 
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1( ) (1 ) (1 ) (1 ) ( ) 0n n
n nI P i P i A i A I− − ++ ⋅ + + ⋅ + + ⋅ + − + = , 

where n = T–N – the term remaining until the bond’s maturity (in years);  
I = P·k – amount of coupon payments (in monetary units). The initial data for the 
options is presented in Table 2.8. 
 

Table 2.8 – Output data for the task 

Version 

Current 
value of the 

bond 
(An, in 

monetary 
units) 

Nominal 
value 
(P, in 

monetary 
units) 

Amount of 
years 

(N, amount 
of years) 

Repayment 
term 

(T, amount 
of years) 

Coupon 
interest 

rate 
(k, fraction 
from one) 

9 1150,0 1000,0 1,0 10,0 0,12 
10 1300,0 1200,0 2,0 15,0 0,14 
11 1420,0 1300,0 3,0 16,0 0,16 
12 1500,0 1500,0 4,0 20,0 0,18 

 
10.  Using Newton’s method (tangent) determine the interest rate i with an 

accuracy of ε=0.0001, based on the compound interest formula: 

1 1
( /12) 12

NQ iS
i

  = + −  
   

. 

The initial data for the options is presented in Table 2.9. 
 

Table 2.9 – Output data for the task 

Version 

Amount of 
security deposit 
(S, in monetary 

units) 

The period during 
which equal payments 

will be made 
 (N, number of 

months) 

The amount of the 
monthly contribution 

is equal 
(Q, in monetary units) 

13 1,0·106 9,0 1,0·105 
14 2,0·106 10,0 1,5·105 
15 2,5·106 11,0 2,0·105 
16 3,0·106 12,0 3,2·105 

 
11.  In the Landau-Ginsburg-Devonshire equation determine the value of the 

polarization due to the action of the external field of crystals with first-order phase 
transitions using the method of simple iterations, with an accuracy of ε=0,0001: 

3 5 0mP P P Eα β γ+ − + = . 

The initial data for the options are presented in Table 2.10. 
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Table 2.10 – Output data for the task 

Version 
Normalized thermodynamic 

parameters 
The intensity of the 

electromagnetic field 
(Em, V/m) α β γ 

17 1,0 1,00 0,01 0,0 
18 1,0 0,01 0,00 1,0 
19 1,0 1,50 0,10 1,2 
20 1,2 1,10 0,08 1,4 

 
12.  Using the secant method (linear interpolation) with an accuracy of 

ε=0.00001 determine the critical force (loss of vertical balance of the rod) applied 
along the rod, one end of which is rigidly fixed and the other is hinged and can 
only move in the vertical direction. This critical force is determined from the 
equation: 

0PL PLtg
EI EI

 
− = 

 
. 

The initial data for the options are presented in Table 2.11. 
 

Table 2.11 – Output data for the task 

Version 
Bending stiffness of 

the rod 
(EI, N·m2) 

The length of the 
rod 

(L, m) 
21 450,0 3,0 
22 500,0 5,0 
23 560,0 7,0 
24 630,0 9,0 

 
13.  Using the example of a well-known problem in cosmonautics and the 

fixed-point iteration determine the optimal ratio of the elements of the rocket’s 
mass so that the maximum value CUE of the equation is reached: 

 
2 ln(1 ) 0

1
z z
z
− + =

+
,  

where z – the ratio of the mass of fuel for a jet engine to the mass of the payload. 
14. Determining the roots of the characteristic equation allows us to find out 

how an increase in the gain affects the relative stability of the control system. 
Since the positive real parts of the roots of the system’s characteristic equation 
correspond to the exponential development of transient processes, they should 
be avoided at all costs. For the regulation topic shown in Figure 2.16, it looks 
like: 

3 212 7 0D D D K+ + + = . 
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Find and plot the roots Di in the plane of a complex variable depending on 
increasing values of K. At what value of the gain K does the system lose stability? 

 
Figure 2.16 – Scheme of the system regulation system 

 
15.  What is the difference between real and complex roots of an equation? 
16.  Formulate theorems that determine the presence of complex roots in an 

equation? 
17.  Reveal the essence of Lin’s method for determining the complex roots of 

a polynomial equation. 
18.  Describe the convergence criteria used when applying Lin’s method for 

factoring a polynomial?   
19.  Calculate the real roots of a polynomial equation to ε=0,0001 precision: 

5 4 3 25 3 16 5 9 0x x x x x+ − + + + = .  
20.  In the chemical reaction: 

2 2
1
2

CO O CO+   

the percentage of X dissociated mole CO2 is determined by the equation: 

3
2 3 2 0

1
P X X

K
  + − = − 

, 

where P – pressure expressed in atmospheres, and K – equilibrium constant 
depends on temperature. Find X at K=1,648 (which corresponds to 2800,0 K) and 
P=1,0 atm. 

21.  Reveal the essence of Newton’s method for solving systems of nonlinear 
equations. 

22.  Describe the principle of expanding a function into a Taylor series. 
23.  How the Jacobian matrix is determined? 
24.  How to check the convergence of the iterative algorithm for solving 

systems of nonlinear algebraic equations using Newton's method? 
25.  What are the variants of Newton’s method for solving systems of 

nonlinear algebraic equations? 
26.  How is the error determined during iterative calculation using Newton’s 

method for solving systems of nonlinear algebraic equations? 
27.  Define the concept of «norm» and characterize all its types in matrix 

calculation. 
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28.  Calculate the roots of a system of nonlinear equations with accuracy 
ε=0,001: 

     

2 2 2

2 2 2

2 2

2 9 1;
6 0;
2 3 4.

x y z
x y z
x y z

 − + =


+ − =
 + − =

 

29.  Calculate the roots of the system of nonlinear equations with an accuracy 
of ε=0,001 and an initial approximation: 

2
1 1 (0)

2
1 1 2 1

3ln 0; 3,4
.

2,22 5 1,
x x x

x
x x x x

 + − = =
− − =

  

30.  Perform five iterations using Newton’s method to find the root values for 
a system of nonlinear equations, given an initial approximation vector: 

4
2 1

2
2 1 1

2 1;
5 3 ,

x x
x x x

 = −


= − +
 

(0)
1
(0)
2

1
.

1
x
x

   
=   

    
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Chapter 3. DIFFERENTIAL CALCULUS PROBLEMS 
 

Modern computer systems are widely used in all spheres of human activity. 
One of the main areas of application for computer systems is solving problems 
that arise in science and technology, specifically the construction of solutions for 
mathematical models that describe various physical phenomena. This field of 
application is known as scientific programming. Nowadays, it is almost 
impossible to find any field of science and technology where high-performance 
computing systems are not used, such as calculating the trajectories of Earth’s 
satellites, modeling the airflow around aircraft to design more effective designs, 
analyzing the strength characteristics of building structures, and forecasting 
climatic conditions. Mathematical models for all the aforementioned problems, as 
well as most other scientific and engineering problems, involve systems of 
differential equations. Depending on the number of independent variables and, 
accordingly, the type of derivatives included in them, the equations are divided 
into ordinary differential equations, which contain one independent variable and 
its derivatives, and partial differential equations, which have several independent 
variables and their (partial) derivatives.  

Ordinary differential equations (ODE) can be used to describe problems 
related to the motion of a system of interacting material points, kinetics, electric 
circuits, resistance of materials, etc. A number of important problems for partial 
differential equations are also reduced to problems involving ODE. For example, 
if a multidimensional problem allows for the separation of variables (e.g., 
problems involving finding the natural oscillations of elastic beams and 
membranes in a simpler form or determining the spectrum of eigenvalues of the 
energy of a particle in a spherically symmetric field), or if its solution depends 
only on some combination of variables (automodal decision). Thus, the solution 
of ODE holds a significant place among the applied problems in physics, 
chemistry, and engineering. Therefore, this section reveals the main methods of 
numerical research for ODE. 

An ordinary differential equation is an equation containing unknown 
functions, an independent variable, and derivatives of the unknown functions (or 
their differentials). 

General view of the ODE: 

 ( )( ), , , , , 0nF x y y y y′ ′′ =
 або 

2

2, , , , , 0
n

n
dy d y d yF x y
dx dx dx

 
= 

 


, (3.1) 

where y=y(x) – the function that is defined;  ( )
n

n
n

d yy
dx

=  – derivative (differential) 

of the n-th order of the function y(x) with respect to the variable x;  F – a valid 
function from its own arguments, which are also considered valid. 

Differential equations can be linear or non-linear. A linear equation is an 
equation in which the unknown function and its derivatives appear to the first 
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degree. The order of a differential equation is determined by the highest derivative 
(or differential) present in equation (3.1). In general, the solution to (3.1) is found 
through n successive integrations, resulting in the general solution of n-th order 
that contains n arbitrary constants: 

 ( )1 2, , , , ny y x C C C=  . (3.2) 
If the general solution of equation (3.1) is obtained implicitly: 

 ( )1 2, , , , , 0nФ x y C C C = , (3.3) 

then it is called the general integral of this equation. In other words, in those cases 
when equality (3.3) can be solved with respect to the desired function y, it is called 
a general solution of the differential equation (3.1), and if it remains unsolved 
with respect to y, it is called a general integral. By assigning specific numerical 
values to arbitrary constants C1, C2, …, Cn, a particural integral will be obtained 
from (3.3). 

In order to extract a partial solution from the general solution, it is necessary 
to add some additional conditions to the differential equation. Typically, initial 
conditions are used. These conditions serve as a mathematical record of the initial 
state of the process, especially when studying a time-evolving process. 

For a system of n ordinary differential equations of the first order: 

 ( ) ( , )dU x F x U
dx

= ,  (3.4) 

where 1 2( , , , )T
nU y y y=  , ( )1 2( , ) ( , ), ( , ), , ( , ) T

nF x U f x U f x U f x U=   – In 
vectors, the general solution contains n derivative constants ( )1, , , nU Ф x C C=  , 
and in order to select its partial solutions, it is also necessary to set n additional 
conditions, that is, as many equations as the system contains. 

ODE are increasingly being used in mathematical models developed to 
simulate processes and phenomena that occur in various fields of technology, 
science, and production. 

In the field of microbiology, the problem of determining the dependence of 
the growth of the number of bacteria over time is well-known. This is provided 
that there is a certain number of N0 bacteria at the beginning, under favorable 
conditions for reproduction. It is also experimentally known that the rate of 
reproduction of bacteria is proportional to their number. 

To solve this problem, it is advisable to use N(t)  to denote the number of 
multiplying bacteria at time t, where N(0) = N0. Bearing in mind that the number 
can only be measured in whole numbers, we will assume that N(t) changes 
continuously and differently over time. Therefore, the rate of reproduction is the 
derivative of the function N(t). Thus, the biological experimental law specified in 
the problem allows us to formulate the differential equation of bacterial 
reproduction: 
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 ( ) ( )dN t kN t
dt

= , k > 0.  (3.5) 

The experimental coefficient k depends on the type of bacteria and the 
conditions in which they are found. The problem was reduced to a purely 
mathematical problem of finding the solution N = N(t) of equation (3.5), for which 
N(0) = N0. Since N(t)> 0, dividing both parts of equation (3.5) by N(t), we obtain 

(ln ( ))d N t k
dt

= , from which: 

 1ln ( )N t kt C= + ,  (3.6) 

where C1 – arbitrary constant. 
Denoting C1 = lnC (C > 0), we find from equation (3.6). 

 ( ) ktN t Ce= . (3.7) 

To select the function (3.7) that describes the process of bacterial 
reproduction, you can use the condition N(0) = N0. Then, from equation (3.7), we 
have N0 = C. Finally: 

 0( ) ktN t N e= , (3.8) 

shows that the number of bacteria grows exponentially. 
In ballistics, it is important to determine the relationship between the velocity 

of the vertical fall of a body with mass m and time. It is given that the initial height 
of the fall is h, and the force of viscous friction acting on the body is proportional 
to the velocity: Ffr = –αυ, where α > 0 is the coefficient of friction. 

When solving this problem, we consider that υ(t) is the velocity of the body 
at time t. Two oppositely directed forces act on the body: gravity Fg=mg and 
viscous friction Ffr =  –αυ. 

In this case, the differential equation describes Newton’s second law.: 

 g fr
dma F F F m mg
dt
υ αυ= = + ⇒ = − .  (3.9) 

Dividing both sides of equation (3.9) by m, we obtain a differential equation. 

 d g
dt m
υ α υ= − + .  (3.10) 

The solution to the differential equation (3.10) will be the following 
expression: 

                                           ( )
t

mmgt Ce
α

υ
α

−
= + .                                       (3.11)  

If the body starts moving with zero speed (υ(0) = 0), then mgС
α

= − : 
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 ( ) 1
t

mmgt e
α

υ
α

− 
= − 

 
.  (3.12) 

During free fall without friction d g
dt
υ = 

 
, the velocity increases linearly: 

υ(t) = gt. In the presence of viscous friction, the increasing speed tends to a 

constant value mgυ
α

= . 

Many real processes are modeled by differential equations that contain the 
second derivative of an unknown function. These differential equations are 
referred to as second-order equations. An example of a problem from the field of 
ballistics is the task of determining the law of motion for a point mass m falling 
vertically downwards, while disregarding air resistance. 

To solve such a problem, a reference point O is chosen on the vertical axis 
along which the point falls, and the positive direction is determined – from point 
O downwards. The position of the point is determined by the coordinate y(t), 
which changes with time t. The point falls under the force of gravity Fg = mg, 

therefore, according to Newton’s second law, ma = F. Then 
2

2
d ym mg
dt

=  or: 

 
2

2
d y g
dt

= . (3.13) 

Integrating the ratio (3.13) twice, we can determine: 

 1
dy gt C
dt

= + ,    
2

1 2( )
2

gty t C t C= + + . (3.14) 

Formula (3.14) defines the law of motion of a material point, but it contains 
constants of integration, in this case – two. Knowing the initial position of the 
falling point relative to point O – y(0) = y0 and its initial speed υ(t) = υ0, one 
chooses from the set of functions (3.14) that describes the motion of the point. 

Since the speed of movement of the point ( ) dyt
dt

υ = , then under the indicated 

initial conditions C1 = υ0 and C2 = y0, the function that describes the law of 
movement of the point is sought: 

 
2

0 02
gty t yυ= + + .  (3.15) 

Thus, the well-known formula for the path traveled by a point during uniform 
accelerated motion was obtained. 

This section deals with solving computational problems of differential 
calculus, specifically the solution of ordinary differential equations and their 
systems. Moreover, it is assumed that the user is already familiar with the main 
information presented in the sections of mathematical analysis. 
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3.1 Generalized problem statement for ordinary differential equations 

There are three main types of tasks for ODE: Cauchy problems, boundary 
value problems and eigenvalue problems. 

The statement of the Cauchy problem for the first-order system of n ODE is 
formulated as follows in the general case. Find the solution of the differential 
equation: 

                                    
( ) ( , )dU x F x U

dx
=  at x>x0, U(x0)=U0,                    (3.16) 

where x0 – initial value x; U0 – the initial value of the vector U  
(U = (y1,  y2, …, yn)T); ( )1 2( , ) ( , ), ( , ), , ( , ) T

nF x U f x U f x U f x U=  , or in 
expanded form: 

( )1 2
( ) , , , ,i

i n
dy x f x y y y

dx
=  ; x > x0;  yi(x0) = (0)

iy  (i = 1, 2, …, n). 

For equations of the first to n-th orders, the Cauchy problem is formulated as 
follows find a solution to differential equations: 

а) ( , )dy f x y
dx

=  for x > x0  by y(x0) = C0; 

b) 
2

2 ( , , )d y f x y y
dx

′=  for x > x0  by  y(x0) = C0, 0 1( )y x C′ = ; 

c) ( )( , , , , )
n

n
n

d y f x y y y
dx

′= 

 for x > x0 by y(x0) = C0, 0 1( )y x C′ = , …,
( 1)

0 1( )n
ny x C−
−= , 

where С1, C2, …, Cn – some constants; ( ), , , ny y y′ ′′
  – derived functions y. 

 

3.2 Numerical methods for solving ordinary differential equations for 
Cauchy-type problems 

In general, the methods of solving ODE are conditionally divided into exact, 
approximate, and numerical methods. Analytical methods, which allow you to 
express the solution of a differential equation in terms of elementary functions or 
present it using quadratures of elementary functions, belong to the exact methods. 
Finding an exact, and moreover, general solution to problem (3.16) facilitates 
qualitative research of this solution and further actions with it. However, the 
classes of equations for which methods of obtaining exact solutions have been 
developed are relatively narrow and cover only a small part of the problems that 
arise in practice. 
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Methods in which the solution is obtained as the limit of y(x) from some 
sequence yn(x) are called approximate methods, and yn(x) is expressed through 
elementary functions or using quadratures. By restricting to a finite number n, an 
approximate expression for y(x) can be obtained. Approximate methods include 
the expansion of the solution into a generalized power series, the Chaplygin 
method, the Picard, Kantorovich method, and others. However, these methods are 
convenient in cases where most of the intermediate operations can be performed 
accurately (for example, finding an explicit expression for the coefficients of a 
series). This can only be done for relatively simple problems (linear), which 
greatly narrows the scope of application of approximate methods. 

Numerical methods are algorithms for calculating approximate (and 
sometimes exact) values of the desired solution y(x) on a chosen grid of values of 
the argument xn. The solution will be obtained in the form of a table. Numerical 
methods do not allow finding the general solution of system (3.16); they can only 
provide a partial solution, such as the solution of the Cauchy problem (3.16). 
However, these methods can be applied to a wide class of equations and all types 
of problems associated with them. 

Numerical methods can only be applied to correctly posed (or well-posed) 
problems. However, it should be noted that the formal fulfillment of correctness 
conditions may not be sufficient for the successful application of numerical 
methods. It is necessary for the problem to be well-conditioned, meaning that 
small changes in the initial conditions would result in sufficiently small changes 
in the integral curves. If this condition is not met, meaning the problem is ill-
conditioned (weakly stable), then small changes in the initial conditions or small 
errors in the numerical method can introduce significant distortions. 

Available numerical methods for solving Cauchy problems are classified into 
two types: 

1) one-step methods, in which information about only one previous step is 
needed to find the next point on the curve. Well-known one-step methods are the 
Euler and Runge-Kutta methods. 

2) methods of «prediction and correction» (multi-step methods), in which 
information about more than one of the previous data points is needed to 
determine the next point on the curve, are used. Iterations are often employed to 
obtain a reasonably accurate numerical value. Examples of such methods include 
the Adams, Milne, and Moulton methods. 

Euler’s method 

Euler’s method is the simplest method for solving the Cauchy problem (3.16) 
for x⋲[a; b] and i = 1. In order to obtain calculation formulas, the interval of 
continuous change of the variable x can be replaced by a set of points xj = a+jh, 
which will be called grid nodes: 
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b ah
n
−

= ;  x0 = a;  x n = b, 

where h – grid step. 
The numerical solution of problem (3.16) is a table of values: 

xj; yj (j = 0, 1, …, n), 
where yj – difference or numerical value of the solution at the node xj. 

Equation (3.16) for x = xj and n = 1, by definition of the derivative: 

 
0

( ) ( )
lim

j

j j

h
x x

y x h y xdy
dx h→

=

+ −
= .  (3.17)  

Discarding the limit in (3.17), the derivative 
jx x

dy
dx =

 is replaced with a finite-

difference relation: 

 
( ) ( )

j

j j

x x

y x h y xdy
dx h=

+ −
≈ .  (3.18) 

If we substitute equation (3.18) into equation (3.16), we get: 

 ( )( ) ( )
, ( ) ( 0,1, , 1)j j

j j

y x h y x
f x y x j N

h
+ −

≈ = −

, (3.19) 

where y(xj) – the value of the solution y(x) to the Cauchy problem at node xj. 
Denoting by yj the numerical solution that satisfies the difference equation, we 
can write:  

 ( )1 , ( 0, 1)j j
j j

y y
f x y j n

h
+ −

= = −  (3.20) 

or 

  ( )1 , ( 0, 1)j j j jy y hf x y j n+ = + = − .  (3.21) 

Given the initial condition (3.16) and using the difference equation (3.21), it 
is possible to consistently determine a series of iterative equations: 

( )1 0 0 0, ( 1);y y hf x y j= + =  

( )2 1 1 1, ( 2)y y hf x y j= + = ; 

    ………………………………; 

( )1 1 1, ( 1)n n n ny y hf x y j n− − −= + = − . 

The graphical interpretation of the approximate solution obtained by Euler’s 
method is a broken curve (Fig. 3.1, a) that connects points M0, M1, …, Mn in a 
series and is called Euler broken curve. 
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For the geometric interpretation of the error that occurs when applying the 
Euler’s method, it is necessary to consider the point xn at which the numerical 
solution of the problem yn is obtained. Putting yn=y(xn), a hypothetical integral 
curve y(x) is drawn through this point (yn, xn) and f(xn, y(xn)) is tangent to it  
(Fig. 3.1, b). Under the given assumptions, it is equal to f(xn, yn). 

 

  
а) b) 

Figure 3.1 – Scheme of the geometric interpretation of Euler’s method 
numerical solution of the Cauchy problem: 

a) – approximation scheme; b) – error determination scheme 
 

The point of intersection of this tangent with the perpendicular to the x-axis, 
which passes through the point xn+1, gives the approximate value of the function 
yn+1 at the point xn+1. At the same time, the solution error is equal to ε=yn+1–y(xn+1). 
Accordingly, Euler method is a linear extrapolation of the function yn to the point 
xn+1 using the values of the function and its derivative at the point xn: 

( )1 1, ( )n n n n n ny y f x y x x+ += + − . 
Based on the expansion in the Taylor series of equation (3.21), it is determined 

that the Euler’s method has a large error, namely, an error of the first order O(h) 
and often turns out to be unstable, since a small error in the initial data or due to 
rounding in the calculation process increases with the growth of x. 

In order to improve the accuracy of the solution to the Cauchy problem, a 
refined Euler’s method is employed for the ODE. This method is based on 
calculating the function y(xn+1) at the next point xn+1 using the average value of 
the slopes of the tangent lines to the integral curve y(x) at points xn and xn+1. In 
this scenario, the solution to the problem yn at point xn is assumed to be already 
known. 

The method consists of two steps: 
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1) according to the Euler’s method (3.21), the approximate value of 1ny +  at 
the point x=xn+h is preliminarily determined by the formula 
 1 ( , )n n n ny y hf x y+ = + , (3.22) 
and the function 1 1( , )n nf x y+ +  is calculated in it; 

2) the tangents of the tangent angles at the points (xn, yn) and ( )1 1,n nx y+ +  are 
added and the average arithmetic value Ф(xn, yn, h) is determined: 

 ( ) ( )1 1
1( , , ) , ,
2n n n n n nФ x y h f x y f x y+ + = +  , (3.23) 

where ( ) ( )( )1 1, , ,n n n n n nf x y f x h y hf x y+ + = + + . 
After that, the final (refined) value of the function yn+1 at the point xn+1 is 

determined by the formula yn+1=yn+hФ(xn, yn, h) or in expanded form:  

 ( ) ( )( )1 , , ,
2n n n n n n n n
hy y f x y f x h y hf x y+  = + + + +  . (3.24) 

Thus, when calculating yn+1, the function f(x, y) has to be calculated twice at 
the points (xn, yn) and (xn+h, yn+h ny′ ). 

With the help of the refined Euler’s method, it is possible to perform accuracy 
control by comparing the value of 1ny +  from formula (3.22) and 1ny +  from formula 
(3.24), which will allow choosing the appropriate value of the step h in each 
calculation node based on this. That is, if the value of 1 1n ny y+ +−  is comparable 
to the calculation errors, then the step must be increased; otherwise, if this 
difference is large enough (for example, 1 1 10,01n n ny y y+ + +− >  ), the value of h 
must be reduced. Using these estimates, it is possible to build an algorithm of the 
Euler method with automatic step selection (Fig. 3.2). 

For the purpose of geometric interpretation of the refined Euler’s method, at 
the point (xn, yn) (Fig. 3.3), the tangent line L1 to the hypothetical integral curve 
y(x) is constructed, and the initial value of 1ny +  is determined at the point of 
intersection of this tangent with the perpendicular to the x-axis passing through 
point xn+1. After that, at the point (xn+h, yn+h ny′ ), the tangent line L2 to the curve 
y(x) is constructed again. 

Next, the arithmetic mean of the tangents of the angles of inclination of these 
tangents (curve L3) is determined, and the line L0, parallel to line L3, is drawn 
through this point (xn, yn). The point of intersection of this line with the ordinate 
passing through the point xn+1 gives the refined value of the function yn+1 at point 
xn+1. 
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Figure 3.2 – Scheme of the Euler’s method algorithm



101 

 
Figure 3.3 – Scheme of the geometric interpretation of the 

refined Euler’s method 
 
Estimating the approximation error of formula (3.24) based on the Taylor 

series expansion of the functions y(xn) and ( )( ), ,n n n nf x h y hf x y+ +  shows that 
this method has a second order of approximation O(h2). 

Euler method is successfully applied to systems of ODE. For a system of first-
order n ODE, the Euler’s method takes the following form: 

 ( )1

0

, ( 0,1, ..., 1);

(0) ; [0;1],

j j
j j

y y
f x y j n

h
y y x

+
 −
 = = −

 = ∈

 (3.25) 

where ( )1 2 ,, , ,
T

j j j n jy y y y= 
. 

Then Euler’s method is rewritten for each component of the vector jy : 

1, 1 1,
1,

2, 1 2,
2,

, 1 ,
,

1 10 2 2 0

;

;

;

( 0, 1);

(0) , (0) , , (0) .

j j
j

j j
j

n j n j
n j

n n

y y
f

h
y y

f
h

y y
f j N

h
y y y y y y

+

+

+

−
=


− =





− = = −
= = =



   
To estimate the total error of the numerical solution to the Cauchy problem 

for ODE systems, Runge’s method (other name Richardson’s extrapolation) can 
be used. This method relies on comparing the results of calculating the values of 

ny  and ny  at the point xn with different steps h  та h , respectively, in order to 
determine the error of the approximation: 
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 ( ) ( )/ 1 2h p
n n nR y y −= − − , (3.26)  

where p – the order of approximation of the difference scheme used, particularly 
p=1 – the Euler method. 

Algorithms for Euler’s method in ODE systems with automatic step selection 
are shown in Figure 3.4. 

Example 3.1. To solve the Cauchy problem for the first-order ODE using 
Euler numerical methods: 

dy y x
dx

= + ; x⋲[0; 1,0],  

which satisfies the initial condition for x0 = 0, y0 = 1.0, and the relative error of the 
calculation ε = 10,0 %. 

Solution: 
To solve this problem, the segment [0; 1,0] can be divided into ten parts by 

the points x0 = 0; 0.1; 0.2; ..., 1.0. Accordingly, h = 0,1. The values of y1, y2, …, 
yn will be determined by the Euler’s method according to formula (3.21), then: 

( )1 0 0 0, 1 0,1 (0 1) 1,1y y hf x y= + = + ⋅ + = 0; 

( )2 1 1 1, 1,1 0,1 (1,1 0,1) 1,21y y hf x y= + = + ⋅ + = ; 

………….……………….…………………… .  
Also, the values of y1, y2, …, yn can be determined using the refined Euler’s 

method according to formula (3.24). Then: 

           
( ) ( )( )

[ ]

1 0 0 0 0 0 0 0, , ,
2

0,11,0 (0 1,0) (0 0,1 1,0 0,1 (0 1,0)) 1,11000;
2

hy y f x y f x h y hf x y = + + + + = 

= + + + + + + ⋅ + =
                

     
( ) ( )( )

[ ]

2 1 1 1 1 1 1 1, , ,
2

0,11,11 (0,1 1,11) (0,1 0,1 1,11 0,1 (0,1 1,11)) 1,24205;
2

hy y f x y f x h y hf x y = + + + + = 

= + + + + + + ⋅ + =
 

………………………………………….……………………………… . 
Also, for a comparative analysis of the accuracy of the solution using the usual 

and refined Euler’s method, an analytical solution of the ODE was obtained, 
namely: 

 2 1xy e x= − − .  (3.27) 

In the process of solving, Table 3.1 of the calculation results was compiled: 
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Figure 3.4 – Scheme of the Euler’s method algorithm for ODE systems 
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Table 3.1 – Calculation results for the solution of the differential equation 
n xn yn(xn) ( )n ny x  ( )n ny x  

0 0,0 1,0000 1,00000 1,00000 
1 0,1 1,1000 1,11000 1,11034 
2 0,2 1,2200 1,24205 1,24281 
3 0,3 1,3620 1,39847 1,39972 
4 0,4 1,5240 1,58180 1,58365 
5 0,5 1,7164 1,79489 1,79744 
6 0,6 1,9380 2,04086 2,04424 
7 0,7 2,1918 2,32315 2,32751 
8 0,8 2,4730 2,64558 2,65108 
9 0,9 2,8003 3,01236 3,01921 
10 1,0 3,1703 3,42816 3,43656 

 
From the obtained results, shown in Table 3.1, it can be seen that the errors 

made during the determination of the solution grow towards the end of the table. 
In particular, there is a relative error at the points x5 = 0,5 and x10 = 1,0: 

– by comparing the values of the analytical solution and the usual Euler’s 
method 

5 5

5

5

1,79744 1,71640100% 100% 4,51%
1,79744

x x
x

x

y y

y
ε

− −
= ⋅ = ⋅ =




, 

10 10

10

10

3,43656 3,17030100% 100% 7,75%
3,43656

x x
x

x

y y

y
ε

− −
= ⋅ = ⋅ =




; 

– by comparing the values of the analytical solution and the refined Euler’s 
method 

5 5

5

5

1,79744 1,79489100% 100% 0,14%
1,79744

x x
x

x

y y
y

ε
− −

= ⋅ = ⋅ =




, 

10 10

10

10

3,43656 3,42816100% 100% 0,24%
3,43656

x x
x

x

y y

y
ε

− −
= ⋅ = ⋅ =




. 

The numerical results of the calculation of the solution of the differential 
equation, which are summarized in Table 3.1, are conveniently presented on a 
graph (Fig. 3.5). 
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y(x) – Euler's method; 
y( )x  – refined Euler's method; 
( )y x  – is the exact solution 

Figure 3.5 – Diagram of numerical solution results problems of Cauchy ODE 

It is also possible to note the rather high accuracy of the refined Euler’s 
method in the process of solving the Cauchy ODE problem, which, compared to 
the usual Euler’s method, is approximately ten times higher. 

Consider the implementation of Euler’s method in the PYTHON 
programming language: 

%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import * 
from sympy import * 
# introducing an integration step 
h_0=float(input()) 
# entering the initial value of the integration argument (total integration 

#interval) 
a=int(input()); x_mtr=np.array(a) 
# entering the initial value of the diff function argument. equation 
y_0=int(input()); y_mtr=np.array(y_0) 
# entering the final value of the total integration interval 
b=int(input()) 
# entering the value of the relative error of the calculation 
e=float(input())/100 
# setting the function of the differential equation 
def f(x,y): 
  return x+y 

# calculation of iterative formulas 
def eyler(a,b,y_0,h): 

 x=a; y=y_0; y_plus=y_0 
 x_mas=[x]; y_mas=[y]; y_masplus=[y] 
 x_mtr=np.array(a) 
 y_mtr=np.array(y_0) 
 while x<=b: 

 # iterative formula of the Euler’s method 
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        y=y+(h*f(x,y)) 
        x=x+h 
        # iterative formula of the refined Euler’s method 
        y_plus=y_plus+((h/2)*(f(x-h,y_plus)+f(x,y_plus+(h*f(x,y_plus))))) 
        x_mas.append(x) 
        y_mas.append(y) 
        x_mtr=np.append(x_mtr, x) 
        y_masplus.append(y_plus) 
    return x_mas, y_mas, y_masplus, x_mtr 
# control of calculation accuracy and adjustment of the calculation step in 

#the node 
h=h_0; x=a 
while x<=b: 
    for k in range(0,len(eyler(a,b,y_0,h)[0])): 
        x=x+h 
        if abs(eyler(a,b,y_0,h)[1][k]-

eyler(a,b,y_0,h)[2][k])>0.01*abs(eyler(a,b,y_0,h)[1][k]): 
            h=h/2; x=a; break 
# we construct graphs of the solutions of the differential equation 
plt.figure(figsize=(7, 7)) 
plt.xlabel('x',fontsize=15, color='blue') 
plt.ylabel('y',fontsize=15, color='blue') 
plt.plot(eyler(a,b,y_0,h)[0], eyler(a,b,y_0,h)[1]) 
plt.plot(eyler(a,b,y_0,h)[3], (2*(np.exp(eyler(a,b,y_0,h)[3])))-

eyler(a,b,y_0,h)[3]-1) 
plt.plot(eyler(a,b,y_0,h)[0], eyler(a,b,y_0,h)[2]) 
plt.legend(['Euler's method','f(x)=2*exp(x)-x-1','Refined Euler's method'], 

loc=1) 
plt.grid(True) 
plt.xlim([0, 1]) 
plt.ylim([1, 4]) 
plt.show(). 

 

Example 3.2. It is known that when finding solutions to Laplace and 
Helmholtz differential equations in cylindrical and spherical coordinates, as well 
as when solving problems of wave propagation, static potentials, etc., Bessel 
differential equation arises: 

 
1 0y y y
x

′′ ′+ + = ;  x⋲[0; 1,0],  (3.28) 

find a solution with initial conditions x0 = 1,0; y0 = 0,765; 0 0,440y′ = −  and error 
of cut Rh = 0,005. 
 

Solution: 
To solve this problem, the segment [1,0; 2.0] can be divided into ten parts by 

the points x0=1,0; 1,1; 1,2; …, 2,0. Accordingly, h=0,1. 
To apply Euler numerical methods, it is necessary to reduce the second-order 

differential equation (3.28) to a system of two first-order equations with two 
unknown functions. This can be achieved by substituting y z′ = . Since y z′′ ′= , 
equation (3.28) can be written in the form of a system: 
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0 00

;

;

0,1,0; 0 440.,765;

y

x y z

z
zz y
x

= =

′ =
 ′ = − −


= −

(3.29) 

The values of y1, y2, …, yn and z1, z2, …, zn will be determined by the 
Euler's method according to formula (3.22), namely: 

1 0
1 0 00

0
1 0 0 1 0 0

0 0
0

;;

;;

y y y y hzz
h

zz z z z z h yy xh x

− = +=  ⇒   − = + − −  = − −  

 

      

2 1
2 1 11

1
2 1 1 2

0

1 1
1 1

1

1
1

1

00

1

1,0;

;;

;;

;

;;

;;

00,765; ,440.

n n
n n nn

n
n n n n n n

n n
n

y y y y hzz
h

zz z z z z h yy xh x

y y y y hzz
h

zz z z z z h yy xh x
x y z

+
+

+ +

− = += ⇒   − = + − −  = − −  

− = +=  ⇒   − = + − −  = − −  

= =


= −



(3.30) 

Also, for a comparative analysis of the accuracy of the solution by the usual 
and refined Euler’s methods, an analytical solution of the Bessel differential 
equation (3.28) was obtained in the form of a Taylor series expansion. 
Specifically, it was expressed as a Bessel function of the first kind with zero 
order: 

2

0
0

( 1)( ) ( )
!( 1)! 2

kk

k

xy x J x
k k

∞

=

−  = =  +  
∑  ,  (3.31) 

where k – integer. 
Also, the derivative of the Bessel function of the first order zero is equal to 

the negative Bessel function of the first order: 

0 1( ) ( ) ( )y x J x J x′ ′ ′= = −  . (3.32) 

The values of the Bessel functions (3.31) and (3.32) are determined using 
ready tabular data, which are given in Table 3.2 for x⋲[1,0; 2.0]. To determine 
the calculation error using the Runge method (3.26), the values of ( )n ny x  were 
determined with a step of h/2=0,05. In the process of solving, Table 3.2 of the 
calculation results was compiled 
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Table 3.2 – Calculation results of the solution to the differential equation 
n xn yn(x) ( )n ny x  ( )n ny x′  ny  ( )n ny x′  

0 1,0 0,76500 0,76500 -0,44000 0,7652 -0,4400 
1 1,1 0,72100 0,72019 -0,47250 0,7196 -0,4709 
2 1,2 0,67375 0,67229 -0,50165 0,6711 -0,4983 
3 1,3 0,62359 0,62166 -0,52722 0,6201 -0,5220 
4 1,4 0,57086 0,56866 -0,54902 0,5669 -0,5419 
5 1,5 0,51596 0,51367 -0,56689 0,5118 -0,5579 
6 1,6 0,45927 0,45709 -0,58069 0,4554 -0,5699 
7 1,7 0,40120 0,39933 -0,59033 0,3980 -0,5778 
8 1,8 0,34217 0,34080 -0,59572 0,3400 -0,5815 
9 1,9 0,28260 0,28192 -0,59684 0,2818 -0,5812 

10 2,0 0,22291 0,22311 -0,59369 0,2239 -0,5767 
  

From the obtained results, given in Table 3.2, it can be seen that the errors 
made during the determination of the solution grow towards the end of the table 
for the values of the first derivative, namely ( )n ny x′  and ( )n ny x′ . In particular, at 
the points x5 = 1,5 and x10 = 2,0: 

– relative error can be determined by comparing the values of the analytical 
solution and Euler method 

5 5

5

5

0,51596 0,51180100% 100% 0,81%
0,51596

x x
x

x

y y

y
ε

− −
= ⋅ = ⋅ =




,

10 10

10

10

0,22390 0,22291100% 100% 0,44%
0,22390

x x
x

x

y y

y
ε

− −
= ⋅ = ⋅ =




; 

– error of cut by the Runge method (see 3.26)  

( ) ( ) ( ) ( )
5 5 5

1/ 1 2 0,51596 0,51367 / 1 2 0,0046h p
x x xR y y − −= − − = − − = ;   

   ( ) ( ) ( ) ( )
10 10 10

1/ 1 2 0,22291 0,22311 / 1 2 0,0004h p
x x xR y y − −= − − = − − = − . 

The numerical results of the calculation of the solution of the differential 
equation (3.28), presented in Table 3.2, are conveniently displayed in a graph 
(Fig. 3.6). 

From the obtained results, presented in Table 3.2 and Figure 3.6, it is clear 
that the absolute and relative errors allowed during the determination of the 
solution increase in the middle of the considered interval x⋲[1,0; 2.0]. 
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y(x) – Euler’s method;  

             ( )y x  – is the exact solution 
Figure 3.6 – Diagram of the results of the numerical solution of the higher-order 

Cauchy ODE problem 
 

Consider the implementation of Euler’s method in the PYTHON 
programming language: 

 
%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import * 
from sympy import * 
# introducing an integration step 
h_0=float(input()) 
# entering the initial value of the integration argument (total integration 

interval)x0 
a=int(input()); x_mtr=np.array(a) 
# entering the initial value of the argument of the differential equation 

function y0 
y_0=float(input()); y_mtr=np.array(y_0) 
# entering the initial value of the argument of the differential equation 

function z0 
z_0=float(input()); z_mtr=np.array(z_0) 
# entering the final value of the total integration interval 
b=int(input()) 
# entering the permissible calculation error 
e_0=float(input()) 
# setting the functions of the differential equation system 
def f1(z): 
    return z 
def f2(x,y,z): 
    return (-z/x)-y 
# calculation of iterative formulas 
def eyler(a,b,y_0,z_0,h): 
    x=a; y=y_0; z=z_0 
    x_mas=[x]; y_mas=[y]; z_mas=[z] 
    x_mtr=np.array(a) 
    y_mtr=np.array(y_0) 
    z_mtr=np.array(z_0) 
    while x<b: 
        # iterative formula of the Euler method 
        y_buf=y 
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        z_buf=z 
        y=y+(h*f1(z_buf)) 
        z=z+(h*f2(x,y_buf,z_buf)) 
        x=x+h 
        x_mas.append(x) 
        y_mas.append(y) 
        z_mas.append(z) 
    return x_mas, y_mas, z_mas 
y_Bessel=[0.7652, 0.7196, 0.6711, 0.6201, 0.5669,  
                  0.5118, 0.4554, 0.3980, 0.34, 0.2818, 0.2239] 
# determination of the calculation error by the Runge method and adjustment 

of the integration step 
p=1; x=a; h=h_0 
while x<=b: 
    n=0 
    for k in range(0,len(eyler(a,b,y_0,z_0,h/2)[1]),2):         
        Rh_y=(eyler(a,b,y_0,z_0,h)[1][n]-eyler(a,b,y_0,z_0,h/2)[1][k])/(1-

(1/2**p)) 
        Rh_z=(eyler(a,b,y_0,z_0,h)[2][n]-eyler(a,b,y_0,z_0,h/2)[2][k])/(1-

(1/2**p)) 
        #print(abs(Rh_y)) 
        #print(abs(Rh_z)) 
        n=n+1 
        x=x+h 
        if abs(Rh_y)>e_0 or abs(Rh_z)>e_0: 
            h=h/2; x=a  
            break 
# we construct graphs of the solutions of the differential equation 
plt.figure(figsize=(7, 7)) 
plt.xlabel('x',fontsize=15, color='blue') 
plt.ylabel('y',fontsize=15, color='blue') 
plt.plot(eyler(a,b,y_0,z_0,h)[0], eyler(a,b,y_0,z_0,h)[1]) 
plt.plot(eyler(a,b,y_0,z_0,h_0)[0], y_Bessel) 
plt.legend(['Euler’s method',' Exact solution based on calculation 

tables'], loc=1) 
plt.grid(True) 
plt.xlim([1, 2]) 
plt.ylim([0.2, 0.8]) 

plt.show(). 

Runge-Kuttа method 

To construct a difference integration scheme for the numerical solution of the 
Cauchy problem of the ODE, it is necessary to use the expansion of equation 
(3.16) for i=1 in the Taylor series: 

 
2

( )
1( ) ( ) ( ) ( ) ( )

2! !

n
n

k k k k k
h hy x y x y x h y x y x

n+ ′ ′′= + + + +

.  (3.33)  

For the expression (3.33), K. Runge proposed (later V. Kutta developed this 
idea of the method) for the difference 1( ) ( ) ( )k ky h y x y x+∆ = −  to search for linear 
approximation combinations of the following form: 
 1 1 1 2 2( ) ( ) ( ) ( ) ( ) ( )k k r r rm ry h y x y x p K h p K h p K h+∆ = − = + + +

,  (3.34) 

where prm (m=1, 2, …, r) – some constant coefficients; r – the order of accuracy 
of the numerical solution of the differential equation, and Kr(h) are functions that 
are calculated according to the formulas: 
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1

2 1

3 2

4 3

( ) ( , );

( ) ( , );
2 2

( ) ( , );
2 2

( ) ( , ).

k k

k k

k k

k k

K h f x y
h hK h f x y K

h hK h f x y K

K h f x h y hK

=

 = + +


 = + +

 = + +

   (3.35) 

The equation (3.34) based on functions (3.35) is then rewritten in the 
following form: 

 ( )1 1 2 3 42 2
6k k
hy y K K K K+ = + + + + .  (3.36)  

The iterative equation (3.36) is the Runge-Kutta formula for the numerical 
solution of the ODE with a calculation error of the fourth order O(h4), which has 
also become the most widely used in practical calculations. 

Increasing the order of 
accuracy of the numerical 
one-step Runge-Kutta 
methods leads to a rapid 
increase in the complexity of 
calculations, since in one step 
it is necessary to calculate the 
value of the function f(x, y(x)) 
for different values of the 
arguments. Therefore, in 
practice, the calculation 
scheme of the fourth-order 
Runge-Kutta method (3.36) is 
mainly used. 

Components K1, K2, K3, 
K4 of the calculation scheme 
(3.36) of the Runge-Kutta 

method of the fourth order have a simple geometric interpretation (Fig. 3.7). Let 
the curve М0СМ1 represent the solution of the Cauchy problem (3.16) ODE. Point 
C of this curve lies on a line perpendicular to the Ox axis and bisects segment 
N0N1, B and G are points of intersection of the tangent drawn to the curve at point 
M0 with ordinates AC and N1M1. Then the number K1 with accuracy up to the 
factor h is the angular coefficient (α1) of the tangent at the point M0 to the integral 
curve М0СМ1, i.e. 1 ( , )k kK f x y= . 

Point B has coordinates x = xi+h/2 and y = yi+K1/2, respectively. The number 
K2, with accuracy up to the factor h, represents the angle coefficient (α2) of the 
tangent drawn to the integral curve at point B (BF – tangent segment). 

 

 
Figure 3.7 – Scheme depicting the geometric 

interpretation of the Runge-Kutta method 
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A line parallel to line BF is drawn through point M0. Point D has coordinates 
x = xi+h/2, y = yi+K1/2, and the value K3, accurate up to the factor h, represents 
the angle coefficient (α3) of the tangent drawn to the integral curve at point D 
(DR1 is the segment of this tangent). Then, a straight line DR1 is drawn through 
point M0, intersecting the extension of M1N1 at point R2(xi+h, yi+K3). As a result, 
the angular coefficient (α4) of the tangent drawn to the integral curve at point R2 
is represented by the value K4, accurate up to the factor h. 

The Runge-Kutta algorithm with automatic step selection is shown in Figure 
3.8. 

To estimate the total error of the numerical solution of the Cauchy problem 
for the ODE by the Runge-Kutta method, and to choose the integration step at 
each iterative step of the calculation, the Collatz method was proposed. Namely, 

if in the process of calculations the value of 2 3

1 2

K KR
K K

−
=

−
 exceeds a few 

hundredths, then the step must be reduced (see Fig. 3.8). 
Example 3.3. To solve the fourth-order Cauchy problem for the first-order 

ODE using the fourth-order Runge-Kutta numerical method: 

 
dy y x
dx

= + ;  x⋲[0; 1,0],   (3.37) 

which satisfies the initial conditions for x0 = 0 and y0 = 1,0. 
 

Solution: 

To solve this problem, the segment [0; 1,0] can be divided into ten parts by 
the points x0 = 0; 0,1; 0,2; …, 1,0. Accordingly, h = 0,1. The values of y1, y2, …, 
yn will be determined by the fourth-order Runge-Kutta method using formula 
(3.36). Then: 

( )

(0) (0)
1 0 0 1

(0) (0) (0)
2 0 1 0 2

(0) (0) (0)
3 0 0 2 3

(0) (0)
4 0 0 3

(0) (0) (0) (0)
1 0 1 2 3 4

; 1 0 1,0;
0,1 0,1; 1,0 1,0 0 1,10000;

2 2 2 2
0,1 0,1; 0 1,0 1,1 1

2 2 2 2
;

2 2 ;
6

K y x K
h hK y K x K

h hK x y K K

K x h y hK
hy y K K K K

 = + = + =

 = + + + = + + + =

 = + + + ⇒ = + + + =

 = + + +

 = + + + +


(0)
4

1

,10500;

0 0,1 1,0 0,1 1,105 1,21050;
1 2 1,10,11 1,11034;

2 1,105 1,21056

K

y









 = + + + ⋅ =


+ ⋅ +  = + =  + ⋅ + 

 



113 

 
 

Figure 3.8 – Scheme of the algorithm for the fourth-order Runge-Kutta method 
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( )

(1)
1 1 1

(1) (1)
2 1 1 1

(1) (1)
3 1 1 2

(1) (1)
4 1 1 3

(1) (1) (1) (1)
2 1 1 2 3 4

;

;
2 2

;
2 2

;

2 2 ;
6

K y x
h hK y K x

h hK x y K

K x h y hK
hy y K K K K

 = +

 = + + +

 = + + +

 = + + +

 = + + + +


(1)
1

(1)
2

(1)
3

(1)
4

2

1,11034 0,1 1,2100;
0,1 0,11,11034 1,210 0,1 1,3210;
2 2

0,1 0,10,1 1,11034 1,321 1,3270;
2 2

0,1 0,1 1,11034 0,1 1,327 1,4430;
1,210 2 1,3210,11,11034 1,2428

2 1,327 1,4436

K

K

K

K

y

= + =

= + + + =

= + + + =

= + + + ⋅ =

+ ⋅ + 
= + = + ⋅ + 

;













 …………………………………………………… . 

Also, for a comparative analysis of the accuracy of the fourth-order Runge-
Kutta solution, an analytical solution of the ODE was obtained, namely: 

2 1xy e x= − − . (3.38) 

In the process of solving, Table 3.3 of the calculation results was compiled. 
From the obtained results, given in Table 3.3, a high degree of accuracy in 

determining the solution can be seen, particularly at the points x5 = 0,5 and 
x10 = 1,0: 

– relative error by comparing the values of the analytical solution and the
Runge-Kutta method of the fourth order 

     5 5

5

5

41,79744 1,79743100% 100% 5,56 10 %
1,79744

x x
x

x

y y

y
−

− −
∆ = ⋅ = ⋅ = ⋅





, 

        10 10

10

10

43,43656 3,43655100% 100% 2,90 10 %
3,43656

x x
x

x

y y

y
−

− −
∆ = ⋅ = ⋅ = ⋅





; 

– the value of the error indicator according to the Collatz's method does 
not exceed a few hundredths 
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5 5

5 5 5

2 3

1 2

2,1328240 2,140283
1,98

0
36422 2,1

,0
2

05
3 824

x x

x x x
K KR
K K

− −
= = =

− −
; 

10 10

10 10 10

2 3

1 2

4,1651520 4,177450
3,9191925

0,005
4,165152

x x

x x x
K KR
K K

− −
= = =

− −
. 

It is also possible to note the relatively high accuracy of the fourth-order 
Runge-Kutta method compared to the conventional and refined Euler’s methods 
when solving the Cauchy ODE problem. 

 
Table 3.3 – Calculation results for the solution of the differential equation 

n xn ( )
1

nK  ( )
2

nK  ( )
3

nK  ( )
4

nK  yn(xn) ( )n ny x  

0 0,0 0,0000000 0,000000 0,000000 0,000000 1,00000 1,00000 
1 0,1 1,0000000 1,100000 1,105000 1,210500 1,11034 1,11034 
2 0,2 1,2100000 1,321000 1,327000 1,443000 1,24280 1,24281 
3 0,3 1,4428000 1,564940 1,571047 1,699905 1,39971 1,39972 
4 0,4 1,6997113 1,834697 1,841446 1,983856 1,58364 1,58365 
5 0,5 1,9836422 2,132824 2,140283 2,297671 1,79743 1,79744 
6 0,6 2,2974343 2,462306 2,470550 2,644489 2,04423 2,04424 
7 0,7 2,6442283 2,826440 2,835550 3,027783 2,32750 2,32751 
8 0,8 3,0274948 3,228870 3,238938 3,451389 2,65107 2,65108 
9 0,9 3,4510698 3,673623 3,684751 3,919545 3,01919 3,01921 
10 1,0 3,9191925 4,165152 4,177450 4,436937 3,43655 3,43656 

 
Consider the implementation of the Runge-Kutta method in the PYTHON 

programming language: 
 

%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import * 
from sympy import * 
# entering the integration step 
h=float(input()) 
# entering the initial value of the integration argument (total integration 

interval) 
a=int(input()); x_mtr=np.array(a) 
# inputting the initial value of the argument of the function of the 

differential equation 
y_0=int(input()); y_mtr=np.array(y_0) 
# entering the final value of the total integration interval 
b=int(input()) 
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# Introduction to the permissible error of calculation according to the Kolatz 
method 

e_0=float(input()) 
# setting the function of the differential equation 
def f(x,y): 
  return x+y 

# calculation of iterative formulas 
x_mas=[a]; y_mas=[y_0] 
x_mtr=np.array(a) 
x=a; y=y_0 
while x<b: 

 # iterative formula of the Runge-Kutta method 
 K1=f(x,y); K2=f(x+(h/2),y+(h/2*K1)) 
 K3=f(x+(h/2),y+(h/2*K2)) 
 K4=f(x+(h/2),y+(h*K3))  
 y=y+(h/6*(K1+(2*K2)+(2*K3)+K4)) 
 x=x+h 
 x_mas.append(x) 
 y_mas.append(y) 
 x_mtr=np.append(x_mtr, x) 

# determination of the calculation error by the Collatz method and adjustment 
of the integration step 
 if abs(K2-K3)/abs(K1-K2)>=e_0: 

 h=h/2; x=a; del x_mas; del x_mtr;  del y_mas 
  x_mas=[a]; x_mtr=np.array(a); y_mas=[y_0]; y=y_0 

# we construct graphs of the solutions of the differential equation 
plt.figure(figsize=(7, 7)) 
plt.xlabel('x',fontsize=15, color='blue') 
plt.ylabel('y',fontsize=15, color='blue') 
plt.plot(x_mas, y_mas) 
plt.plot(x_mtr, (2*(e**x_mtr))-x_mtr-1) 
plt.legend(['Runge-Kutta method','f(x)=2*exp(x)-x-1'],loc=1) 
plt.grid(True) 
plt.xlim([0, 1]) 
plt.ylim([1, 4]) 
plt.show(). 

All Runge-Kutta methods are generalized to ODE systems. Let a system of 
differential equations be given: 

( , )dy f x y
dx

= ; [ ; ]x a b∈ ,  (3.39) 

with initial conditions – 0( )y a y= , де ( )1 2, , , T
ny y y y=  ; ( )1 2, , , T

nf f f f=  ;  

( )0 10 20 0, , , T
ny y y y=  . 

The value h > 0 is chosen, and a uniform grid is constructed: 

; 0, ;n n n
b ax x a nh n N N

h
ω − = = + = = 

 
. 

The task is to determine the value of the approximate solution ( )n ny y x=  
( 1,n N= ) according to formulas 1n n ny y y+ = + ∆  ( 1, 1n N= − ), where ny∆  is 
calculated, for example, according to the following formula: 
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h hK f x y K

h hK f x y K

K f x h y hK

n N

+
 = + + + +


=

  = + +   
  = + +  

 
 = + +
 = −

   (3.40) 

So, knowing 0y , 1y  is calculated using formulas (3.40). Taking ( )1 1,x y  as the 
initial data and repeating the same process, 2y  is determined, etc. Similarly, any 
computational scheme of the Runge-Kutta method for one equation is transferred 
to a system of equations of the form (3.39). Example 3.4 examines the application 
of numerical Runge-Kutta methods for higher-order ODE, which also additionally 
allows determining the features of the numerical solution of ODE systems. 

To estimate the total error of the numerical solution of the Cauchy problem 
for ODE systems, the Runge method can be used based on equation (3.26). This 
equation compares the results of calculating the values ny  and ny  at the point xn 
with different steps nh  and nh , respectively: 

 ( ) ( )/ 1 2h p
n n nR y y −= − − ,   (3.41)  

where p=4 – the order of approximation of the difference scheme used by the 
fourth-order Runge-Kutta method. 

The algorithm of the Runge-Kutta method for solving the ODE systems with 
calculation error determination and automatic step selection is presented in Figure 
3.9. 

 
Example 3.4. Use the Runge-Kutta method to obtain a numerical solution to 

the equation of oscillations of a pendulum in a medium that creates resistance to 
movement: 

 
2

2 0,2 10sin 0d d
dt dt
θ θ θ+ + = ;    t⋲[0; 1,0]  (3.42) 

under the initial conditions θ(0) = 0,3; (0) 0d
dt
θ

=  and cutoff errors Rh = 0,001. 

In equation (3.42), θ(t) is a function of the pendulum deflection angle, which 
depends on time t. 
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Figure 3.9 – Scheme of the fourth-order Runge-Kutta algorithm for ODE systems 
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Solution: 

To solve this problem, the segment [0; 1,0] can be divided into ten parts by 
the points x0 = 0; 0,1; 0,2; …, 1,0. Therefore, h=0.1. To solve the problem, 

substitution dz
dt
θ

=  is introduced. Then equation (3.42) with the initial conditions 

can be presented in the form of the ODE system: 

 

;

0,2 10sin ;

(0) 0,3; (0) 0.

d z
dt
dz z
dt

z

θ

θ

θ

 =

 = − −


= =


  (3.43) 

Also, for a comparative analysis of the accuracy of the solution obtained by 
using the fourth-order Runge-Kutta method, an analytical solution of the ODE 
type (3.42) was obtained under the assumption that θ→0, namely: 

 [ ]0,1( ) 0,3 cos(3,1607 ) 0,03164 sin(3,1607 )tt e t tθ −= ⋅ + ⋅ ⋅ .  (3.44) 

The values of θ1, θ2, …, θn and z1, z2, …, zn will be determined by the Runge-
Kutta method of the fourth order according to formula (3.40), namely: 

 

(0)
1 0 0 0 0 0

(0) (0) (0) (0) (0)
2 0 1 0 1 0 0 1 0 1

(0) (0) (0) (0) (0)
3 0 2 0 2 0 0 2 0 2

( , , ) 0,2 10sin ;

( , , ) 0,2 10sin ;
2 2 2 2 2

( , , ) 0,2 10sin
2 2 2 2 2

z

z z z

z z z

K f z t z
h h h h hK f K z K t z K K

h h h h hK f K z K t z K K

θ θ

θ θ

θ θ

θ θ

θ θ

= = − −

   = + + + = − + − +   
   
  = + + + = − + − +  
  

( ) ( )
( )

(0) (0) (0) (0) (0)
4 0 3 0 3 0 0 3 0 3

(0) (0) (0) (0)
1 0 1 2 3 4

;

( , , ) 0,2 10sin ;

2 2 ;
6

z z z

z z z z

K f hK z hK t h z hK hK

hz z K K K K

θ θθ θ






 
 


 = + + + = − + − +



= + + + +

 



120 

[ ]

(0)
1

(0)
2

(0)
3

(0)
4

0,2 0 10 sin 0,3 2,95520;
0,1 0,10,2 0 ( 2,9552) 10 sin 0,3 0 2,92565;
2 2

0,1 0,10,2 0 ( 2,92565) 10 sin 0,3 ( 0,14776) 2,85529;
2 2

0,2 0 0,1( 2,85529)

z

z

z

z

K

K

K

K

= − ⋅ − ⋅ = −

   = − ⋅ + − − ⋅ + = −      
   = − ⋅ + − − ⋅ + − = −      

= − ⋅ + − [ ]

( )1

10 sin 0,3 0,1( 0,28553) 2,75804;
0,10 2,95520 2 2,92565 2 2,85529 2,75804 0,28792;
6

z









 − ⋅ + − =

 = − + ⋅ + ⋅ + = −


−



 

(0)
1 0 0 0 0

(0) (0) (0) (0)
2 0 1 0 1 0 0 1

(0) (0) (0) (0)
3 0 2 0 2 0 0 2

(0) (0) (0) (0)
4 0 2 0 2 0 0 3

(0)
1 0 1

( , , ) ;

, , ;
2 2 2 2

, , ;
2 2 2 2

, , ;

2
6

z z

z z

z z

K z t z
h h h hK K z K t z K

h h h hK K z K t z K

K hK z hK t h z hK

h K

θ

θ θ

θ θ

θ θ

θ

ψ θ

ψ θ

ψ θ

ψ θ

θ θ

= =

 = + + + = +  
 = + + + = +  
 = + + + = + 

= + +( )(0) (0) (0)
2 3 42 ;K K Kθ θ θ













+ +

 

                

( )

(0)
1 0

(0)
2

(0)
3

(0)
4

1

0,00000;
0,10 ( 2,95520) 0,14776;
2

0,10 ( 2,92565 0,14628;
2

0 0,1 ( 2,85529) 0,28553;
0,10,3 0 2 0,14776 2 0,14628 0,28553 0,2 ;

)

8554
6

K z

K

K

K

θ

θ

θ

θ

θ

 = =

 = + − = −

 = + − = −

 = + ⋅ − = −

 = − + ⋅ + ⋅ + =


 

                  ………………………………………………………………… . 
 
In the process of solving, Table 3.4 was compiled with the results of the 

calculation using the fourth-order Runge-Kutta numerical method and the 
analytical solution (3.43), which are graphically interpreted in Figure 3.10. 
Additionally, to determine the calculation error using the Runge method (3.41), 
the value ( )n nxθ  was determined with a step size of h/2 = 0,05. 

Table 3.4 shows that the value of the angle of deviation θn(tn) of the pendulum 
in a resisting medium decreases over time, which corresponds to the physics of 
the analyzed process. 
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Table 3.4 – Calculation results for the solution of the differential equation 

n tn, sec θn(tn), grad ( )n nxθ , grad ( )n
d t
dt
θ , grad

sec
 ( )ntθ , grad 

0 0,0 0,30000 0,30000 0,00000 0,30000 
1 0,1 0,28544 0,28544 – 0,28792 0,28522 
2 0,2 0,24352 0,24351 – 0,54295 0,24274 
3 0,3 0,17876 0,17874 – 0,74113 0,17726 
4 0,4 0,09783 0,09780 – 0,86376 0,09567 
5 0,5 0,00892 0,00889 – 0,89960 0,00630 
6 0,6 – 0,07910 – 0,07914 – 0,84648 – 0,08191 
7 0,7 – 0,15763 – 0,15767 – 0,71161 – 0,16034 
8 0,8 – 0,21919 – 0,21923 – 0,51039 – 0,22147 
9 0,9 – 0,25819 – 0,25821 – 0,26420 – 0,25964 
10 1,0 – 0,27135 – 0,27136 0,00225 – 0,27157 

 

 
 

Figure 3.10 – Diagram of numerical solution results for higher-order Cauchy 
problems of ODE using the fourth-order Runge-Kutta method 

 
 

The obtained results, given in Table 3.4, show a high degree of accuracy in 
determining the solution, particularly at the points t3 = 0,3 sec і t10 = 1,0 sec: 

– relative error by comparing the values of the analytical solution and the 
Runge-Kutta method of the fourth order 
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3 3

3

3

0,17876 0,17726100% 100% 0,850 %
0,17726

t t
t

t

θ θ
ε

θ

− −
= ⋅ = ⋅ =




, 

         10 10

10
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0,27157 ( 0,27135)100% 100% 0,081%
0,27157

t t
t

t

θ θ
ε

θ

− − − −
= ⋅ = ⋅ =

−





; 

– error in the Runge method’s approximation (see 3.41)  

      ( ) ( ) ( ) ( )
3 3 3

4 5/ 1 2 0,17876 0,17874 / 1 2 2,13 10h p
x x xR θ θ − − −= − − = − − = ⋅ ,          

  ( ) ( ) ( ) ( )
10 10 10

4 5/ 1 2 0,27135 ( 0,27136) / 1 2 1,07 10h p
x x xR θ θ − − −= − − = − − − − = ⋅ . 

 
Consider the implementation of the fourth-order Runge-Kutta method for 

systems of differential equations in the PYTHON programming language. 
 

%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import * 
from sympy import * 
# entering the integration step 
h_0=float(input()) 
# entering the initial value of the integration argument (total integration 

interval) t0 
a=int(input()); t_mtr=np.array(a) 
#entering the initial value of the argument of the function of the 

differential equation q0 
q_0=float(input()); q_mtr=np.array(q_0) 
# entering the initial value of the argument of the differential equation 

function z0 
z_0=float(input()); z_mtr=np.array(z_0) 
#entering the final value of the total integration interval 
b=int(input()) 
# entering the permissible calculation error 
e_0=float(input()) 
# setting the functions of the differential equation system 
def f1(z): 
    return z 
def f2(q,z): 
    return (-0.2*z)-(10*math.sin(q)) 
# calculation of iterative formulas 
def runge(a,b,q_0,z_0,h_0): 
    t=a; q=q_0; z=z_0 
    t_mas=[t]; q_mas=[q]; z_mas=[z] 
    t_mtr=np.array(t) 
    q_mtr=np.array(q_0) 
    z_mtr=np.array(z_0) 
    h=h_0 
    while t<=b: 
        # iterative formulas of the Runge-Kutta method 
        K1_Z=f2(q,z); K1_Q=f1(z) 
        K2_Z=f2(q+(h/2*K1_Q),z+(h/2*K1_Z)); K2_Q=f1(z+(h/2*K1_Z))   
        K3_Z=f2(q+(h/2*K2_Q),z+(h/2*K2_Z)); K3_Q=f1(z+(h/2*K2_Z)) 
        K4_Z=f2(q+(h*K3_Q),z+(h*K3_Z)); K4_Q=f1(z+(h*K3_Z)) 
        z=z+(h/6*(K1_Z+(2*K2_Z)+(2*K3_Z)+K4_Z)) 
        q=q+(h/6*(K1_Q+(2*K2_Q)+(2*K3_Q)+K4_Q)) 
        t=t+h 
        q_mas.append(q) 
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 z_mas.append(z) 
 t_mas.append(t) 
 t_mtr=np.append(t_mtr, t) 

  return t_mas, q_mas, z_mas, t_mtr 
# determination of the calculation error by the Runge method and adjustment 

of the integration step 
p=4; x=a 
while x<=b: 

 n=0 
 for k in range(0,len(runge(a,b,q_0,z_0,h_0/2)[1]),2): 

  Rh_q=(runge(a,b,q_0,z_0,h_0)[1][n]-
runge(a,b,q_0,z_0,h_0/2)[1][k])/(1-(1/2**p)) 
  Rh_z=(runge(a,b,q_0,z_0,h_0)[2][n]-

runge(a,b,q_0,z_0,h_0/2)[2][k])/(1-(1/2**p)) 
 #print(Rh_q) 
 #print(Rh_z) 
 n=n+1 
 x=x+h_0 
 if abs(Rh_q>e_0) and abs(Rh_z>e_0): 

 h_0=h_0/2; x=a 
  break 

# we construct graphs of the solutions of the differential equation 
plt.figure(figsize=(7, 7)) 
plt.xlabel('t',fontsize=15, color='blue') 
plt.ylabel('psi, dPsi(t)/dt',fontsize=15, color='blue') 
plt.plot(runge(a,b,q_0,z_0,h_0)[0], runge(a,b,q_0,z_0,h_0)[1]) 
plt.plot(runge(a,b,q_0,z_0,h_0)[0], runge(a,b,q_0,z_0,h_0)[2]) 
plt.plot(runge(a,b,q_0,z_0,h_0)[3], 0.3*(e**(-

0.1*runge(a,b,q_0,z_0,h_0)[3]))* 
 (np.cos(3.1607*runge(a,b,q_0,z_0,h_0)[3])+ 
  (0.03164*np.sin(3.1607*runge(a,b,q_0,z_0,h_0)[3])))) 

plt.legend(['The Runge-Kutta method for Psi(t)',' The Runge-Kutta method 
for dPsi(t)/dt',' The exact solution], loc=1) 

plt.grid(True) 
plt.xlim([0, 1]) 
plt.ylim([-0.95, 0.45]) 
plt.show(). 

It should be noted in Table 3.4 that at other time intervals tn, there is a 
significant discrepancy between the results of numerical and analytical 
calculations. This discrepancy is caused by obtaining the analytical calculation 
(3.43) based on the assumption that θ→0. 

The above-mentioned numerical one-step methods for solving the Cauchy 
problem for ODE can be summarized by the following characteristics. 

1) to obtain information at a new point, data from only one previous point is
required; 

2) all one-step methods are based on the decomposition of the function into
a Taylor series, in which the terms containing the step h to the power of n inclusive 
are stored. An integer is called the order of the method, and the step error has the 
order of т+1; 

3) one-step methods do not require the calculation of derivatives because
only the function is calculated, but its value at several intermediate points may be 
required; 

4) there is a possibility of changing the size of the calculation step.
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Adams’ method 

In one-step methods for solving the Cauchy problem for a single ODE: 

  0 0 0( , ); ; ( )du f x u x x u x u
dx

= > = ,  (3.45) 

which is considered correctly set, the value of un+1 depends only on the 
information about the solution at the previous grid point xn (n = 0, 1, 2, …). 

To increase accuracy, information about the solution at several previous grid 
points xn, xn-1, xn-2, … can be used. Moreover, it is expedient to use the 
information with a forward run beyond the point xn+1. 

In multi-step, as well as single-step, methods, it is advisable to use a constant 
step size in the calculation grid: 

  ; 0, ;h m m
b ax x a mh m N N

h
ω − = = + = = 

 
.  (3.46) 

The grid functions yn = y(xn), fn = f(xn, yn), un = u(xn) defined on grid hω  (3.46) 
are entered. A linear n-step difference method is called a system of difference 
equations: 

      0 1 1 2 2
0 1 1

n n n m n m
n n m n m

a y a y a y a y b f b f b f
h

− − −
− −

+ + + +
= + + +



 ,      (3.47) 

or in the compact form 
0 0

m m
k n k

k n k
k k

a y b f
h

−
−

= =

=∑ ∑ , which is defined for n = m, (m+1), 

…, where ak, bk are numerical coefficients that do not depend on n (k = 0, 1, …, 
m), and 0 0a ≠ . Equation (3.47) is a recurrence relation for the determination of 
the new value yn = y(xn) using the previously found values yn-1, yn-2, …, yn-m. 

A partial case of multi-step methods (3.47) is the presence of the condition 
when the derivative ( )u x′  is approximated only by two points xn and xn–1, that 
is, the coefficients ak acquire the following values: a0 = –a1 = 1; ak = 0 (k = 2, 
3, …, m). In this case, the Adams’ method is used, which generally has the 
form: 

 1

0

m
n n

k n k
k

y y b f
h

−
−

=

−
=∑ .  (3.48) 

for b0 = 0, the methods are called explicit, and the order of approximation is 
equal to m. For b0 ≠ 0, the methods are called implicit, and the order of 
approximation is equal to m+1. 

For explicit m-step Adams’ methods, the coefficients of the highest-order 
method of approximation of equations (3.48) are determined for each value of m. 
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In particular, for m=4, an explicit method of the fourth order of approximation 
will be obtained:  

  ( )1
1 2 3 4

1 55 59 37 9
24

n n
n n n n

y y f f f f
h

−
− − − −

−
= − + −  (3.49) 

with a local error 5 (5)251 ( )
720

h u xρ = . 

Formula (3.49) is known as the fourth-order Adams-Bashforth method. The 
coefficients of the highest order approximation of equation (3.48) in this method 
can be obtained by using information from an even larger number of previous 
points, which also allows for obtaining the high-order Adams-Bashforth method. 
However, the accuracy of calculations increases non-linearly with increasing 
order (the greater the distance between the previous point and the current one, the 
weaker its effect on the accuracy). 

Multi-step methods give rise to the same problem as single-step methods. 
Since multi-step methods use information about previously obtained points, 
unlike single-step methods, they do not have the property of being «self-
starting». Therefore, before applying the multi-step method, it is necessary to 
calculate the raw data using single-step methods, such as the Euler or Runge-
Kutta methods. 

In implicit m-step Adams’ methods, for each value of m, the coefficients of 
the method of the highest order of approximation of equations (3.48) are 
determined, which are equal to (m+1). In this case, the next class of implicit 
computing methods arises, which are called Adams-Moulton methods of the 
second, third, and fourth orders, respectively. In particular, for m=3, the fourth-
order approximation method O(h4) will be obtained. 

  ( )1
1 2 3

1 9 19 5
24

n n
n n n n

y y f f f f
h

−
− − −

−
= + − +    (3.50) 

with a local error 5 (5)19 ( )
720

h u xρ = − . 

In the formula (3.50), the value of fn is unknown, since for the calculation 
f(xn, yn) = fn, three values of yn that are unknown must be used. Accordingly, the 
Adams-Moulton methods determine the value of yn implicitly. On the other hand, 
the Adams-Bashforth methods are called explicit because the process of 
determining the value of yn does not require solving any equations. Therefore, in 
practice, a common explicit and implicit formula is used when solving the ODE, 
which leads to the application of the «prediction and correction» method (a 
combination of fourth-order Adams’ methods): 
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( )

( )
( )

*
1 1 2 3 4

*
1 1 2 3

55 59 37 9 ;
24

, ;

9 19 5 .
24

n n n n n n

n n n

n n n n n n

hy y f f f f

f f x y

hy y f f f f

− − − − −

∗ ∗

− − − −

 = + − + −
 =

 = + + − +


 (3.51) 

In general, the method of «prediction and correction» is clear. First, the 
Adams-Bashforth formula (3.49) calculates the value of *

ny  in (3.51), which is a 
«prediction» for yn. The value of *

ny  is then used to calculate the approximate 
value of *

nf  in (3.51), which is also used in the Adams-Moulton formula (3.50). 
Thus, the Adams-Moulton formula «corrects» the approximation defined by the 
Adams-Bashforth formula (3.49). Since the series intercept errors for the Adams-

Bashforth prediction formulas *
ny  (3.49) are 5 (5)251 ( )

720
h u xρ = , and for the 

Adams-Moulton adjustment yn (3.50) are 5 (5)19 ( )
720

h u xρ = − , this allows further 

reduction of the calculation error by 3%. 
The correction equations are more accurate than the forecasting formulas, 

allowing you to generally increase the accuracy of the calculation of the ODE, 
despite the occurrence of additional calculations. Additionally, to achieve the 
highest calculation accuracy, the correction process in the «prediction and 
correction» methods can be repeated several times at the same iteration step to 
obtain a value with a certain specified accuracy using the absolute error 

* ( )i
n ny y− ≤ ∆ , where ( )i

ny  represents the current value of the solution by the 
Adams-Moulton method (3.50) at a certain iterative step of the general method of 
«prediction and correction» methods. 

The algorithm of the Adams method is presented in Figure 3.11. 
Adams’ method («prediction and correction») has been successfully 

generalized to the Cauchy problem of ODE systems. Let a system of differential 
equations be given: 

( , )dy f x y
dx

= ; [ ; ]x a b∈ ,  (3.52) 

with initial conditions – 0( )y a y= , де ( )1 2, , , T
ny y y y=  , ( )1 2, , , T

nf f f f=  ,  
( )0 10 20 0, , , T

ny y y y=  . 
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Figure 3.11 – Scheme of the Adams’ method algorithm  

 
 
The value h > 0 is chosen and a uniform grid is constructed: 

; 0, ;n n n
b ax x a nh n N N

h
ω − = = + = = 

 
. 

The problem is to determine the value of the approximate solution ( )n ny y x=  
( 1,n N= ) using the following formulas (generalization of formula (3.51) for the 
case of differential equations): 
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( )
( )

( )

*
1 1 2 3 4

*
1 1 2 3

55 59 37 9 ;
24

, ;

9 19 5 ( 1, 1).
24

m m m m mm

m m m

m m m m m m

hy y f f f f

f f x y

hy y f f f f m N

− − − − −

∗ ∗

− − − −

 = + − + −
 =

 = + + − + = −

  (3.53) 

So, having obtained values 0y , 1y , 2y  3y  and 0f , 1f , 2f , 3f  according to 
formulas (3.40), values 4y  and 4f  are calculated according to formulas (3.53). 
Taking ( )4 4,x y  and ( )4 4,f x y  as inputs and repeating the same process, 5y  is 
determined, and so on. 

The algorithm of the Adams’ method for solving the ODE systems is 
presented in Figure 3.12. 

 
Example 3.5. To solve the Cauchy problem for the first-order ODE using the 

numerical method of «prediction and correction» based on Adams’ iterative 
formulas: 

  
dy y x
dx

= + ;  x⋲[0; 1,0],   (3.54) 

which satisfies the initial condition for x0=0, y0=1,0 and the absolute error at the 
adjustment stage Δ=10-4. 

Solution: 
To solve this problem, the segment [0; 1,0] can be divided into ten parts by 

points x0=0; 0,1; 0,2; …, 1,0. Accordingly, h=0,1. To begin with, the value of  
0y , 1y , 2y , 3y  is determined by the Runge-Kutta method of the fourth order in 

example 3.3 (see Table 3.3). Also, for comparison, the value of 1y , 2y , 3y , 4y  of 
the analytical solution of the ODE (3.54) was obtained and summarized in Table 
3.5. The application of the numerical method of «prediction and correction» 
begins with obtaining the solutions of the ODE by the explicit Adams-Bashforth 
method (3.49) of the difference scheme (3.51). To begin with, the «initial 
segment» from Table 3.5 is selected, namely: x0=0,0; x1=0,1; x2=0,2; x3=0,3; 

0y =1,0; 1y =1,11034; 2y =1,24280; 3y =1,39971. 
Then the «prediction» calculation is performed (using the explicit Adams-

Bashforth method (3.49)): 

    
( )

( )
*

4 3 3 3 3 2 2 1 1 0 04

*
4 4 4 44 4

( ) ( ) 55 ( , ) 59 ( , ) 37 ( , ) 9 ( , ) ;
24

, ( );

hy x y x f x y f x y f x y f x y

f f x y x y x
∗

∗

 = + − + −

 = = +

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Figure 3.12 – Scheme of the Adams’ method algorithm for ODE systems 

 
 
 

    

( )

*
44

4 4 4
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1,1103
55(0,3 1,39971) 59(0,2 )0,1( ) 1,39971 ;

37(0,1 ) 9(0 1,0)24

, 0,4 ;

4

1,58365 1,98363

y x

f f x y∗ ∗

 + − + + 
= + =   + + − + 

 = == +
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* *
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*
5 5 5 5 55

( ) ( ) 55 ( , ) 59 ( , ) 37 ( , ) 9 ( , ) ;
24

, ( );

hy x y x f x y f x y f x y f x y

f f x y x y x∗ ∗

 = + − + −

 = = +
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( )

*
55

5 5 5

1,58365 1,39972
1,58364 1,79741

1,2
55(0,4 ) 59(0,3 )0,1( ) ;

37(0,2 ) 9(0,1 1,11034280

1,797

4)24

, 0, 41 2,297 15 4 ;

y x

f f x y∗ ∗

 + − + + 
= + =   + + − + 

= = = +

 

……………………………………………………………………………. . 

To correct the results obtained by the explicit Adams-Bashforth method 
(3.49), the implicit Adams-Moulton method (3.50) of the difference scheme 
(3.51) is used. To begin with, the «initial segment» from table 3.5 is chosen, 
namely: x0=0,0; x1=0,1; x2=0,2; x3=0,3; 0y =1,0; 1y =1,11034; 

2y =1,24280; 3y =1,39971. Then the «correction» calculation is performed 
(implicit Adams-Moulton method (3.50)): 

 

( )
( )

* *
4 4 3 3 4 4 3 3 2 2 2 2( ) ( ) 9 ( , ) 19 ( , ) 5 ( , ) ( , )

24
0,11,39971 9 1,9836 1,3 19 5 1,11034 1,58364;
2

39972 1,24280
4

hy x y x f x y f x y f x y f x y= + + − + =

= + ⋅ + ⋅ − ⋅ + =
 

( )
( )

* * *
5 5 4 4 5 5 4 4 3 3 2 2( ) ( ) 9 ( , ) 19 ( , ) 5 ( , ) ( , )

24
0,11,39971 9 2,29741 19 5 1,24280 1,79743;
2

1,9836
4

3 1,39972

hy x y x f x y f x y f x y f x y= + + − + =

= + ⋅ + ⋅ − ⋅ + =
 

    ………………………………………………………………………………. . 

Also, to achieve the highest calculation accuracy, the correction process 
(implicit Adams–Moulton method (3.50)) can be repeated several times at the 
same iteration step to obtain a value with a certain specified accuracy Δ (absolute 
error), which was implemented in the PYTHON programming language (see Fig. 
3.12): 

 
%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import * 
from sympy import * 
# entering the integration step 
h=float(input()) 
# entering the initial value of the integration argument (total integration 

interval) 
a=int(input()); x_mtr=np.array(a) 
# entering the initial value of the argument of the differential equation 

function 



131 

y_0=int(input()); y_mtr=np.array(y_0) 
# entering the final value of the total integration interval 
b=int(input()) 
# entering the value of the calculation accuracy by the correction formula 

of the Adams method 
e=float(input()) 
# setting the function of the differential equation 
def f(x,y): 
    return x+y 
# determination of the first three values of the solution of the differential 

equation 
x=a; y=y_0 
x_mas=[x]; y_mas=[y] 
x_mtr=np.array(a) 
y_mtr=np.array(y_0) 
while x<3*h: 
    # iterative formula of the Runge-Kutta method 
    K1=f(x,y); K2=f(x+(h/2),y+(h/2*K1)) 
    K3=f(x+(h/2),y+(h/2*K2)) 
    K4=f(x+(h/2),y+(h*K3)) 
    y=y+(h/6*(K1+(2*K2)+(2*K3)+K4)) 
    x=x+h 
    x_mas.append(x) 
    y_mas.append(y) 
    x_mtr=np.append(x_mtr, x) 
i=4 
while x<=b-h: 
    # iterative prediction formula of the Adams method 
    y=y_mas[i-1]+(h/24*(55*f(x_mas[i-1],y_mas[i-1])-59*f(x_mas[i-

2],y_mas[i-2])+ 
37*f(x_mas[i-3],y_mas[i-3])-9*f(x_mas[i-4],y_mas[i-4]))) 

    x=x+h 
    f_tran=y 
    s_tran=y+1 
    # iterative correction formula of the Adams method 
    while abs(s_tran-f_tran)<=e: 
        s_tran=f_tran 
        f_tran=y_mas[i-1]+(h/24*(9*f(x,s_tran)+19*f(x_mas[i-1],y_mas[i-1])- 
                                 5*f(x_mas[i-2],y_mas[i-2])+f(x_mas[i-

3],y_mas[i-3]))) 
    i=i+1 
    x_mas.append(x) 
    y_mas.append(f_tran) 
    x_mtr=np.append(x_mtr, x) 
    x_mtr=np.append(x_mtr, x) 
# we construct graphs of the solutions of the differential equation 
plt.figure(figsize=(7, 7)) 
plt.xlabel('x',fontsize=15, color='blue') 
plt.ylabel('y',fontsize=15, color='blue') 
plt.plot(x_mas, y_mas) 
plt.plot(x_mtr, (2*(e**x_mtr))-x_mtr-1) 
plt.legend([' Adams method','f(x)=2*exp(x)-x-1'],loc=1) 
plt.grid(True) 
plt.xlim([0, 1]) 
plt.ylim([1, 4]) 
plt.show(). 

 
From the obtained results, given in Table 3.5, it is clear that a high degree of 

absolute and relative error is allowed in the process of determining the solution, 
particularly in points x5=0,5 і x10=1,0: 

– the relative error is obtained by comparing the values of the analytical 
solution and the Adams’ method 

55

5

5

41,79744 1,79743100% 100% 5,56 10 %
1,79744

xx
x

x

y y

y
ε −

− −
= ⋅ = ⋅ = ⋅




, 
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   1010

10

10

33,43656 3,43652100% 100% 1,16 10 %
3,43656

xx
x

x

y y

y
ε −

− −
= ⋅ = ⋅ = ⋅




; 

– absolute error by comparing the values of «prediction» *( )n ny x  (Adams-

Bashforth) and «adjustment» ( )n ny x  (Adams-Moulton) 

*
5 5 5

51,79743 1,79741 2,0 10
xx xy y −∆ = − = − = ⋅ , 

    *
10 10 10

53,43652 3,43644 8,0 10
xx xy y −∆ = − = − = ⋅ . 

 
Table 3.5 – Calculation results for the solution of the differential equation 

n xn ( )n ny x  ( )n ny x  *( )n ny x  ( )n ny x  
0 0,0 1,00000 1,00000 1,00000 1,00000 
1 0,1 1,11034 1,11034 1,11034 1,11034 
2 0,2 1,24280 1,24281 1,24280 1,24280 
3 0,3 1,39971 1,39972 1,39971 1,39971 
4 0,4 1,58364 1,58365 1,58363 1,58364 
5 0,5 1,79743 1,79744 1,79741 1,79743 
6 0,6 2,04423 2,04424 2,04410 2,04423 
7 0,7 2,32750 2,32751 2,32745 2,32749 
8 0,8 2,65107 2,65108 2,65100 2,65106 
9 0,9 3,01919 3,01921 3,01911 3,01918 
10 1,0 3,43655 3,43656 3,43644 3,43652 

 
Also, in the «prediction and correction» numerical method itself, it is possible 

to observe an increase in the accuracy of the calculation using the «correction» 
process (Adams-Moulton methods) based on the previously obtained results of 
the numerical solution of the ODE based on the «prediction» iterative equation 
(Adams-Bashforth method) problems of Cauchy ODE. 

Since the solution of the Cauchy problem using the «prediction and 
correction» method requires the initial values of the solution of the ODE system, 
the data from the solution obtained by applying the fourth-order Runge-Kutta 
method in Example 3.4 are necessary for the example. 

 
Example 3.6. To solve the problem of oscillations of a pendulum in an 

environment that creates resistance to movement, we will use the numerical 
method of «prediction and correction» based on Adams’ iterative formulas: 

 
2

2 0,2 10sin 0d d
dt dt
θ θ θ+ + = ; t⋲[0; 1,0],  (3.55) 
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under the initial conditions θ(0) = 0,3; (0) 0d
dt
θ

=  and with an absolute error at 

the adjustment stage Δ = 10-3, equation (2.60) represents θ(t) as a function of the 
pendulum deflection angle (grad) that varies with time t (sec). 
 

Solution: 
To solve this problem, the segment [0; 1,0] can be divided into ten parts by 

points x0=0; 0,1; 0,2; …, 1,0. Accordingly, h = 0,1. To solve the problem, a 

substitution dz
dt
θ

=  is introduced. Then equation (3.55) with the initial conditions 

can be written in the form of the ODE system: 

    

;

0,2 10sin ;

(0) 0,3; (0) 0.

d z
dt
dz z
dt

z

θ

θ

θ

 =

 = − −


= =


   (3.56) 

To begin with, the values 0θ , 1θ , 2θ , 3θ  and 0z , 1z , 2z , 3z  are determined by 
the Runge-Kutta method of the fourth order, as shown in example 3.4 and listed 
in Table 3.4. Additionally, for comparison, the value of 0θ , 1θ , 2θ , 3θ  from the 
analytical solution of ODE (3.43) was obtained and is given in Table 3.4. The 
application of the numerical method of «prediction and correction» starts with 
obtaining solutions of the ODE using explicit Adams-Bashforth methods of the 
difference scheme (3.53). Initially, the «initial segment» from Table 3.6 is 
selected, namely: t0=0; t1=0,1; t2=0,2; t3=0,3; 0θ =0,3; 1θ =0,28544; 2θ =0,24352; 

3θ =0,17876; 0z =0; 1z =-0,28792; 2z =-0,54295; 3z =-0,74113. After that, the 
«prediction» calculation is performed using the explicit Adams-Bashforth method 
of the difference scheme (3.53): 

( )

( )

( )
( )

*
4 4 3 3 3 3 3 2 2 2 1 1 1 0 0 0

*
4 4 3 3 3 3 3 2 2 2 1 1 1 0 0 0

* * *
4 4 4 4 4 4

* * *
4 4 4 4 4

( ) ( ) 55 ( , , ) 59 ( , , ) 37 ( , , ) 9 ( , , ) ;
24

( ) ( ) 55 ( , , ) 59 ( , , ) 37 ( , , ) 9 ( , , ) ;
24

, , ( );

, , 0,2 10sin(

ht t f t z f t z f t z f t z

hz t z t t z t z t z t z

f f t z z t

t z z

θ θ θ θ θ θ

ξ θ ξ θ ξ θ ξ θ

θ

ξ ξ θ

∗

∗

= + − + −

= + − + −

= =

= = − − *
4 );θ












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*
4 4

*
4 4

55 ( 0,74113) 59( )0,1( ) ;
37( ) 9 024
55 ( 0,2 ( ) 10sin( ))

59 ( 0,2 ( ) 10sin( ))0,1( ) 0,74113
37 ( 0,2 ( ) 10sin24

0,54295
0,17876 0,09801

0,28792

0,74113 0,17876
0,54295 0,24352
0,28792

t

z t

θ
−

−
− − + 

= + = + − ⋅ 
⋅ − ⋅ −− −

− ⋅ −
−

− ⋅ − +
= − +

+ ⋅ − ⋅ −

*
4 4 4

* *
4 4 4

0,862 ;
( ))

9 ( 0,2 0 10sin(0,3))

( ) ;

0,2 10sin( ) 0,2( ) 1

99
0,28544

0,86299

0,86299 0,0980sin( ) ;01 0,80589

f z t

zξ θ

∗

∗




  
  
   =  −
  − ⋅ − ⋅ − 


= =


= − − = − − =

−

−

− −
………………………………………………………………………………. . 

To correct the results obtained by the explicit Adams-Bashfort method, the 
(implicit) Adams-Moulton method of the difference scheme (3.53) is used. To 
begin with, the «initial segment» from Table 3.6 is chosen, namely: t0=0; t1=0,1; 
t2=0,2; t3=0,3; 0θ =0,3; 1θ =0,28544; 2θ =0,24352; 3θ =0,17876; 0z =0;  

1z =-0,28792; 2z =-0,54295; 3z =-0,74113. Then the «correction» (implicit 
Adams–Moulton method) of the difference scheme (3.53) is calculated: 

( )
( )

*
4 4 3 3 4 4 4 3 3 3 2 2 2 1 1 1

*
4 4 3 3 4 4 4 3 3 3 2 2 2 1 1 1

( ) ( ) 9 ( , , ) 19 ( , , ) 5 ( , , ) ( , , ) ;
24

( ) ( ) 9 ( , , ) 19 ( , , ) 5 ( , , ) ( , , ) ;
24

ht t f t z f t z f t z f t z

hz t z t t z t z t z t z

θ θ θ θ θ θ

ξ θ ξ θ ξ θ ξ θ

 = + + − +

 = + + − +


  

4 4

*
4 4

9 (0,86299) 19 ( 0,74113)0,1( ) 0,17876 ;
5 ( 0,54295) ( 0,28792)24
9 ( 0,80589)

19 ( 0,2 ( ) 10sin( ))0,1( ) 0,7411

0,097840

0,74113 0
3

5 ( 0,2 ( ) 1
,17876

0,5429 0sin( ))24
(

5 0
0

5
2

2
,

,243

t

z t

θ
⋅ + ⋅ − − 

= + = − ⋅ − + − 
⋅ − +

+ ⋅ − ⋅ − −
= − +

− ⋅ − ⋅ +
+ −

−
− −

0,86390

0,28792 0,28

;

( ) 10sin( ))544




  
  
   =  
  ⋅ −

−

− 

 

…………………………………………………………………………………. . 
Also, to achieve the highest calculation accuracy, the correction process 

(implicit Adams–Moulton method) of the difference scheme (3.53) can be 
repeated several times at the same iteration step to obtain a value with a certain 
specified accuracy Δ (absolute error), which was implemented in the 
programming language PYTHON (see Fig. 3.12): 

 
%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import * 
from sympy import * 
# entering the integration step 
h=float(input()) 
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# entering the initial value of the integration argument (total integration 
interval) t0 

a=int(input()); t_mtr=np.array(a) 
# entering the initial value of the argument of the differential equation 

function q0 
q_0=float(input()); q_mtr=np.array(q_0) 
# entering the initial value of the argument of the differential equation 

function z0 
z_0=int(input()); z_mtr=np.array(z_0) 
# entering the final value of the total integration interval 
b=int(input()) 
# entering the value of the calculation accuracy by the correction formula 

of the Adams method 
e=float(input()) 
# setting the functions of the differential equation system 
def f1(z): 
    return z 
def f2(q,z): 
    return (-0.2*z)-(10*math.sin(q)) 
# determination of the first three values of the solution of the differential 

equation 
t=a; q=q_0; z=z_0 
t_mas=[t]; q_mas=[q]; z_mas=[z] 
t_mtr=np.array(t) 
q_mtr=np.array(q_0) 
z_mtr=np.array(z_0) 
while t<3*h: 
    # iterative formulas of the Runge-Kutta method 
    K1_Z=f2(q,z); K1_Q=f1(z) 
    K2_Z=f2(q+(h/2*K1_Q),z+(h/2*K1_Z)); K2_Q=f1(z+(h/2*K1_Z))   
    K3_Z=f2(q+(h/2*K2_Q),z+(h/2*K2_Z)); K3_Q=f1(z+(h/2*K2_Z)) 
    K4_Z=f2(q+(h*K3_Q),z+(h*K3_Z)); K4_Q=f1(z+(h*K3_Z)) 
    z=z+(h/6*(K1_Z+(2*K2_Z)+(2*K3_Z)+K4_Z)) 
    q=q+(h/6*(K1_Q+(2*K2_Q)+(2*K3_Q)+K4_Q)) 
    t=t+h 
    t_mas.append(t) 
    q_mas.append(q) 
    z_mas.append(z) 
    t_mtr=np.append(t_mtr, t) 
i=4 
while t<=b-h: 
    # iterative prediction formula of the Adams method 
    q=q_mas[i-1]+(h/24*(55*f1(z_mas[i-1])-59*f1(z_mas[i-2])+ 
                        37*f1(z_mas[i-3])-9*f1(z_mas[i-4]))) 
    z=z_mas[i-1]+(h/24*(55*f2(q_mas[i-1],z_mas[i-1])-59*f2(q_mas[i-

2],z_mas[i-2])+ 
                        37*f2(q_mas[i-3],z_mas[i-3])-9*f2(q_mas[i-

4],z_mas[i-4]))) 
    t=t+h     
    b_tran=q; c_tran=z 
    a_tran=q+1; d_tran=z+1 
    # iterative correction formula of the Adams method 
    while abs(b_tran-a_tran)<=e or abs(c_tran-d_tran)<=e: 
        a_tran=b_tran; d_tran=c_tran  
        b_tran=q_mas[i-1]+(h/24*(9*f1(d_tran)+19*f1(z_mas[i-1])-

5*f1(z_mas[i-2])+ 
                                 f1(z_mas[i-3]))) 
        c_tran=z_mas[i-1]+(h/24*(9*f2(a_tran,d_tran)+19*f2(q_mas[i-

1],z_mas[i-1])- 
                                 5*f2(q_mas[i-2],z_mas[i-2])+f2(q_mas[i-

3],z_mas[i-3])))      
    i=i+1 
    t_mas.append(t) 
    q_mas.append(b_tran) 
    z_mas.append(c_tran) 
    t_mtr=np.append(t_mtr, t) 
# we construct graphs of the solutions of the differential equation 
plt.figure(figsize=(7, 7)) 
plt.xlabel('t',fontsize=15, color='blue') 
plt.ylabel('psi, dPsi(t)/dt',fontsize=15, color='blue') 
plt.plot(t_mas, q_mas) 
plt.plot(t_mas, z_mas) 
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plt.plot(t_mtr,0.3*(np.exp(-
0.1*t_mtr))*(np.cos(3.1607*t_mtr)+(0.03164*np.sin(3.1607*t_mtr)))) 

plt.legend(['The Runge-Kutta method for Psi(t)','The Runge-Kutta method for 
dPsi(t)/dt','Exact solution'], loc=1) 

plt.grid(True) 
plt.xlim([0, 1]) 
plt.ylim([-0.95, 0.45]) 
plt.show(). 

 
From the obtained results, given in Table 3.6, it is clear that the calculations 

are highly accurate compared to the results of analytical calculation ( ( )ntθ ) (see 
Table 3.4), in particular, at the points t4 = 0,4 sec і t10 = 1,0 sec: 

– relative error is calculated by comparing the values of the analytical 
solution and the Adams’ method 

4
4

4

4

0,09567 0,09783100% 100% 2,26%
0,09567

tt
t

t

θ θ
ε

θ

− −
= ⋅ = ⋅ =




, 

           10
10

10

10

( 0,27157) ( 0,27163)100% 100% 0,02%
0,27157

tt
t

t

θ θ
ε

θ

− − − −
= ⋅ = ⋅ =

−





; 

– absolute error by comparing the values of «prediction» *( )n ntθ  (Adams-

Bashforth) and «correction» ( )n nxθ  (Adams-Moulton) 

 4 44

*
40,09783 0,09800 1,7 10t tt θ θ −∆ = − = − = ⋅ , 

               10 1010

*
5( 0,27157) ( 0,27163) 6,0 10t tt θ θ −∆ = − = − − − = ⋅ . 

Table 3.6 – Calculation results for the solution of the differential equation 

n tn, 
sec 

*( )ntθ , 
grad 

*

( )n
d t
dt
θ , 

grad/sec 

( )ntθ , 
 grad 

( )n
d t
dt
θ , 

grad/sec 
( )ntθ , grad 

0 0,0 0,30000 0,00000 0,300000 0,000000 0,30000 
1 0,1 0,28544 – 0,28792 0,285440 – 0,287920 0,28522 
2 0,2 0,24352 – 0,54295 0,243520 – 0,542950 0,24274 
3 0,3 0,17876 – 0,74113 0,178760 – 0,741130 0,17726 
4 0,4 0,09800 – 0,86298 0,097830 – 0,86390 0,09567 
5 0,5 0,00914 – 0,89904 0,008901 – 0,89987 0,00630 
6 0,6 – 0,07884 – 0,84631 – 0,07916 – 0,84684 – 0,08191 
7 0,7 – 0,15740 – 0,71199 – 0,15775 – 0,71194 – 0,16034 
8 0,8 – 0,21906 – 0,51117 – 0,21939 – 0,51060 – 0,22147 
9 0,9 – 0,25819 – 0,26504 – 0,25845 – 0,26418 – 0,25964 
10 1,0 – 0,27147 0,00166 – 0,27163 0,00256 – 0,27157 
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It should be noted that in Table 3.6, at other time intervals tn, there is a 
significant discrepancy between the results of numerical and analytical 
calculations (see Table 3.4). This discrepancy is also caused by obtaining the 
analytical calculation (3.43) under the assumption that θ→0. However, the results 
of the numerical calculation using the «prediction and correction» method show 
close values to the results of the fourth-order Runge-Kutta calculation in Table 
3.4. 

Compared to one-step methods, «prediction and correction» methods have a 
number of special features: 

1. To implement «prediction and correction» methods, it is necessary to have 
information about several previous points. Therefore, they do not belong to the 
«self-starting» methods, and a certain one-step method must be used to start the 
solution. Therefore, in the process of solving differential equations, the 
integration step cannot be changed. 

2. One-step methods and «prediction and correction» methods provide 
approximately the same accuracy of results, but the latter, unlike the former, 
allows for easy estimation of the step error. 

3. Using the fourth-order Runge-Kutta method, four function values must be 
calculated at each step, while two function values are sufficient to ensure 
convergence in the «prediction and correction» method of the same order of 
accuracy. Therefore, «prediction and correction» methods require almost half as 
much machine time as Runge-Kutta methods of comparable accuracy. 

3.3 Numerical methods for solving ordinary differential equations in 
boundary value problems 

During the formulation of the boundary value problem, it is necessary to find 
the solution of the n-th order differential equation ( )( ) ( 1), , , , ,n ny f x y y y y −′ ′′= 

on segment a x b≤ ≤ , subject to the specified boundary conditions: 

0 0

1 1

( ) ( )

( ) , ( ) ;
( ) , ( ) ;

..;
( ) , ( ) ;

..;

k m
k m

y a A y b B
y a A y b B

y a A y b B

= =
′ ′= =

= =





 

( ) ( )( ) , ( ) ,i j
i jy a A y b B= =  

where Ak, Bm are some constants (k=0, 1, 2, …, i; m=0, 1, 2, …, j). The total 
number of additional conditions at the ends of the segment [a; b] must be equal to 
the order of the differential equation i+j+2=n. 
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In the case of a system of differential equations, the same rule must be 
followed. Moreover, additional conditions cannot be concentrated at one end of 
the segment. For example, for differential equations of the second and third 
orders, the problem is formulated as follows. 

Solve the boundary value problem for the equations: 
– of the second order ( ), ,y f x y y′′ ′=  on segment a x b≤ ≤  under the 

boundary conditions y(a) = A, y(b) = B; 
– of the third order ( ), , ,y f x y y y′′′ ′ ′′=  on segment a x b≤ ≤  under the 

boundary conditions y(a) = A, yʹ(a) = C, y(b) = B or under the boundary 
conditions y(a) = A, y(b) = B, yʹ(b) = D. 

Constants A, B, C and D correspond to the values of the specified functions at 
points a and b. 

Specific boundary conditions are selected from the physical formulation of 
the problem. 

The Cauchy problem differs from boundary-value problems in that the region 
in which the solution must be determined is not specified in advance. However, 
the Cauchy problem can be considered as one of the boundary value problems. 
The Cauchy problem usually arises during the analysis of processes determined 
by the differential law of evolution and the initial state (the mathematical 
expression of which is the equation and the initial condition). Moreover, there are 
methods that allow the search for the solution of the boundary value problem to 
lead to the search for the solutions of a series of Cauchy problems for the 
corresponding differential equation. One such well-known numerical method for 
solving the ODE for boundary value problems is the «shooting» method. 

«Shooting» method 

The «shooting» method reduces the solution of the boundary value problem 
for the ODE to the solution of an iterative sequence of Cauchy problems. Suppose 
it is necessary to solve the following boundary value problem of the type: 

  ( ) ( , , )y x f x y y′′ ′= , xϵ[a; b];  (3.57) 

 y(a) = A;   (3.58) 
 y(b) = B.   (3.59) 

Instead of the boundary value problem (3.57) – (3.59), the following Cauchy 
problem is considered: 
  ( ) ( , , )y x f x y y′′ ′= , xϵ[a; b];  (3.60) 

  y(a)=A;   (3.61) 
 ( )y a tgα′ = , α: y(b, α) = B,    (3.62) 
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in which the integral curve y(x, α) depends not only on the variable x but also on 
the parameter α, which is called the shooting angle (the angle between the tangent 
to the curve of the ODE solution and the abscissa axis). It is chosen based on the 
condition that the value of the integral curve on the right boundary, y(b, α), is 
equal to the value of B with a predetermined accuracy ε (Fig. 3.13): 

 ( , )y b Bα ε− ≤ . (3.63) 

The shooting angle that satisfies the inequality (3.63) will be denoted by α*. 
The integral curve obtained from the solution of the Cauchy problem (3.60)–
(3.62) with an angle close to this value, according to inequality (3.63), will be the 
solution of problem (3.57)–(3.59) with an accuracy of ε. 

 

 
Figure 3.13 – Diagram of the geometric interpretation of the «shooting» 

method 
 
Thus, to implement the «shooting» method, the initial value of the angle α0 

from condition 0
B Atg
b a

α −
=

−
 is initially selected. With this value of α0, one of the 

known numerical methods discussed above solves the Cauchy problem 
(3.60)–(3.62) to obtain y(x, α0) and y(b, α0). If condition (3.63) is fulfilled at the 
same time, then the boundary value problem (3.57)–(3.59) is solved with accuracy 
ε. 

Otherwise, there may be two options: 
a) if y(b,!α0) > B, then the aiming angle is reduced in some way and the 

Cauchy problem (3.60)–(3.62) is solved using the same numerical method until 
the condition y(b, α0) < B is met; 

b) if y(b,!α0) < B, then the angle of attack is increased in any way and the 
Cauchy problem is solved until the condition y(b, α0) > B is fulfilled. 
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Thus, the aiming angle is in the middle of the interval αϵ[α0; α1]. After this, 
the true value α* of the aiming angle is determined by the method of halving, 
namely: the next value of the angle is determined using the iterative formula 
αk+1 = (αk-1+αk)/2. The value of the ordinates y(x, αk+1) and y(b, αk+1) is determined 
at the corresponding points. After that, the inequality ( , )y b Bα ε− ≤  is analyzed. 
If it is fulfilled, then α*= (αk-1+αk)/2 and y(x*, αk+1) is a true integral curve. If the 
inequality does not hold, then the iterative process is repeated from the beginning. 

The halving method converges very slowly, and it is necessary to solve a 
significant number of Cauchy problems for different «shooting» angles αk. 
Newton’s iterative formula is used to accelerate the convergence of the iterative 
process: 

   1 1
1

( , ) ( )
( , ) ( , )

k
k k k k

k k

B y b
y b y b

αα α α α
α α+ −

−

−
= + −

−
.  (3.64) 

To determine the preliminary value of the aiming angle αk-1 in equation (3.64), 
the intermediate value determined at the first iteration step for k=1 is used, 
namely: 

  0
1 0

0 0

( , )
( , ) ( , )

B y b
y b y b

αα α δ
α δ α

−
= +

+ −
,  (3.65) 

where δ – a small value of the angle increment (δ=10°… 20°). 
The algorithm for the «shooting» method to solve ODE boundary value 

problems is presented in Figure 3.14. 
 
Example 3.7. To solve the boundary value problem for the second-order 

ODE with the accuracy of ε = 0,01 using the numerical "shooting" method: 

   21y y x
x

′′ ′= + ,  (3.66) 

which satisfies the initial conditions y(1, 0) = 0 і y(2, 0) = 1. 

Solution: 

The boundary value problem (3.66) reduces to the Cauchy problem: 

                                                                 

2

*

* *

1 ;

(1) 0;
(1) ;
(2, ) 1; ( ).

y y x
x

y
y tg
y

α

α α α

 ′′ ′= +
 =
 ′ =


= =

                        (3.67) 
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Figure 3.14 – Scheme of the «shooting» method algorithm 
 
 
The equation f(α) = y(2, α) – y(2, α*) = y(2, α) – 1, as a nonlinear equation 

with respect to the aiming angle α, can be solved using one of the numerical 
iterative methods considered, with parallel solving of the Cauchy problem at each 
iteration. 

Let the initial aiming angle α0 be determined using the relation: 

0
1 0 1
2 1

B Atg
b a

α − −
= = =

− −
; α0=45°. 

Then the Cauchy problem for the second-order ODE (3.67) and the 
corresponding Cauchy problem for the normal system of the second-order ODE 
at the first iteration will have the form: 
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   (3.68) 

Solving the system (3.68) with a step size h=0,25 using the fourth-order 
Runge-Kutta numerical method, we obtain: y(2, 45°) = y4 = 2,625 (Table 3.7). 
Since f1(45°) = y(2, 45°)–1 = 2,625–1,0 = 0,625 > 0, it is necessary to reduce the 
shooting angle α (for example, Δδ = 44°) so that the value of f(α) is less than zero 
in the next iteration. You can take α1 = α0–Δδ=  45°–44° = 1°, and then the Cauchy 
problem at the second iteration will have the form: 

                        

2

1

1 ;

(1,0) 0;
(1,0) 0,0175;

y y x
x

y
y tgα

 ′′ ′= +


=
 ′ = =


 →  
2

;
1 ;

(1,0) 0;
(1,0) 0,0175.

y z

z z x
x

y
z

′ =

 ′ = +

 =


=

                     (3.69) 

Solving the system (3.69) again with a step size h = 0,25 using the fourth-
order Runge-Kutta numerical method will yield: y(2, 1°) = y4 = 1,151 (see Table 
3.7). Since f2(1, 0°) = y(2, 1°) –1 = 1,151–1,0 = 0,151 > 0, it is necessary to 
reduce the aiming angle α until the value of f(α) at the next iteration is less than 
zero. Therefore, taking α2 = α1–Δδ = 1°–44° = –43°, the solution to the Cauchy 
problem at the third iteration will be y(2, -43°) = y4 = -0,274 (see Table 3.7), i.e., 
f3(1°) = y(2, 1°) –1 = 1,151–1,0 = 0,151 > 0. 

Accordingly, the angle α*  is within the interval: α1=1°< α*< α2= –43°. 
At the fourth iteration, the aiming angle is selected based on the iterative 

formula α3 = (α1+α2)/2 = (1°+(–43°))/2 = -21°. Then the Cauchy problem at the 
fourth iteration will have the form: 

    

2

3

1 ;

(1) 0;
(1) 0,384;

y y x
x

y
y tgα

 ′′ ′= +


=
 ′ = = −


 →  
2

;
1 ;

(1) 0;
(1) 0,384.

y z

z z x
x

y
z

′ =

 ′ = +

 =


= −

   (3.70) 

Solving the system (3.70) with a step h = 0,25 by the Runge-Kutta numerical 
method of the fourth order, we obtain: y(2–21°) = y4 = 0,549 (see Table 3.7). Then 
f 4(–21°) = y(2;–21°)–1 = 0,549–1,0 = -0,451 < 0, and also |f4(–21°)|=  
= 0,451 > ε = 0,01. 

Comparing the values of the function f(α) on the fourth (f 4(–21°) < 0) and on 
the third iterations (f 3(1°) > 0) means that –21°< α*< 1°. 
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Continuing by analogy with the solution of the given Cauchy problem in the 
following iterations (α4 = (α3+α2)/2 = (1°+(–21°))/2 = -10°, –10° <α* <1°; 
α5 = (α4+α3)/2 = (1°+(–10°))/2 = -4,5°) by the fourth-order Runge-Kutta 
numerical method with a step h = 0.25, the results are summarized in Table 3.7. 
At the last, sixth, iterative step, y(2,-4,5°) = 1,007, f 5(–4,5°) = y(2; –4,5°) – 
–1 = 1,007–1,0 = 0,007 > 0, and |f 5(–21°) =0,007<ε = 0,01. 

Thus, the aiming angle turns out to be α*=-4,5°. At this angle, the integral 
curve has the value yi from the row of Table 3.7, which corresponds to the sixth 
iteration. 

It is also possible to note the relatively high accuracy of the method for 
boundary value problems of the ODE compared to the exact solution 

4 21 7 1( )
8 24 6

y x x x= − + , the results of which are shown in Table 3.7. 

 
Table 3.7 – Calculation results of the solution for the differential equation of 

the boundary value problem 
i 0 1 2 3 4 
xi 1,0 1,25 1,50 1,75 2,0 

α0=450 1st iteration 
yi 0,0 0,321 0,820 1,563 2,625 

α0=10 2nd iteration 
yi 0,0 0,044 0,206 0,550 1,151 

α0=-430 3rd iteration 
yi 0,0 – 0,223 – 0,388 – 0,430 – 0,274 

α0=-210 4th iteration 
yi 0,0 – 0,068 – 0,045 0,136 0,549 

α0=-100 5th iteration 
yi 0,0 – 0,010 0,085 0,350 0,860 

α0=-4,50 6th iteration 
yi 0,0 0,017 0,146 0,451 1,007 
yi 0,0 0,016 0,143 0,446 1,000 

 
Let’s consider the implementation of the «shooting» method for the second-

order boundary value problem in the PYTHON programming language: 
 

%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import * 
from sympy import * 
import random 
import math 
#entering the integration step 
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h=float(input()) 
#entering the initial value of the integration argument (total integration 

interval) x1 
x_a=int(input()); x_mtr=np.array(x_a) 
#entering the initial value of the argument of the differential equation 

function y(x1) 
A=float(input()) 
#entering the initial value of the argument of the differential equation 

function y(x2) 
B=float(input()) 
#entering the final value of the total integration interval x2 
x_b=int(input()) 
#entering the calculation error value 
e=float(input()) 
# setting the functions of the 2nd-order differential equation in the form 

of a system of differential equations 
def f1(z): 
    return z 
def f2(x,z): 
    return (z/x)+(x**2) 
# specification of the function of calculating the differential equation of 

the 2nd order by the Runge-Kutta method of the 4th order 
def runge(x_a,x_b,h,y_0,z_0): 
    # calculation of iterative formulas 
    x=x_a; y=y_0; z=math.tan(z_0*math.pi/180) 
    y_mas=[]; x_mas=[]; z_mas=[]; 
    del y_mas 
    del z_mas 
    del x_mas 
    x_mas=[x]; y_mas=[y]; z_mas=[z] 
    x_mtr=np.array(x) 
    y_mtr=np.array(y_0) 
    z_mtr=np.array(z_0) 
    while x<x_b: 
        #iterative formulas of the Runge-Kutta method 
        K1_Z=f2(x,z); K1_Y=f1(z) 
        K2_Z=f2(x+(h/2),z+(h/2*K1_Z)); K2_Y=f1(z+(h/2*K1_Z))   
        K3_Z=f2(x+(h/2),z+(h/2*K2_Z)); K3_Y=f1(z+(h/2*K2_Z)) 
        K4_Z=f2(x+h,z+(h*K3_Z)); K4_Y=f1(z+(h*K3_Z)) 
        z=z+(h/6*(K1_Z+(2*K2_Z)+(2*K3_Z)+K4_Z)) 
        y=y+(h/6*(K1_Y+(2*K2_Y)+(2*K3_Y)+K4_Y)) 
        x=x+h 
        x_mas.append(x) 
        y_mas.append(y) 
        z_mas.append(z) 
        x_mtr=np.append(x_mtr, x)       
    return y_mas, z_mas, x_mas, x_mtr   
# determination of the data of the initial two aiming angles 
t_an=(B-A)/(x_b-x_a) 
ang=math.atan(t_an)*180/math.pi 
ang_sec=ang 
while (runge(x_a,x_b,h,A,ang)[0][len(runge(x_a,x_b,h,A,ang)[0])-1]-

B)*(runge(x_a,x_b,h,A,ang_sec) 
                                                                       

[0][len(runge(x_a,x_b,h,A,ang_sec)[0])-1]-B)>0: 
    ang_frst=ang_sec 
    if (runge(x_a,x_b,h,A,ang_sec)[0][len(runge(x_a,x_b,h,A,ang_sec)[0])-

1]-B)>0: 
        ang_sec=ang_sec-44 
    else: 
        ang_sec=ang_sec+44 
# determination of the exact value of the aiming angle by the method of 

halving 
ang_new=ang_frst 
while abs(runge(x_a,x_b,h,A,ang_new)[0][len(runge(x_a,x_b,h,A,ang_new)[0])-

1]-B)>=e:   
    ang_new=(ang_frst+ang_sec)/2 
    if (runge(x_a,x_b,h,A,ang_new)[0][len(runge(x_a,x_b,h,A,ang_new)[0])-

1]- 
        

B)*(runge(x_a,x_b,h,A,ang_frst)[0][len(runge(x_a,x_b,h,A,ang_frst)[0])
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-1]-B)<=0: 
        ang_sec=ang_new 
    else: 
        ang_frst=ang_new 
print(' Shooting angle: alpha=',ang_new,'; The tangent of the shooting 

angle:tg(alpha)=',math.tan(ang_new*math.pi/180)) 
print('The solution of the ODE boundary value problem for 

yi=',runge(x_a,x_b,h,A,ang_new)[0]) 
# we construct graphs of the solutions of the differential equation 
plt.figure(figsize=(7, 7)) 
plt.xlabel('t',fontsize=15, color='blue') 
plt.ylabel('psi, dPsi(t)/dt',fontsize=15, color='blue') 
plt.plot(runge(x_a,x_b,h,A,ang_new)[2], runge(x_a,x_b,h,A,ang_new)[0]) 
plt.plot(runge(x_a,x_b,h,A,ang_new)[2], runge(x_a,x_b,h,A,ang_new)[1]) 
plt.plot(runge(x_a,x_b,h,A,ang_new)[3], 

(runge(x_a,x_b,h,A,ang_new)[3]**4/8)- 
         ((7*runge(x_a,x_b,h,A,ang_new)[3]**2)/24)+(1/6)) 
plt.legend([' Shooting method for y(x)','Shooting method for y`(x)','Exact 

solution'], loc=1) 
plt.grid(True) 
plt.xlim([1, 2]) 
plt.ylim([0, 3]) 
plt.show(). 

Finite difference method 
Suppose it is necessary to solve a boundary value problem of this type: 

 ( ) ( ) ( ) ( )y x p x y q x y f x′′ ′+ + = , xϵ[a; b];  (3.71) 

    y(a)=A, y(b)=B.  (3.72) 
where p(x), q(x), f(x) – known continuous values on the segment [a; b] functions; 
А і B – set constant values. 

One of the most effective and popular numerical tools for solving ODE and 
partial differential equations is the apparatus of difference methods. 

It is based on the presentation of an independent argument on the segment 
[a; b] in the form of a discrete set of points xi (i=0, 1, …, n); x0=a, xn=b, which is 
called a grid. 

The uniform grid (3.46) with a step was the most widely used xi–xi-1=h 
(Fig. 3.15). In this case, instead of the continuous function f(x), the grid function 
yi = f(xi) is considered. 

 

 
Figure 3.15 – Scheme of a one-dimensional calculation grid 

 
A grid function can be thought of as a function with an integer argument 

y(i) = yi (i=0, ±1, ±2, … ). 
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For yi, you can introduce operations that are a discrete (difference) analogue 
of differentiation and integration operations. 

An analogue of the first derivative is differences of the first order:  

1i i iy y y+∆ = −  – right difference; 
1i i iy y y −∇ = −  – left difference; 

1 1
1 1( ) ( )
2 2i i i i iy y y y yδ + −= ∆ +∇ = −  – central difference. 

It should be noted that 1i iy y +∆ = ∇ .  
Next, the second-order differences are recorded: 

2
1 2 1 1

1 1 1 1 1

( ) ( ) 2 ;
( ) ( ) ( ) 2 .

i i i i i i i i

i i i i i i i i i i

y y y y y y y y
y y y y y y y y y y

+ + + +

− + − + −

∆ = ∆ ∆ = ∆ − = − + = ∆∇

∆∇ = ∆ − = − − − = − +
 

The difference of the m-th order is determined similarly: 
1( )m m

i iy y−∆ = ∆ ∆ . 

It is obvious that: 

1

i

i i k
j k

y y y+
=
∆ = −∑ ;     1

i

i i k
j k

y y y −
=
∆ = −∑ . 

On the set of the calculation grid (see Fig. 3.15), which is called a template, 
the continuous differential operator Ly is replaced by the difference Lhy. Difference 
schemes are built by replacing derivatives in differential equations with difference 
relations. The general formula for approximating derivatives at some point xi has 
the following form: 

( ) 1 ( ) ( )
n l

pi
s in n

s m

d y x a y x sh O h
dx h =−

= + +∑ , 

where the coefficients are selected as (s= –m, –m+1, …, 1) in such a way as to 
achieve the required order of approximation. The limit of the sum of m and l is 
subject to the condition m+l ≥ n+p–1. 

Very often, in practice, difference relations are used to approximate the first-
order derivative with respect to h at three grid nodes: 

–  the right scheme 
( ) ( ) ( ) ( )i i i

h X
dy x y x h y xL y O h y

dx h
+ ++ −

= = + = ; 

– the left scheme 
( ) ( ) ( ) ( )i i i

h X
dy x y x y x hL y O h y

dx h
− −− −

= = + = ; 

– the central scheme 
0 0( ) ( ) ( ) ( )

2
i i i

h X
dy x y x h y x hL y O h y

dx h
+ − −

= = + = ; 
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– the central scheme with second-order accuracy in h 
2

2
2 2

( ) ( ) 2 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ).

i i i i
hy

X i X i X i X i
XX

d y x y x h y x y x hL O h
dx h

y x y x y x h y x y x
h h

+ − − −

+ − + −
= = + =

− + −
= = =

 

When obtaining a difference scheme, an important role is played by the 
requirement that the difference scheme best reflects the main properties of the 
original differential equation. The assessment of the accuracy of the difference 
scheme is reduced to the study of the approximation error and stability. 

In the finite difference method, the solution of the boundary value problem 
(3.71) and (3.72) is reduced to a system of finite difference equations. For this, 
the main segment [a; b] is divided into n equal parts of length h (step), where 
h=(b–h)/n (Fig. 3.16). That is, the area of continuous change of the argument 
[a; b] is replaced by a discrete set of points called nodes xi  ( 0,i n= ). 

 

 
Figure 3.16 – Scheme of the calculation grid of the finite difference method 

 
Breakpoints have abscissa coordinates: 

xi = x0+ih (i = 0, 1, 2, …, n),   x0 = a, xn = b. 
We denote the value at the division points xi of the desired function y=y(x) 

and its derivatives yʹ = yʹ(x), yʺ = yʺ(x) by yi = y(xi), yiʹ = yʹ(xi), yiʺ = yʺ(xi). 
Notations are also introduced: 

pi = p(xi), qi = q(xi), fi = f(xi). 
By replacing the derivatives with symmetric finite-difference relations for the 

interior points xi of the segment [a; b]: 

  1 1

2
i i

i
y yy

h
+ −−′ = ;   (3.73) 
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 1 1
2

2i i i
i

y y yy
h

+ −− +′′= .  (3.74) 

Substituting (3.73) and (3.74) into the original equation (3.71) for x = xi 
( 1, 1)i n= − , we obtain a system of difference equations: 

  1 1 1 1
2

2
2

i i i i i
i i i i

y y y y yp q y f
h h

+ − + −− + −
+ + =  ( 1, 1i n= − ), (3.75) 

which can be presented in the form of such a LAES with a tridiagonal matrix: 

   

1

0

1

2 2

2

;
1 2; ;

2
1 ; ;

1, .;
2

; 1

i i

n

i i i i i i i

i
i i i

i
i

a y b y c y d
pa b q

h h h
pc

h h
i n

d f

y A y B

− ++ + =

=



 = − = − +


 =

= = −=

+




  (3.76) 

In the case of a large value of n, the direct solution of the system (3.76) 
becomes cumbersome. To solve a system of this type, the running method is used 
(see Chapter 1). 

The error estimate of the finite difference method for problem (3.71), (3.72) 

has the form 
2

24( ) ( )
96i i

h My y x b a− ≤ − , where y(xi) is the value of the exact 

solution for x = xi, (4)
4 [ , ]

max ( )
a b

M y x= . 

The LAES (3.76) has a tridiagonal matrix and the fulfillment of the 
precedence condition by the modulus of the diagonal elements ( i i ib a c≥ + ) 
guarantees stable implementation of the sweep method for solving (3.75). 

The numerical method of running for solving the LAES consists of a forward 
and a reverse run. For direct travel, the running coefficients are determined by the 
formulas: 

  
1

i
i

i i i

c
b a

ξ
ξ −

−
=

+
;
 

1

1

i i i
i

i i i

d a
b a

ηη
ξ

−

−

−
=

+
;
 

1, 1i n= − , (3.77) 

moreover ξ1 = -c1/b1, η1 = d1/b1, since ξ0 = 0 and η0 = 0. 
During the return stroke, the values of yi ( 1,1i n= − ) are determined using the 

expressions yi = ξi yi+1+ηi: 

  

1 1 1 1

2 2 1 2

1 1 2 1

1: ;
2 : ;

;
1: .

n n n n n

n n n n

i n y y
i n y y

i y y

ξ η η
ξ η

ξ η

− − − −

− − − −

= − = + =
 = − = +


 = = +



    (3.78) 
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Thus, the solution of the boundary value problem for the differential equation 
is reduced to the solution of the system of n–1 linear algebraic equations of the 
form (3.76), with n–1 unknowns y1, …, yn-1. After solving this system, we will get 
a table of values of the desired function y. 

The algorithm of the finite difference method for solving ODE boundary 
value problems is presented in Figure 3.17. 

 

 

Figure 3.17 – Scheme of the finite difference method algorithm 
 
 

Example 3.8. To solve the boundary value problem for the second-order ODE 
using the numerical method of finite differences: 

      2 2 1x y x y′′ ′+ = ,   (3.79) 

which satisfies the initial conditions for y(1, 0)=0; y(1, 4) = 0,0566. 
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Solution: 
Using formulas (3.73) and (3.74) we replace the original equation (3.79) with 

a system of finite-difference equations: 

2 1 1 1 1
2

2 1
2

i i i i i
i i

y y y y yx x
h h

+ − + −− + −   + =   
   

. 

As a result of summing the free members, we get: 

 2 2 2 2
1 1(2 ) 4 (2 ) 2i i i i i i i iy x hx x y y x hx h− +− − + + = ,   (3.80) 

where , 24i ib x= − , 22i i ic x hx= + , 22id h= . 

Choosing the step h = 0.1, three internal nodes will be obtained: 

xi = 0, 1, i+1 (i=1, 2, 3) where 2 2
1 1 12 2 1,1 0,1 1,1 2,31;a x hx= − = ⋅ − ⋅ =

2 2
1 14 4 1,1 4,84;b x= − = − ⋅ = −  2 2

1 1 12 2 1,1 0,1 1,1 2,53c x hx= + = ⋅ + ⋅ = ; 
2 22 2 0,1 0,02id h= = ⋅ = . 

Similarly, the coefficients for aj, bj, cj, dj (j=2, 3). 
After writing equation (3.80) for each of these nodes we obtain the following 

system of equations: 

    
1 0 1 1 1 2 1

2 1 2 2 2 3 2

3 2 3 3 3 4 3

;
;
;

a y b y c y d
a y b y c y d
a y b y c y d

− + =
 − + =
 − + =

→
0 1 2

1 2 3

2 3 4

2,31 4,84 2,53 0,02;
2,76 5,76 3,00 0,02;
3,25 6,76 3,51 0,02.

y y y
y y y
y y y

− + =
 − + =
 − + =

  (3.81) 

Since the obtained tridiagonal matrix of the system of equations (3.81) fulfills 
the condition of preferring diagonal elements ( i i ib a c≥ + ), the sweep method 
can be used. 

Racing coefficients on a straight course: 

1
1

1

2,53 / ( 4,84) 0,52273c
b

ξ −
= = − − = ; 1

1
1

0,02 / ( 4,84) 0,00413d
b

η = = − = − ; 

2
2

2 2 1

3 0,69488
5,76 2,76 0,52273

c
b a

ξ
ξ

− −
= = =

+ − + ⋅
; 

2 2 1
2

2 2 1

0,02 2,76 ( 0,00413) 0,00727
5,76 2,76 0,52273

d a
b a

ηη
ξ

− − ⋅ −
= = = −

+ − + ⋅
; 

3
3

3 3 2

3,51 0,77971
6,76 3,25 0,69488

c
b a

ξ
ξ

− −
= = =

+ + ⋅
; 

3 3 2
3

3 3 2

0,02 3,25 ( 0,00727) 0,0969
6,76 3,25 0,69488

d a
b a

ηη
ξ

− − − ⋅ −
= = = −

+ − + ⋅
. 

22i i ia x hx= −
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On the reverse course, the values of yi are determined using expressions 
yi = ξi yi+1+ηi: 

3 3 4 3 3

2 2 3 2

1 1 2 1

3: 0,03446;
2 : 0,69488 0,03446 0,00727 0,01668;
1: 0,52273 0,01668 0,00413 0,00459.

i y y
i y y
i y y

ξ η η
ξ η
ξ η

= = + = =
 = = + = ⋅ − =
 = = + = ⋅ − =

 

It is also possible to note the relatively high accuracy of the finite difference 
method for the boundary value problems of the ODE compared to the exact 
solution of 2( ) 0,5lny x x=  at the corresponding points: 

y(x1) = y(1,1) = 0,0047;   y(x2) = y(1,2) = 0,0166;   y(x3) = y(1,3) = 0,0344. 
In particular, in points x1 = 1,1 and x3 = 1,3: 
– relative error by comparing the values of the analytical solution and the 

finite difference method  

1 1

1

1

0,00459 0,00470100% 100% 2,40%
0,00459

x x
x

x

y y
y

ε
− −

= ⋅ = ⋅ =




, 

3 3

3

3

0,03446 0,03440100% 100% 0,17%
0,03446

x x
x

x

y y
y

ε
− −

= ⋅ = ⋅ =




. 

Let’s consider the implementation of the finite difference method for the ODE 
second-order boundary value problem in the PYTHON programming language: 

 
%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import * 
from sympy import * 
#introducing an integration step 
h=float(input()) 
#entering the initial value of the integration argument (total integration 

interval) x1 
x_a=int(input()); x_mtr=np.array(x_a) 
#entering the final value of the total integration interval x2 
x_b=float(input()) 
#entering the initial value of the argument of the differential equation 

function y(x1) 
A=float(input()) 
# entering the initial value of the argument of the differential equation 

function y(x2) 
B=float(input()) 
# determination of the coefficients of the system of difference equations 
n=round((x_b-x_a)/h) 
x,a,b,c,d=[],[0],[0],[0],[0] 
sig_ma,tet_ta=[0],[0] 
x_tr=x_a 
for i in range(0,n): 
    x.append(x_tr) 
    x_tr=x_tr+h 
    x_mtr=np.append(x_mtr, x_tr)   
for i in range(1,n): 
    a.append(2*(x[i]**2)-(h*x[i])) 
    b.append(-4*x[i]**2) 
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    c.append(2*(x[i]**2)+(h*x[i])) 
    d.append(2*h**2) 
#verification of the fulfillment of the precedence condition modulo the 

diagonal elements of the matrix 
    if abs(b[i])<abs(a[i])+abs(c[i]): 
        print('The system of finite difference equations has no solution') 
        break 
#determination of driving coefficients on a straight course 
    sig_ma.append(-c[i]/(b[i]+(a[i]*sig_ma[i-1]))) 
    tet_ta.append((d[i]-(a[i]*tet_ta[i-1]))/(b[i]+(a[i]*sig_ma[i-1]))) 
# determination of the solution of the differential equation on the reverse 

course 
y=[0]*(n+1) 
y[0]=A; y[n]=B 
for i in range(n-1,0,-1): 
    y[i]=(sig_ma[i]*y[i+1])+tet_ta[i] 
x.append(x_b) 
print('x(i)=',x) 
print('y(i)=',y) 
# we construct graphs of the solutions of the differential equation 
plt.figure(figsize=(7, 7)) 
plt.xlabel('x',fontsize=15, color='blue') 
plt.ylabel('y',fontsize=15, color='blue') 
plt.plot(x, y) 
plt.plot(x_mtr, (0.5*(np.log(x_mtr)**2))) 
plt.legend(['The Runge-Kutta method','f(x)=0.5*(ln(x))^2'],loc=1) 
plt.grid(True) 
plt.xlim([1, 1.4]) 
plt.ylim([0, 0.06]) 
plt.show(). 
 
 

3.4 Numerical methods for solving ordinary differential equations for 
«stiff» problems  

There are ODE for which it is difficult to obtain a satisfactory solution to the 
problems using the numerical methods described above. The definition of such 
problems is related to the concept of the time constant of a differential equation, 
which is introduced in relation to the analytical solution. For equations of the first 
order, this is the time interval when the variable part of the solution decreases by 
e times. An equation of order n has, accordingly, n time constants; if any two of 
them differ greatly (in practice by a hundred or more times) or any of them is quite 
small compared to the time interval on which the solution is searched, then the 
problem is called «stiff», and its practical solution cannot be solved by 
conventional methods. The coefficients in such equations differ by several orders 
of magnitude. 

It is appropriate to consider the «stiff» system using the example of the 
solution of the ODE: 

    0

0 0

, ( ; ];

( ) .

du u x x X
dx
u x u

λ = ∈

 =

   (3.82) 

The analytical solution of ODE (3.82) is given by expression 0( )
0( ) x xu t u eλ −=  

in Figure 3.18. 
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Figure 3.18 – The scheme of the analytical solution 

of the ODE for different values of λ 
 
Assuming an error of δu in the input data, the exact solution will change over 

time: 
 ( ) ( ) ( )0 0 0

0 0( ) ( ) .x x x x x xu x u u e u e ueλ λ λδ δ− − −= + = +    (3.83) 
From equation (3.83), for λ>0, the error will only increase; in this case, the 

problem is ill-conditioned. For λ<0, the error always decreases, so in this case, the 
problem is stable with respect to input data errors (see Fig. 3.18). However, only 
if λ<0 do problems arise when solving the problem by numerical methods. During 
the solution of «stiff» problems by conventional numerical methods, the 
integration step should be small enough so that it is possible to take into account 
the growth of the most rapidly changing components of the solution even after 
their contribution becomes practically unnoticeable. But the reduction of the step 
leads to an increase in the consumption of machine time of computer systems, and 
the accumulation of errors. Moreover, even on a smooth part of the solution, 
increasing the step leads to an increase in rounding and discretization errors. 

The simplest apparatus for solving «stiff» problems is the implicit Euler 
method, which has the first order of accuracy, where the solution is determined 
from the following iterative equation: 
  ( )1 1 1,n n n ny y hf y x+ + += + .  (3.84) 

The algorithm of Euler implicit method for solving «stiff» problems is 
presented in Figure 3.19.  

«Stiff» problems are frequently encountered in the theory of automatic 
control, such as when analyzing transient processes in a system containing high-
order links with coefficients that significantly differ from each other. Differential 
equations describing the controlled motion of a manipulator robot also exemplify 
«stiff» systems, as transient processes in the drive control system decay faster than 
in the mechanical part of the robot. 
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Figure 3.19 – Scheme of the Euler implicit method algorithm for ODE systems 
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Example 3.9. To solve the numerical method of ODE for the «stiff», problem 
of a mathematical model describing the behavior of the concentration of chemical 
substances in a mixture in which an exothermic chemical reaction takes place: 

 
1 1

2 2

( ) ( );

( ) ( ),

du a u t b v t
dt

dv a u t b v t
dt

 = +

 = − −


    (3.85) 

which satisfies the initial conditions for u(0) = v(0) = 1,0 mol/l,  
where a1 = 998 sec-1, a2 = 999 sec-1, b1 = 1998 sec-1, b2 = 1999 sec-1 – parameters 
determining the kinetics of the chemical reaction; u(t), v(t) are the concentrations 
of the initial chemical substance and the final product, respectively. 

Compare the results of the numerical solution with the analytical solution of 
the ODEsystem for the «stiff» problem (3.84). 

Solution: 

Compare the results of the numerical solution with the analytical solution of 
the ODE system of the «stiff» problem (3.84): 

  
1 1

2 2

( ) ( );

( ) ( );

du a u t b v t
dt

dv a u t b v t
dt

 = +

 = − −


 → 
( )
( )

1 1 1 1 1

1 2 1 2 1

;
,

n n n n

n n n n

u u h a u b v
v v h a u b v

+ + +

+ + +

 = + +
 = + − −

  (3.86) 

where h – step of integration over the time course of a chemical reaction. 
The system of iterative equations (3.86) can be solved using Newton’s 

method (see Chapter 2) or the parameters can be expressed un+1  
and vn+1: 

  
2

1 2
2 1 2

1 1 1

;
1

,

n n
n

n n n

v u hav
a b h b h

u u h v hb

λ
λ

λ λ

+

+ +

− = + +
 = +

   (3.87) 

where ( )11 / 1 a hλ = −  . 
To solve this problem, the time interval [0; 0,08], which is divided into the 

corresponding number of parts with a step of h = 5,0·10-6 sec. Then the values of 
v1, v2, …, vn and u1, u2, …, un will be determined by Euler implicit method 
according to formula (3.87), namely: 
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( )
( ) ( )

( )
( )( ) ( )

0 0 2
1 2

2 1 2

6

26 6

6 6
1 0 1 1

1

1,0 1,0 1,01 5,0 10 999,0
0,985;

1 999,0 1998,0 5,0 10 1,01 1999,0 5,0 10

1,0 1,01 5,0 10 0,985 1,01 5,0 10 1998,0 1,015;

v u ha
v

a b h b h

u u h v hb

λ
λ

λ λ

−

− −

− −

 −
= = + +

 − ⋅ ⋅ ⋅ ⋅ = = + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅


= + = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ =

    

( )
( ) ( )

( )
( )( ) ( )

1 1 2
2 2

2 1 2

6

26 6

6 6
2 1 2 1

1

0,985 1,015 1,01 5,0 10 999,0
0,970;

1 999,0 1998,0 5,0 10 1,01 1999,0 5,0 10

1,015 1,01 5,0 10 0,970 1,01 5,0 10 1998,0 1,029;

v u ha
v

a b h b h

u u h v hb

λ
λ

λ λ

−

− −

− −

 −
= = + +

 − ⋅ ⋅ ⋅ ⋅ = = + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅


= + = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ =
………….………………….………………….……………………………… , 

where 6
1

1 1 1,01
1 1 998,0 5,0 10a h

λ −= = =
− − ⋅ ⋅

. 

Also, for comparison, an analytical solution of the ODE system of the «stiff» 
problem was obtained u(0)=v(0)=1,0: 

  
1000

1000

( ) 4 3 ,
( ) 2 3 .

t t

t t

u t e e
v t e e

− −

− −

 = −


= − +





  (3.88) 

The numerical results of the calculation of the solution of the ODE system of 
the «stiff» problem (3.85) for ten integration steps are presented in Table 3.8.  

 
Table 3.8 – Calculation results of the solution of the differential equation 

n tn⋅10-6, sec v(t) u(t) ( )v t  ( )u t   
0 0,0 1,00000 1,00000 1,00000 1,00000 
1 0,5 0,98508 1,01475 0,98505 1,01494 
2 1,0 0,97024 1,02944 0,97017 1,02981 
3 1,5 0,95548 1,04405 0,95537 1,04460 
4 2,0 0,94079 1,05858 0,94064 1,05932 
5 2,5 0,92617 1,07305 0,92598 1,07397 
6 3,0 0,91163 1,08744 0,91140 1,08854 
7 3,5 0,89715 1,10175 0,89689 1,10304 
8 4,0 0,88276 1,11600 0,88244 1,11747 
9 4,5 0,86843 1,13017 0,86808 1,13183 
10 5,0 0,85418 1,14427 0,85379 1,14611 
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Also, for a visual comparison, it is convenient to present the results of the 
numerical solution on a graph (Fig. 3.20) for the time interval [0; 0,08]. 

 

 
u(x), v(x) – Euler implicit method; ( ) ), (u x v x   – the exact solution 

Figure 3.20 – Diagram of the results of the numerical solution of the 
«stiff» problem ODE system 

 
It can be seen from the graph (Fig. 3.20) that after a small period of time 

t=0,004 sec, the solution is very close to the functions: 





−≅
≅

−

−

.2
,4
t

t

ev
eu

                           
From the results obtained, as shown in Table 3.8, it is evident that errors in 

the process of determining the solution increase towards the end of the table, 
especially at certain points x5 = 2,5⋅10-6 sec  і  x10 = 5,0⋅10-6 sec: 

– relative error by comparing the values of the analytical solution and Euler’s 
implicit method  

5 5

5

5

1,07397 1,07305100% 100% 0,09%
1,07397

x xu
x

x

u u

u
ε

− −
= ⋅ = ⋅ =




,
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5

5

0,92617 0,92598100% 100% 0,02%
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x xv
x

x

v v

v
ε

− −
= ⋅ = ⋅ =




, 
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10 10
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1,14611 1,14427100% 100% 0,16%
1,14611

x xu
x
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− −
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
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0,85379

x xv
x

x
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v
ε

− −
= ⋅ = ⋅ =




. 

Let’s consider the implementation of the implicit Euler’s method for the 
system of the ODE «stiff» problem in the PYTHON programming language: 

 
# connection of computing libraries 
%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import * 
from sympy import * 
# introducing an integration step 
h_0=float(input()) 
#entering the initial value of the integration argument (total integration 

interval) x0 
a=int(input()) 
# entering the final value of the integration interval total 
b=float(input()) 
#entering the initial value of the argument of the differential equation 

function v0 
v_0=float(input()) 
#entering the initial value of the argument of the differential equation 

function u0 
u_0=float(input()) 
#entering the permissible calculation error 
e_0=float(input()) 
lambd_a=1/(1-(998*h_0)) 
#specification of the 1st iterative formula of the differential equation 

system 
def f_1(u,v,h): 
    return (v-(u*lambd_a*h*999))/(1+(999*1998*(h**2)*lambd_a)+(1999*h)) 
#specification of the 2nd iterative formula of the differential equation 

system 
def f_2(u,v,h): 
    return (u*lambd_a)+(f_1(u,v,h)*lambd_a*h*1998) 
#calculation of iterative formulas by Euler's implicit method 
def eyler_impl(a,b,u_0,v_0,h): 
    v_mas=[v_0]; x=a; x_mas=[x]; u_mas=[u_0]  
    u=u_0; v=v_0; x_mtr=[x]; x_mtr=np.array(x) 
    while x<=b: 
        x=x+h 
        v=f_1(u,v,h) 
        u=f_2(u,v,h) 
        v_mas.append(v) 
        u_mas.append(u) 
        x_mas.append(x) 
        x_mtr=np.append(x_mtr, x) 
    return x_mas, v_mas, u_mas 
#we construct graphs of the solutions of the differential equation 
plt.figure(figsize=(7, 7)) 
plt.xlabel('x',fontsize=15, color='blue') 
plt.ylabel('y',fontsize=15, color='blue') 
plt.plot(eyler_impl(a,b,u_0,v_0,h_0)[0], eyler_impl(a,b,u_0,v_0,h_0)[1]) 
plt.plot(eyler_impl(a,b,u_0,v_0,h_0)[0], eyler_impl(a,b,u_0,v_0,h_0)[2]) 
plt.plot(eyler_impl(a,b,u_0,v_0,h_0)[3], (4*np.exp(-
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eyler_impl(a,b,u_0,v_0,h_0)[3]))- 
         (3*np.exp(-eyler_impl(a,b,u_0,v_0,h_0)[3]*1000))) 
plt.plot(eyler_impl(a,b,u_0,v_0,h_0)[3], (-2*np.exp(-

eyler_impl(a,b,u_0,v_0,h_0)[3]))+ 
         (3*np.exp(-eyler_impl(a,b,u_0,v_0,h_0)[3]*1000))) 
plt.legend(['Euler's implicit method for v(x)',' Euler's implicit method for 

u(x)','u(x)=4*e^(-x)-3*e^(-x*1000)','v(x)=-2*e^(-x)+3*e^(-x*1000)'], 
loc=1) 

plt.grid(True) 
plt.xlim([0, 0.015]) 
plt.ylim([-2.5, 4.5]) 
plt.show(). 

 
Conclusions on the application of numerical methods for solving 

ordinary differential equations 
Numerical methods for solving the ODE do not allow finding a general 

solution; they can only provide a partial solution. However, these methods can be 
applied to a wide class of differential equations and all types of problems related 
to them. Numerical methods can be applied only to correctly posed (or adjustable) 
problems. However, it should be noted that for the successful application of 
numerical methods, the formal fulfillment of correctness conditions may not be 
sufficient. It is necessary for the problem to be well-conditioned, meaning that 
small changes in the initial conditions would result in sufficiently small changes 
in the integral curves. If this condition is not met, meaning the problem is ill-
conditioned (weakly stable), then small changes in the initial conditions or, 
equivalent to these changes, small errors in the numerical method could 
significantly distort the result. To solve ordinary differential equations, it is 
advisable to use the following methods: Euler, Runge-Kutta of the fourth order, 
Adams («prediction and corrections»), «shooting», as well as finite differences. 
Before applying these methods, the type of problem is identified based on the type 
of ODE (Cauchy problem, boundary value problem, or «stiff» problem) and 
appropriate methods are applied. There are two types of numerical methods for 
solving Cauchy problems: one-step methods, where information on only one 
previous step is required to find the next point on the curve (Euler’s and Runge-
Kutta methods of the fourth order); multi-step methods, where information about 
more than one of the previous points is required to find the next point of the curve 
(«prediction and correction» methods or the Adams method). When comparing 
the efficiency of single-step and multi-step methods, the following features are 
highlighted: multi-step methods require a large amount of memory in computing 
systems, as they operate with a large amount of initial data; when using multi-step 
methods, there is an opportunity to estimate the error per step, therefore, the step 
size is chosen optimally, which, compared to single-step methods, gives a certain 
margin, reducing the speed of calculations; with the same accuracy, one-step 
methods require a smaller number of calculations (for example, using the Runge-
Kutta method of the fourth order, it is necessary to calculate four values of the 
function at each step, and to ensure the convergence of the «prediction and 
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correction» method of the same order of accuracy - two); one-step methods, unlike 
multi-step methods, allow you to start solving the problem (self-starting) and 
easily change the step during the solution process. If the Cauchy problem is very 
difficult, then the «prediction and correction» (Adams) method is usually 
preferred, which is also faster. The solution to the problem in this case starts with 
one-step methods, namely Euler or fourth-order Runge-Kutta. If more than two 
iterations are needed to calculate the next value yi, or if the truncation error is 
significant, then it is necessary to decrease the calculation step h. On the other 
hand, in the case of a very small slice error, the step can be increased, which will 
increase the speed, but in this case, the entire solution process is performed first. 
Sometimes, in practice, it is necessary to minimize the time of preparing a 
problem for solving. Then it is advisable to use one-step methods. The «shooting» 
method or difference methods are used to solve boundary value problems. In the 
case of nonlinear differential equations, difference methods are preferred. When 
solving «stiff» problems, the easiest way is to use the «implicit» Euler method, 
where the step must be small enough to account for the growth of the most rapidly 
changing components of the solution even after their contribution becomes 
practically negligible. In general, for effective problem-solving, the experience, 
intuition, and qualification of the researcher are of great importance both in the 
process of setting the problem and in the process of choosing a method, 
developing an algorithm, and software solutions by means of computer systems. 

 
 

Control questions and tasks 
 

1.  Give examples of the application of differential calculus in various areas 
of scientific research. 

2.  Formulate a generalized formulation of the problem for ordinary 
differential equations. 

3.  Formulate the Cauchy problem and the boundary value problem. What is 
the difference between these problems? 

4.  What types of numerical methods exist for solving ODE? Give them a 
comparative characteristic. 

5.  What is the difference between the usual Euler method and the refined one 
for the numerical solution of the Cauchy ODE problem? 

6.  Give a geometric interpretation of Euler method. 
7.  In the mathematical model of the problem of ballistics, namely the vertical 

fall of a body of mass m: 

  d g
dt m
υ α υ= − +  ,   (3.89) 

which is acted upon by the force of viscous friction Ffr, proportional to the velocity 
(Ffr= –αυ, where α is the coefficient of viscous friction). Using the usual Euler 
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numerical method and the refined one, determine the value of its velocity 
depending on time. Compare the obtained results of the numerical study with the 

analytical solution ( ) 1
t

mmgt e
α

υ
α

− 
= − 

 
under the initial condition υ(0) = 0 m/sec 

during the time interval tϵ[0; 10,0] seconds. The initial data for the calculation are 
presented in Table 3.9. 
 

Table 3.9 – Output data for the task 

Version Body weight (m, kg) Coefficient of viscous friction 
 (α, N⋅sec/m) 

1 2,0 0,00035 
2 3,2 0,00027 
3 3,5 0,00010 
4 4,6 0,00004 
 

8.  The simplest mathematical model of the battle of two opposing armies is 
described by the Lanchester battle equations: 

  

( ) ( );

( ) ( ),

dx t by t
dt

dy t ax t
dt

 = −

 = −


   (3.90) 

where a, b – the effectiveness of the weapons of armies X and Y, respectively, 
means that each combat unit of Army X destroys a soldier of Army Y in a unit of 
time, and vice versa. By using Euler numerical method, determine the value of 
the change in the number of opposing armies during the battle in the time interval 
t∈[0; 100,0] seconds. How should the initial number of armies be altered to impact 
the battle’s outcome? The initial data for the calculation are presented in Table 
3.10. 

 
Table 3.10 – Output data for the task 

Version 

Weapons 
effectiveness 

of the Army X 
(a, unit/hour) 

Weapons 
effectiveness 
of the Army Y 
(b, unit/hour) 

Initial size of 
the Army X 
(x(0), units) 

Initial size of 
the Army Y 
(y(0), units) 

5 2,0 2,8 100,0 180,0 
6 3,2 4,1 220,0 280,0 
7 3,5 2,4 300,0 240,0 
8 4,6 3,1 410,0 390,0 
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9. Reveal the essence of the fourth-order Runge-Kutta numerical method for 

solving the Cauchy ODE problem. 
10.  Give a geometric interpretation of the Runge-Kutta method of the fourth 

order. 
11.  How is the calculation error determined by the Runge-Kutta numerical 

method of the fourth order? 
12.  Using the Runge-Kutta numerical method of the fourth order for the 

simplest mathematical model of the epidemic: 

  [ ]( ) 1 ( )dx x t N x t
dt

α= ⋅ ⋅ + − ,  (3.91) 

where N – the number of people in the research group, and α is the proportionality 
coefficient. Determine the value of x(t) – the number of cases of people depending 
on the units of time with the specified accuracy of the cut-off error h

nR =0,001. 
Compare the obtained results of the numerical study with the analytical solution 
of ODE (3.91) for the time interval t ϵ [0; 150,0] seconds, namely: 

( 1)
1( ) .

1N t
Nx t

N e α− +

+
=

⋅ +
 The initial data for the calculation are presented in 

Table 3.11. 
 

Table 3.11 – Output data for the task 

Version Number of people in the research 
group (N, person) 

Coefficient of 
proportionality (α, sec-2) 

9 100,0 0,0010 
10 80,2 0,0012 
11 50,5 0,0022 
12 60,6 0,0035 

 
13.  Using the Runge-Kutta numerical method of the fourth order for the 

mathematical model of the ballistics problem, namely the vertical fall of a body 
by mass m: 

  
2

2
d x dx g
dt m dt

α = − + 
 

 ,  (3.92) 

which is acted upon by the force of viscous friction Ffr, proportional to the velocity 
(Ffr= –αυ, where α is the coefficient of viscous friction), determine the value of 
its displacement depending on time t with the specified accuracy 
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h
nR =0,001 under the initial condition υ(0)=0 m/sec and drop height h. The initial 

data for the calculation are presented in Table 3.12. 
 

Table 3.12 – Output data for the task 

Version Body weight 
(m, kg) 

Coefficient of viscous 
friction (α, N⋅sec/m) 

Initial height of fall  
(h, m) 

13 2,0 0,00035 120,0 
14 3,2 0,00026 110,0 
15 3,5 0,00010 100,0 
16 4,6 0,00004 150,0 
 
14.  Reveal the essence of the numerical method of «prediction and 

correction» (Adams’) for solving the Cauchy problem of ODE. 
15.  How the calculation error is determined by the numerical method of 

«prediction and correction» (Adams’) for solving the Cauchy problem of the 
ODE? 

16.  What is the «self-start» property? What methods for solving ODE have 
it? 

17.  What is the order of accuracy of the numerical methods of Euler, Runge-
Kutta, and Adams for solving the Cauchy ODE problem? 

18.  Using the numerical method of «prediction and correction» (Adams’) for 
a mathematical model of limited population growth (Ferhulst’s logistic model): 

  2dN rN kN
dt

= − ,   (3.93) 

where r – the average growth rate of the population, k, is the meeting coefficient 
of competing individuals. Determine the value of the population size N depending 
on the time t with the specified accuracy of the error of the cut h

nR =0,0001 for the 
time interval t ϵ[0; 5,0]. Determine the smallest population size in the presence of 
competition. The initial data for the calculation are presented in Table 3.13. 

 
Table 3.13 – Output data for the task 

Version Initial population 
size (N, unit) 

Average population 
growth rate 

(r, 1/time unit) 

Coefficient of meeting 
of competing persons  

(k, person/unit of time) 
17 1000,0 3,23 2,15 
18 900,0 3,80 2,80 
19 800,0 4,10 5,10 
20 700,0 2,50 1,95 
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19.  In the mathematical model of free oscillations of a sprung body of mass 
m under the linear resistance of the medium (Ffr=1–α(dx/dt), where α is the 
coefficient of viscous friction)): 

  
2

2
d x dxm kx
dt dt

α= − − ,   (3.94) 

where k – stiffness coefficient of the elastic element, using the numerical method 
of «prediction and correction» (Adams’), determine the value of displacement x 
depending on time t with the specified accuracy Δ=0,0001 under the initial 
condition x(0)=0,02 m for the time interval tϵ[0; 5,0] seconds. The initial data for 
the calculation are presented in Table 3.14. 

 
Table 3.14 – Output data for the task 

Version 
Body weight 

(m, kg) 

Coefficient of 
viscous friction 

(α, N⋅sec/m) 

Stiffness coefficient of 
an elastic element  

(k, N/m) 
21 10,0 45,0 5,0⋅103 
22 12,0 42,0 8,0⋅103 
23 8,0 52,0 11,0⋅103 
24 9,0 38,0 13,0⋅103 
 

20.  A mathematical model for forecasting climatic conditions based on the 
Lorenz model (a model of the physical process of two-dimensional thermal 
convection): 

   

( )( ) ( ) ( ) ;

( ) ( ) ( ) ( ) ( );

( ) ( ) ( ) ( ),

dx t y t x t
dt

dy t Rx t y t x t z t
dt

dz t x t y t bz t
dt

σ = −

 = − −

 = −

   (3.95) 

where x(t) – intensity of convection; y(t) is the difference between the 
temperatures of the ascending and descending air flows; z(t) – deviation of the 
vertical temperature profile from the linear dependence; R is the normalized 
Rayleigh number (reflects the behavior of the airflow under the influence of the 
temperature gradient); σ – Prandtl number (criterion of the similarity of thermal 
processes in liquids and gases); b – geometric parameters of the convective 
calculation cell. With the help of any one-step or multi-step numerical method, 
plot the dependence diagram of x(y, z) on the time interval t ϵ[0; 100] seconds 
with a calculation step of t=0,01 sec. As initial parameters, select the following 
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values: x(t)=0,0; y(0)=1,0; z(t)=1,05. The initial data for the calculation are 
presented in Table 3.15. 

 
Table 3.15 – Output data for the task 

Version 
Normalized 

Rayleigh 
number (R) 

Prandtl number 
(σ) 

Geometric parameters of the 
convective calculation cell (b) 

25 28,0 10,0 10/3 
26 30,0 12,0 11/3 
27 31,0 13,0 13/5 
28 27,0 9,0 9/2 
29 29,0 11,0 14/3 
30 33,0 14,0 15/4 

 
21.  What is the difference between the initial and boundary conditions of the 

problem statement during the solution of the ODE?  
22.  Reveal the essence of the numerical method of «shooting» for solving the 

boundary value problem of the ODE. 
23.  The problem of the brachystochrone (the optimal path that the body takes 

in the minimum time under the influence of the Earth’s gravity) is given by a 
mathematical model: 

  
22

22 1 0d y dyy
dx dx

 + + = 
 

,   (3.96) 

where y – coordinate of the path along the x axis; 0<x<L cm – coordinates of the 

path along the x axis; (0) 0dy
dx

= ; 0<y<H cm – coordinates of the path along the y 

axis. Using the numerical «shooting» method, determine the value of the y 
coordinates of the optimal path curve depending on the x coordinate with an 
accuracy of ε=0,0001. The initial data for the calculation are presented in Table 
3.16. 

 
Table 3.16 – Output data for the task 

Version 
The initial position of the body 

along the vertical axis y 
(H, cm) 

The initial position of the body 
along the horizontal axis x  

(L, cm) 
1 35,0 45,0 
2 30,0 20,0 
3 40,0 50,0 
4 25,0 38,0 
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24.  Reveal the essence of the numerical method of finite differences for 
solving the boundary value problem of ODE. What are the stages of solving a 
problem using the finite difference method? 

25.  Write down the general formula for approximating derivatives at some 
point?  

26.  The problem of compressing a viscoplastic rod under longitudinal impact 
is given by a mathematical model: 

  
2

2 0
bd dax

dx dx
δ δ + = 

 
,  (3.97) 

where δ – compression value of the rod along the x axis; 0<x<L m – the coordinate 
of the length of the rod along the x axis; b=1,0 is a dimensionless parameter of the 
shock characteristic of the system; a is the stiffness of the rod under tension and 
compression. Using the numerical method of finite differences, determine the 
value of the local compression of the rod depending on the longitudinal coordinate 
x under the following boundary conditions δ(0)=0 mm, δ(L) = Δ mm. The initial 
data for the calculation are presented in Table 3.17. 

 
Table 3.17 – Output data for the task 

Version Rod length 
 (L, m) 

Stiffness of the rod in 
tension and 

compression (a) 

Deformation of the edge 
of the rod at the point of 

impact (Δ, mm) 
5 1,0 0,0034 1,2 
6 1,5 0,0038 1,5 
7 1,8 0,0023 2,1 
8 2,5 0,0048 2,8 

 
27.  What differential equations are called «stiff»? What are the peculiarities 

of their solution? 
28.  Reveal the essence of Euler numerical implicit method for solving «stiff» 

problems of ODE? 
29.  The problem of chemical reaction kinetics is given by a mathematical 

model: 

  
0,5 30 ;

30 ,

dx x y
dt
dy y
dt

 = − +

 = −


   (3.98) 

where x – the current value of the concentration of chemical substance A; y is the 
current value of the concentration of chemical substance B. Using Euler’s implicit 
numerical method for this «stiff problem» of the ODE system (3.98), determine 
the value of the change in the concentration of chemical substances x(t) and y(t) 
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during the time interval tϵ[0; 2,0] seconds with initial data x(0)=X0 та y(0)=Y0. 
The initial data for the calculation are presented in Table 3.18. 

 
Table 3.18 – Output data for the task 

Version 
The initial value of the 

concentration of chemical 
substance A (X0, mol/l) 

The initial value of the 
concentration of the chemical 

substance В (Y0, mol/l) 
9 1,6 2,8 
10 5,5 3,5 
11 3,8 2,9 
12 4,5 5,1 
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Chapter 4. DIFFERENTIAL EQUATIONS OF MATHEMATICAL 
PHYSICS 

 
One of the characteristic features of modern research is the mathematization 

of physical knowledge, which involves the intensive use of mathematical 
modeling methods in non-traditional and even «descriptive» sciences such as 
ecology and medicine. In today’s practice, scientists are required to solve various 
kinds of problems, the thorough examination of which can often only be done 
numerically or through a carefully designed physical experiment. Therefore, the 
development of general numerical methods (algorithms) for solving problems in 
mathematical physics and nonlinear mechanics is highly significant. 

The subject of mathematical physics is the construction and research of 
mathematical models of physical phenomena. The problems of classical 
mathematical physics are reduced to boundary value problems for partial 
differential equations. The main means of researching such problems are the 
theory of differential equations together with the theory of functions, calculus of 
variations, functional analysis, theory of probability, and computational 
mathematics. 

If we denote by D the region of the n-dimensional space of Rn points 
x=(x1, x2, …, xn); x1, x2, …, xn; n≥2 are Cartesian coordinates of point x, then 
equations of the form: 

  
1

1 1 1

, , , , , , 0
n

k

ii m
n n

u u u uF x u
x x x x x

 ∂ ∂ ∂ ∂
= ∂ ∂ ∂ ∂ ∂ 





 (x∈D; 
1

n

j
j

i k
=

=∑ ; k=0, 1, …, m)  (4.1) 

are called a partial differential equation of order m with respect to the unknown 

function u=u(x), where 
1

, , ,uF F x u
x

 ∂
=  ∂ 


 is a given real function of the points 

x∈D, the unknown function u and its partial derivatives. The left part of equation 
(4.1) is called a differential operator with partial derivatives of order m. 

The real function u=u(x1, x2, …, xn), defined in the region D by equation (4.1), 
is continuous along with its partial derivatives included in this equation, and when 
it is inverted into the identity, it is called a classical (regular) solution in terms of 
equation (4.1). 

The solution of equation (4.1) in the n+1-dimensional space of variables x1, 
x2, …, xn, u determines some smooth surface of dimension n, which is called the 
integral surface of equation (4.1). 

Many problems in the physics of continuous media are reduced to solving 
differential equations with partial derivatives. In such cases, the desired functions 
are usually density, temperature, stress, and others, with the arguments being the 
coordinates of the point being considered in space, as well as time itself. 

In particular, the thermal conductivity equation is used to describe the 
temperature distribution in a given area of space and its change over time: 
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2 2 2

2 2 2
1 2

( , )
n

u u u u f x t
t x x x

α
 ∂ ∂ ∂ ∂

− + + + = ∂ ∂ ∂ ∂ 


,  (4.2) 

where x = (x1, …, xn) are Cartesian coordinates, f(x, t) is a function of heat sources, 
α is a coefficient of thermal conductivity, u(x, t) is the desired temperature 
function at a point with coordinates x at time t. If f(x, t) ≡ 0, that is, there are no 
heat sources and «sinks» inside the system, then the heat conduction equation 
(4.2) is called homogeneous. 

The complete mathematical formulation of the problem, along with the 
differential equations, also includes some additional conditions. If the search for 
a solution is conducted within a limited domain, boundary conditions are also 
defined. In such cases, the problem is referred to as a boundary value problem for 
equations with partial derivatives. 

If one of the independent variables is time t, then the values of the sought 
functions at the initial moment of time t=0 are set, and they are called initial 
conditions. In particular, for the thermal conductivity equation (4.2), the boundary 
and initial conditions are u|Ω = ψ(t) and u|t=0 = φ(x), respectively, where nΩ∈  
(n = 2, 3) is a two-dimensional or three-dimensional region. 

The problem in which it is necessary to solve a partial differential equation 
under given initial conditions is called the Cauchy problem. At the same time, the 
problem is solved in an unbounded space, and boundary conditions are not set. 
Problems, in which both boundary and initial conditions are set at the same time, 
are called non-stationary (or mixed) boundary value problems. The solution that 
will be obtained in this case changes over time. 

This section will only consider correctly posed problems, that is, problems 
whose solution exists and is unique in a certain class of initial and boundary 
conditions. 

 

4.1 Classification of partial differential equations 

Let u(x, y) be an unknown function of two variables, x and y, which must be 
determined. Then, a sufficiently narrow class of problems for equations of the first 
and second orders, linear with respect to the derivatives, is expressed by the 
following form of the equation: 

 

  

2 2 2

2 2( , ) 2 ( , ) ( , ) ( , )

( , ) ( , ) ,

u u u uA x y B x y C x y D x y
x x y y x

uE x y F x y G
y

∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂ ∂
∂

+ + =
∂

  (4.3) 

where A, B, C, D, E, F – functional coefficients that can depend on the arguments 
x, y, and on the function u. 
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Depending on this equation (4.3) can be: 
a) a second-order equation in partial derivatives with constant coefficients; 
b) linear, if the right-hand side of the equation depends linearly on the 

function u, and the coefficients depend only on x, y; 
c) quasi-linear if the coefficients depend on u. 
Similarly to ordinary differential equations, the unique solution of the 

equation can be obtained only by setting additional conditions. However, since 
there are two independent variables, x and y, in equation (4.2), the condition must 
be set for some curve in the x, y plane. This condition can be imposed on the 
function u or (and) on its derivatives, depending on the type of equation that 
determines its type and nature of change. 

Different types of equations are distinguished depending on the ratio between 
the coefficients: 

1) for A = B = C = D = F =0, D≠0, E≠0 we have the transfer equation 

 u uP G
x y
∂ ∂

+ =
∂ ∂

 (P=E/D).   (4.4) 

If time is one of the independent variables in equation (4.3), then this equation 
is called evolutionary. 

2) if at least one of the coefficients A = B = C ≠ 0, then equation (4.3) is a 
second-order equation. In this case, depending on the discriminant

24 4Ds B AC= − , equation (4.2) can belong to one of three types: hyperbolic (Ds 
> 0), parabolic (Ds = 0), or elliptic (Ds < 0) 

Equations can change from one type to another depending on the values of 
the corresponding coefficients. 

In the case when the coefficients A, B, C are constant, equation (4.3) has the 
same type at all points of the plane of variables x and y. In the event that the 
coefficients A, B, C depend continuously on x and y, the set of points in which this 
equation belongs to the hyperbolic (elliptic) type forms an open region on the 
plane, which is called hyperbolic (elliptic), and the set of points in whose 
equations belong to the parabolic type, is closed. Equation (4.3) is called mixed 
(of mixed type) if it is hyperbolic in some points of the plane, and elliptic in others. 
In this case, the parabolic points usually form a line called the line of change of 
type or the line of degeneration. 

There are two types of methods for solving equations of this type: analytical 
(the result is derived by various mathematical transformations), and numerical, in 
which the obtained result corresponds to the real one with a given accuracy, but 
many algebraic calculations are necessary, which requires the use of computing 
power of computer systems. 

This section is devoted to numerical methods, algorithms and their application 
for partial differential equations of the second order, which are most often used in 
scientific and applied engineering problems. 

Examples of some partial differential equations that describe different types 
of problems are given in Table 4.1. 
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Table 4.1 – Differential equations in partial derivatives 

Equation type Mathematical 
form Examples of problems 

Laplace 0u∆ =  A steady flow of liquid. Stationary thermal 
fields 

Poisson u k∆ = −  Heat transfer with an internal heat source 

Diffusion 
2

2 2
1 uu
h t

∂
∆ =

∂
 Unsteady thermal conductivity 

Wavy 
2

2 2
1 uu
c t

∂
∆ =

∂
 Propagation of waves (sound, 

electromagnetic, etc.) 

Biharmonic 2 ( , )u F x y∆ =  Plate deformation 
  

Table 4.1 uses accepted designations of the most common operators: 
2 2

2 2
u uu

x y
∂ ∂

∆ = +
∂ ∂

 – Laplace, 
4 4 4

2
4 2 2 42u u uu

x x y y
∂ ∂ ∂

∆ = + +
∂ ∂ ∂ ∂

 – biharmonic. 

There are two main methods of numerical solution for partial differential 
equations: the difference method (finite difference method) and the finite element 
method. In modern applied mathematics, both methods are considered as 
interpretations of the use of the general theory of difference schemes for solving 
partial differential equations. 

The basis of the finite element method is variational calculus. Differential 
equations that describe the problem and corresponding boundary conditions are 
used to formulate the variational problem. In the finite element method, the 
physical problem is replaced by a piecewise smooth model. This method requires 
a complex formulation of the problem, high qualification, and experience. It is not 
universal, as each solution is only applicable to a specific problem. The finite 
element method has found wide use in solving special problems in theoretical 
mechanics, hydrodynamics, and field theory. It is complex and requires serious 
training and knowledge in a specific field of use. 

 

4.2 Finite difference method 

The apparatus of difference methods is an effective means of numerical 
solution for both ordinary and partial differential equations. In section 3.3, the 
main principles of constructing difference systems were discussed, which are 
based on representing an independent variable as a discrete set of points, known 
as a grid. In addition to the commonly used rectangular grid, other types such as 
polar, triangular, slanted, and others are also employed (Fig. 4.1). 
Multidimensional grids are used for solving partial derivative problems with 
multiple independent variables. 
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а) b) c) d) 
Figure 4.1 – Schemes of calculation grids: 

a) rectangular; b) polar; c) triangular; d) beveled

Figure 4.2 – Calculation scheme of a 
two-dimensional square grid 

For differential equations of the second order in partial derivatives, a two-
dimensional rectangular grid is most often used (Fig. 4.1, a). The central-
difference templates, which are applied on a two-dimensional square grid with a 
step size h (Fig. 4.2), can be obtained similarly to the one-dimensional case (the 
index j refers to the independent variable y, and the index i refers to x). 

For convenience, the notation u(xi+h, yi) must be replaced by ui+1,j. Using the 
following notations and performing an expansion in a Taylor series, we obtain 
expressions for partial derivatives, namely: 

1, 1, 1
2 2

i j i ju uu
x h h

+ −−∂
≈ ≈

∂
[                      ];

2
1, , 1,

2 2 2

2 1i j i j i ju u uu
x h h

+ −− +∂
≈ ≈

∂
[      ];

-1 0 1 
i, j 

1 -2 1 
i, j



173 

, 1 , 1 1
2 2

i j i ju uu
y h h

+ −−∂
≈ ≈

∂
             ; 

2
, 1 , , 1

2 2 2

2 1i j i j i ju u uu
y h h

+ −− +∂
≈ ≈

∂
    ; 

2
1, 1 1, 1 1, 1 1, 1

2 2
1

4 4
i j i j i j i ju u u uu

x y h h
+ + − + + − − −− − +∂

≈ ≈
∂ ∂

                           ; 

4
2, 1, , 1, 2,

4 4 4

4 6 4 1i j i j i j i j i ju u u u uu
x h h

− − + +− + − +∂
≈ ≈

∂
[                                            ];

4
, 2 , 1 , , 1 , 2

4 4 4

4 6 4 1i j i j i j i j i ju u u u uu
y h h

+ + − −− + − +∂
≈ ≈

∂
       . 

More complex computational templates for differential equations are built 
from these elements. The addition of derivatives is carried out by superposition 
of the corresponding calculation patterns. This method constructs templates for 
Δu and Δ2u, which have an error of order h2: 

 
2 2

1, , 1, , 1 , 1
2 2 2 2

4 1i j i j i j i j i ju u u u uu uu
x y h h

− + + −− + + +∂ ∂
∆ = + ≈ ≈

∂ ∂
         ; 

1 

0 

-1

i, j 

1 

-2

1
i, j

1 

-1

0 

0 

0 

0 

1 

0 

-1

1 -4 6 -4 1

6

-4 

-4 

1 

1

i, j 

i, j 

i, j 

-4

1 

1

1 1
i,  j
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4 4 4

2
4 2 2 4

4

12u u uu
x x y y h
∂ ∂ ∂

∆ = + + ≈
∂ ∂ ∂ ∂

                                               .  

 
 

 
 
 
All of the computational patterns shown have second-order errors. It is 

possible to construct more accurate computational patterns if additional nodes are 
considered. The central-difference approximation is the basis of all the 
computational templates built above. Sometimes, left or right differences are used 
to minimize the spread of errors. When using computational templates, the 
difference equation (approximate partial differential equation) can become 
unstable. A difference scheme is considered unstable if the error does not decrease 
with each iteration step. Problems of instability of difference schemes especially 
arise in evolutionary problems. 

By applying the computational template to each of the n nodes of the grid, we 
obtain a system of n equations, which can be linear if the initial differential 
equation has the appropriate structure. In this case, solving the problem is reduced 
to solving the system of equations in the form of. 

coefficient unknown value in vector - column
 matrix  nodes (vector - column)  of  free members
     

=     
     

, 

which is most often solved by iterative methods (see Chapter 1). 
 

4.3 Solving various types of partial differential equations 

 
Practical methods and algorithms for solving various types of partial 

differential equations have certain features and require separate consideration. 
This can be demonstrated using the most common problems as examples. 

Solving elliptic equations 

Many different physical problems can be reduced to elliptic equations, such 
as the calculation of stresses arising during the elastic torsion of a long cylindrical 
rod, the distribution of electric stresses on the conductor plane, and the problem 
of stationary heat flows in a flat body, among others. 

20 

-8 

-8 

-8 

1 

1 

1 1 

2 

2 

2 

2 
i, j 

 

-8 
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Most elliptic equations are described by Poisson’s equation or its partial case 
– Laplace’s equation. 

One of the well-known problems is the classical Dirichlet problem for the 
Laplace equation in a rectangular domain. It is necessary to define a continuous 

function u(x, y) that satisfies the Laplace equation 
2 2

2 2
u uu

x y
∂ ∂

∆ = +
∂ ∂

 inside the 

rectangular domain Ω = {(x; y) |0 ≤ x ≤ a, 0 ≤y ≤b}, and also acquires given 
values at the boundary of the domain: x = 0, u(0,1y) = u1(y); x = a, u(a,1y) = u2(y); 
y = 0, u(x, 0) = u3(x);  x = b, u(x, b) = u4(x). 

A two-dimensional grid with a pitch h along the x-axis and l along the y-axis 
is introduced into the solution domain. Then, using the given notation and 
approximating the Laplace equation by a difference equation (see Chapter 4.2), 
we obtain the following system of linear equations (l = h): 

 

( ), 1, 1, , 1 , 1

,0 3 , 4 0, 1 , 2

1 ;
4

( ), ( ), ( ), ( );
1, 2, , 1; 1, 2, , 1.

i j i j i j i j i j

i i i m i j i n j i

u u u u u

u u x u u x u u y u u y
i n j m

+ − + −
 = + + +


= = = =
 = − = −


 

   (4.5) 

Such a system of equations has a large number of zero elements and satisfies 
the condition of convergence when using iterative methods. To solve systems of 
equations of the type (4.5), the Gauss-Seidel method (see Chapter 1) is most often 
used, which, when applied to elliptic differential equations, is called the Liebmann 
method or the method of successive displacements. The algorithm for solving 
elliptic differential equations based on the Laplace equation and the difference 
scheme (4.5) by the Gauss-Seidel method is presented in Figure 4.3. 

 

It should be noted that any elliptic equations that do not contain 
2u

x y
∂
∂ ∂

 

reduce to systems of difference equations that can be solved by both the 
Liebman’s method and other iterative methods, as long as sufficient 

convergence conditions are used. For elliptic equations that contain 
2u

x y
∂
∂ ∂

, in 

the general case, the issue of convergence of iterative methods has no 
theoretical solution. Therefore, it is necessary to consider the obtained system 
of equations separately in each case. 
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Figure 4.3 – Scheme of the algorithm for solving elliptic partial differential 

equations 
 

Example 4.1. Determine the stationary temperature distribution in the plate 
by size L×H = 1,0×1,0 m, for which the following boundary conditions are 
specified: u(0,y) = u1(y) = 0°C; u(L,y) = u2(y) = 100 °C; u(x,0)=u3(x)=100x grad; 
u(x, H) = u4(x) = 100x2 grad. 
 

Solution: 
The steady-state temperature distribution for a flat body is described by the 

homogeneous heat conduction equation (4.1), namely the Laplace equation with 
two independent variables, x and y: 



177 

 
2 2

2 2 0u uu
x y
∂ ∂

∆ = + =
∂ ∂

.  (4.6) 

To formulate the problem, it is necessary to enter a two-dimensional grid on 
the plate with a distance between nodes of h=0,25 m (Fig. 4.4). The grid contains 
25 nodes, out of which 16 have known temperature values based on the boundary 
conditions. It is necessary to determine the temperature in all 9 internal grid nodes. 
The serial number of the calculation node is indicated by the index i on the x-axis 
and by the index j on the y-axis. The new value of the node temperature ui,j can be 
calculated using the calculation template (see section 4.3) from equation (4.6), 
namely: 
since 

 
2 2

1, , 1, , 1 , , 1
2 2 2 2

2 2
0i j i j i j i j i j i ju u u u u uu uu

x y h h
+ − + −− + − +∂ ∂

∆ = + = + =
∂ ∂

, 

then       
   ( ), 1, 1, , 1 , 10,25i j i j i j i j i ju u u u u+ − + −= + + + .   (4.7) 

 

 

Figure 4.4 – Calculation scheme of stationary temperature distribution 
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Based on equation (4.7), we write down the system of equations for the 
temperature value of each node in the calculation grid of the plate: 

    

( )
( )
( )
( )
( )
( )
( )
( )

11 21 12 01 10

21 31 22 11 20

31 41 32 21 30

12 22 13 02 11

22 32 23 12 21

32 42 33 22 31

13 23 14 03 12

23 33 24 13 22

33

0,25 ;

0,25 ;

0,25 ;

0,25 ;

0,25 ;

0,25 ;

0,25 ;

0,25 ;

0,25

u u u u u

u u u u u

u u u u u

u u u u u

u u u u u

u u u u u

u u u u u

u u u u u

u

= + + +

= + + +

= + + +

= + + +

= + + +

= + + +

= + + +

= + + +

= ( )43 34 23 32 ,u u u u
















+ + +

   (4.8) 

where u00 = u01 = u02 = u03 = u04 = 0 °С; u40 = u41 = u42 = u43 = u44=100 °С; since 
u14 = 100x2 = 100h2 = 100·0,252 = 6,25 °С, then u24 = 25,0 °С; u34 = 56,25 °С; then 
u14 = 100x = 100h = 100·0,25 = 25,0 °С, then u20 = 50,0 °С; u30 = 75,0 °С. 

The actual temperature values in all nine internal nodes of the grid will be 
determined by the Gauss-Seidel method (see Chapter 1). For this, the system of 
equations (4.8) must be written in iterative form, assuming that the initial value of 
the temperature in the desired nodes is zero. 
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where (0) (0) (0) (0) (0) (0) (0) (0) (0)
11 21 31 12 22 32 13 23 33 0u u u u u u u u u= = = = = = = = =  – initial 

temperature values in the calculation nodes; n = 1, 2, … – computational iteration 
number. 
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Using the Gauss-Seidel calculation algorithm (see Fig. 4.3) with a calculation 
error of ε = 0.001, the following calculation result was obtained after 17 iterations: 

    .   (4.10) 

Based on the results of calculations (4.10), it is possible to construct a three-
dimensional graph of the stationary temperature distribution in the plate (Fig. 4.5). 

 

 

Figure 4.5 – Diagram of the stationary temperature 
distribution in the plate 

 
The result of solving example 4.1 in the PYTHON programming language: 

 
%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import * 
from sympy import * 
from matplotlib.colors import LinearSegmentedColormap 
# entering the length of the plate 
l=float(input()) 
# entering the width of the plate 
h=float(input()) 
# entering the step value of the calculation grid along the x-axis 
h_x=float(input()) 
# entering the step value of the calculation grid along the y axis 
h_y=float(input()) 

04 14 24 34 44

03 13 23 33 43
(17)

02 12 22 32 42

01 11 21 31 41

00 10 20 30 40

0,0 6,25 25,0 56,25 100,0
0,0 16,35 38,06 66,35 100,0
0,0 21,09 44,53 71,09 100,0
0,0 23,49 47,88 73,49 100,0
0,0 25,0 50,0 75,0 100,0

u u u u u
u u u u u

u u u u u u
u u u u u
u u u u u

= =
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# entering the value of the boundary conditions: 
 # entering the temperature value on the left wall of the plate 
t_left=float(input()) 
 # entering the temperature value on the right wall of the plate 
t_right=float(input()) 
# introduction of the initial temperature distribution function on the upper 

wall of the plate 
def t_top(x): 
    return (t_right/(l*l))*x*x 
# introduction of the initial temperature distribution function on the bottom 

wall of the plate 
def t_down(x): 
    return (t_right/l)*x 
# entering the calculation error value 
e=float(input()) 
# input of boundary condition values: 
# for the upper wall 
side_top, side_down=[],[] 
x=0 
for i in range(0,int(l/h_x)+1):    
    side_top.append(t_top(x)) 
# for lower wall 
    side_down.append(t_down(x)) 
    x=x+h_x 
side_top, side_down=np.array(side_top),np.array(side_down) 
# for the left wall and the right wall 
side_left, 

side_right=[float(t_left)]*(int(h/h_y)+1),[float(t_right)]*(int(h/h_y)
+1) 

side_left, side_right=np.array(side_left),np.array(side_right) 
side_right=side_right.reshape(-1,1); side_left=side_left.reshape(-1,1) 
u=np.full((int(h/h_y)+1,int(l/h_x)+1),0.0) 
u=np.append(u,side_right,axis=1); u=np.delete(u,int(l/h_x),axis=1) 
u=np.insert(u,[0],side_left,axis=1); u=np.delete(u,1,axis=1) 
u=np.insert(u,int(h/h_y)+1,side_down,axis=0); 

u=np.delete(u,int(h/h_y),axis=0) 
u=np.insert(u,0,side_top,axis=0); u=np.delete(u,1,axis=0) 
print(' Initial calculation grid with boundary conditions); print(u) 
# calculation of the system of difference equations by the Gauss-Seidel method 
k=0 
while True: 
    count=0 
    for i in range(1,int(h/h_y)): 
        for j in range(1,int(l/h_x)): 
            u_last=u[i,j] 
            u[i,j]=0.25*(u[i+1,j]+u[i,j+1]+u[i-1,j]+u[i,j-1]) 
            if abs(abs(u_last)-abs(u[i,j]))>=e: 
                count=count+1 
    k=k+1 
    if count==0: 
        break 
u=np.around(u, decimals=2) 
print(' The number of computational iterations k=',k) 
print('The number of computational iterations'); print(u) 
# construction of a three-dimensional graph of temperature distribution 
x=np.linspace (0, l, int(l/h_x)+1) 
y=np.linspace (0, h, int(h/h_y)+1) 
x,y=np.meshgrid(x, y) 
fig = plt.figure(figsize=(20, 20)) 
axes = fig.add_subplot(1, 2, 1, projection='3d') 
axes.plot_surface(x, y, u, rcount=1000, ccount=1000, linewidth=0.2, 

edgecolors='k', cmap='jet') 
axes.view_init(elev=35, azim=75) 
axes.set_xlabel('X') 
axes.set_ylabel('Y') 
axes.set_zlabel('T') 
plt.show(). 
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Solving hyperbolic equations 

One of the most common types of hyperbolic equations with second-order 
partial derivatives in engineering practice is the wave equation, which describes 
various types of oscillations: 

    

2 2 2 2
2

2 2 2 2
1 2

( , )
n

u u u ua f x t
t x x x

 ∂ ∂ ∂ ∂
= + + + + ∂ ∂ ∂ ∂ 

 ,  (4.11) 

where x = (x1, …, xn) – Cartesian coordinates;; f(x, t) f(x, t) is a function of external 
influence (external force); t∈R – time; a – phase speed; u(x, t) is a function of the 
position of the wave at the point with coordinates x at time t. 

Depending on the number of Cartesian coordinates, one-dimensional, two-
dimensional, and three-dimensional wave equations are distinguished. 
The one-dimensional wave equation describes the longitudinal oscillations of a 
rod, in which the sections carry out plane-parallel oscillatory movements, as well 
as the transverse oscillations of a thin rod (string) and other tasks. 

The two-dimensional wave equation is used to study the oscillations of a thin 
plate (membrane). 

The three-dimensional wave equation describes the propagation of waves in 
space (for example, sound waves in a liquid, elastic waves in a continuous 
medium, etc.). 

The one-dimensional homogeneous wave equation for the case of free 
oscillations, based on equation (4.11), is written in the following form: 

   
2 2

2
2 2
u ua

t x
∂ ∂

=
∂ ∂

,  (4.12) 

where u(x, t) – a function that describes the position of the string at time t; a2=T/ρ 
(T – the tension of the string, ρ – its linear (linear) density); f(x, t) = 0 – external 
influence function (see (4.11)). 

Oscillations are assumed to be small, that is, their amplitude is small 
compared to the length of the string. The resistance of the medium to the 
oscillating process is not taken into account. 

The simplest problem for equation (4.12) is the Cauchy problem: at the initial 
moment of time, two conditions are set (the number of conditions is equal to the 
order of the derivative with respect to time t): 

   0
( , 0) ( )

t
u u x xϕ

=
= = , 

0

( )
t

u x
t

ψ
=

∂
=

∂
.   (4.13) 

These conditions describe the initial shape of the string u=φ(x) and the speed 
of movement of its points ψ(x). In practice, one does not solve the Cauchy 
problem for an infinite string, but a mixed problem for a finite string of some 
length l. In this case, the boundary conditions at its ends u(0, t) = µ1(t) and 
u(l, t) = µ2(t). 
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For example, at fixed ends, their displacements are equal to zero, and the 
boundary conditions have the form: 

 0
0

t
u

=
= , 0

x l
u

=
= .    (4.14) 

To solve the problem (4.12)–(4.14), a three-layer scheme is most often used, 
where the set of nodes according to t=const is called a layer. At the same time, a 
uniform rectangular grid is introduced: xi = i·h (i = 0, 1, …, n), τi = j·τ (j = 0, 1, 
…, m). Based on basic difference schemes (see Section 4.3), equation (4.12) is 
represented by finite-difference relations: 
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.   (4.15) 

An explicit expression for the value of the grid function on the j+1 layer is 
determined from equation (4.15):  

 , 1 1, 1, , , 1( ) 2(1 )i j i j i j i j i iu u u u uλ λ+ + − −= + + − − ,  (4.16) 

where 
2 2

2
a
h
τλ = . 

The solution scheme based on equation (4.16) is called a three-layer scheme 
because it connects the values of ui,j on three time layers: j–1, j, and j+1. To 
determine the unknown values on the j+1 layer, it is necessary to know the 
solutions on the j−th and (j–1)th layers. Therefore, calculations according to 
formulas (4.16) must start from the second layer, and the solutions on the zero 
and first layers must be known. In other words, they are determined using the 
initial conditions (4.13). Specifically, on the zero layer: 

 ,0 ( )i iu xϕ=  (i=0, 1, …, n).   (4.17) 

To obtain the solution on the first layer, it is necessary to use the second initial 
condition (4.13), where the derivative /u t∂ ∂  is replaced by the finite-difference 
approximation: 

 ,1 ,0

0

( )i i
i

t

u uu x
t

ψ
τ=

−∂
≈ ≈

∂
.  (4.18) 

The value of the grid function on the first time layer is determined from 
relation (4.18): 

 ,1 ,0 ( )i i iu u xτψ= +  (i=0, 1, …, n; t=0).  (4.19) 

It should be noted that the approximation of the initial condition in the form 
of (4.18) worsens the approximation of the original differential problem. The 
approximation error becomes of the order of O(h2+τ), which means it is of the first 
order with respect to τ. However, scheme (4.16) itself has the second order of 
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approximation with respect to h and τ. Therefore, to increase the accuracy, a more 
accurate representation is chosen instead of equation (4.19): 

  
2 2

,1 ,1 2
0 02i i

t t

u uu u
t t

ττ
= =
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= + +

∂ ∂
.  (4.20) 

Instead of /u t∂ ∂ , ψ(x) is used. The expression for the second derivative of 
equation (4.20) can be determined using equation (4.12) and the first initial 
condition (4.13), namely: 

2 2 2
2 2

2 2 2
0 0t t

u ua a
t t x

ϕ

= =
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= =

∂ ∂ ∂
 . 

Then equation (4.19) takes the following form: 

  
2

2
,1 ,0 ( ) ( )

2i i i iu u x a xττψ ϕ′′= + +   (i=0, 1, …, n).  (4.21) 

The difference scheme (4.15) taking into account (4.21) has an approximation 
error of the second order of accuracy O(h2+τ2). 

When solving a mixed problem with boundary conditions of the form (4.14), 
that is, when the value of the function itself is set at the ends of the considered 
segment, the second order of approximation is preserved. In this case, the extreme 
nodes of the grid are located at the limit points (x0 = 0, x1 = l). However, boundary 
conditions can also be specified for the derivative. For example, in the case of free 
longitudinal oscillations of a rod at its unfixed end, the condition is set: 

   0
x l

u
x =

∂
=

∂
.  (4.22) 

If this condition is written in the difference form with the first order of 
approximation, then the approximation error of the scheme will be of the order of 
O(h2+τ2). Therefore, to preserve the second order of this scheme with respect to 
h, it is necessary to approximate the boundary condition (4.22) with the second 
order of accuracy. 

The difference scheme (4.16) for the solution of problem (4.12) – (4.14) is 
conditionally stable. Therefore, the necessary and sufficient condition for stability 
is in the form: 

   1r a
h
τ

= < .    (4.23) 

Condition (4.23) ensures the acceptable accuracy of obtaining the solution 
u(x, t), which has continuous derivatives of the fourth order. Moreover, under the 
condition r >1, the solution is unstable, and under r<1, the solution is stable, but 
its accuracy decreases as r decreases. Provided that r=1, the difference solution is 
stable and coincides with the exact one. 

The algorithm for modeling free string vibrations based on the wave equation 
(4.12) is presented in Figure 4.6. 
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Figure 4.6 – Scheme of the algorithm for solving hyperbolic partial differential 
equations 
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Example 4.2. Determine the position of the string as a function of time, which 
undergoes free oscillations during the time t = 2,0 sec with fixed ends (the distance 
between the points of fixing the ends L = 4,0 m) and for which the following 
conditions are set: 

– phase velocity coefficient а = 1,0 m/sec; 
– initial 
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Compare the obtained solution with the exact solution: 2s( ) ., co
2
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 
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+

=  

 
Solution: 

The free oscillations of the string are described by one of the types of 
hyperbolic equations, namely, the uniform wave equation (4.12) with two 
independent variables x, t: 

                                                    
2 2

2
2 2
u ua

t x
∂ ∂

=
∂ ∂

.                                           (4.24) 

To formulate the problem and fulfill the condition of stability of the solution 
of the difference scheme (4.23), it is necessary to introduce a two-dimensional 
calculation grid, namely: along the horizontal axis x with a distance between 
nodes h=0,2 m (Fig. 4.7), as well as for time (variable t) with a distance between 
nodes τ=0,1 sec. The grid along the horizontal axis x contains 
nx=(L/h)+1=(4,0/0,2)+1=21 nodes, and along the time variable τ also contains 
nτ=(t/τ)+1=(2,0/0,1)+1=21 nodes. The serial number of the calculation node is 
indicated by the index i on the x-axis, and by the index j on the time axis. 

 

 
Figure 4.7 – Calculation scheme for the free oscillations of the string 
              

The value of the vector of positions of the oscillating string for the first time 
layer at the instant of time t0 = 0,0 sec (j = 0): 
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The value of the position vector of the oscillating string for the second time 
layer, at the moment of time t1 = τ = 0,1 sec (j = 1) based on equation (4.21): 
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=0,978 m. 
The value of the position vector of the oscillating string for the third time 

layer, at the moment of time t2=2τ=2·0,1 sec based on equation (4.16) for the same 

value of j=1, for 
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Similarly, formula (4.16) is used to determine the position vectors of the 
oscillating string for the remaining time layers (j = 3, 4, …, 20). Based on the 
results of the calculations, it is possible to construct a diagram of the positions of 
the string for different moments of time during free oscillation (Fig. 4.8), where 
the movement of the wave (point A) can be clearly determined. 

 

 
Figure 4.8 – Diagram of the positions of the string at different moments of time 

during free oscillation 
 

The relative error of calculating the wave equation by comparing the values 
of the analytical solution and the numerical method is: 

– of the third time layer at the nodal point i=10 (x10=2,0 m) 
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– of the fourth temporal layer at the nodal point i=15 (x10=3,0 m) 
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where 2 23 15
15,3

0,3 3,0cos 0c
2

0,0063os
2

аn t xu    = =   
   

+ +
= m, 

15,3 16,2 14,2 15,2 15,1( ) 2(1 ) 0,25(0,0167 0,0050)numu u u u uλ λ= + + − − = + +   

2(1 0,25)0,0008 0,0004+ − − = 0,00626 m. 
The value of the relative errors in the calculation using the numerical method 

of finite differences demonstrates the high accuracy of solving partial differential 
equations of the hyperbolic type. This is achieved by employing the explicit 
difference scheme for evaluating the grid function. 

The result of solving example 4.2 in the programming language PYTHON: 
 

%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits import mplot3d 
from scipy import * 
from sympy import * 
#entering the value of the length of the string 
l=float(input()) #l=4.0  
# entering the step value of the calculation grid along the length of the 

string 
h_x=float(input()) #h_x=0.2  
# entering the step value of the calculation grid over time 
h_t=float(input()) #h_t=0.1 
#entering the value of the boundary conditions: 
#entering the coordinate value of the position of the left end of the string 
def u_left(t): 
    return np.cos(0.5*t)*np.cos(0.5*t) 
#entering the coordinate value of the position of the right end of the string 
def u_right(t): 
   return np.cos((0.5*t)+2)*np.cos((0.5*t)+2) 
#entering the function of the initial position of the string 
def u_x0(x):     
    return np.cos(0.5*x)*np.cos(0.5*x) 
#entering the function of the initial velocity of the points of the string 
def v_first(x): 
    return -0.5*np.sin(x) 
#entering the value of the total oscillation time 
t=float(input()) #t=2.0 
#entering the calculation error value 
e=float(input()) #e=0.005 
#entering the string tension indicator 
a=float(input()) #a=1 
lamb_da=(a*a*h_t*h_t)/(h_x*h_x) 
#control of the solution's stability condition 
if np.sqrt(lamb_da)>1: 
    print("The solution condition is not stable. Change the resolution 

parameters!") 
#entering the values of the boundary conditions: 
u_first,u_second,x_coord=[u_left(0)],[u_left(h_t)],[0] 
x=h_x 
for i in range(0,int(l/h_x)): 
#for the first temporal layer 
    u_first.append(u_x0(x)) 
#for the second time layer 
    if i==int(l/h_x):         
        u_first.append(u_right(0)) 
    else:         
     u_second.append(u_x0(x)+(v_first(x)*h_t)+(0.5*(a*a)*(h_t*h_t)*(0.5*(-
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np.cos(x))))) 
    x_coord.append(x) 
    x=x+h_x 
u_second[int(l/h_x)]=u_right(h_t) 
u_first, u_second=np.array(u_first),np.array(u_second) 
u=np.array([u_first,u_second]) 
#solution of a three-layer system of finite-difference equations 
t_0=h_t 
for j in range(2,int(t/h_t)+1): 
    t_0=t_0+h_t; u_next=[u_left(t_0)] 
    for i in range(0,int(l/h_x)-1): 
        u_next.append(lamb_da*(u[j-1,i+2]+u[j-1,i])+(2*(1-lamb_da)*u[j-

1,i+1])-u[j-2,i+1]) 
    u_next.append(u_right(t_0)); u=np.insert(u,j,u_next,axis=0) 
    del u_next 
print('The matrix of values of the position of the oscillating string for 

each moment in time:') 
print(u) 
#graphing the solutions of the hyperbolic (wave) equation 
k=0 
plt.figure(figsize=(8, 8)) 
plt.xlabel('x',fontsize=15, color='blue') 
plt.ylabel('y',fontsize=15, color='blue') 
for i in range(0,6): 
    plt.plot(x_coord, u[k]); k=k+4 
plt.grid(True) 
plt.xlim([0, 4]) 
plt.ylim([-0.1, 1.1]) 
plt.show() 
#calculating the values of the exact solution of the hyperbolic (wave) 

equation 
x_an=0; t_an=0 
u_an=[] 
for i in range(0,int(l/h_x)+1): 
    u_an.append(np.cos(0.5*(x_an+t_an))*np.cos(0.5*(x_an+t_an))) 
    x_an=x_an+h_x 
t_an=t_an+h_t 
u_an=np.array([u_an]) 
for j in range(1,int(t/h_t)+1): 
    u_tran=[]; x_an=0 
    for i in range(0,int(l/h_x)+1):         
        u_tran.append(np.cos(0.5*(x_an+t_an))*np.cos(0.5*(x_an+t_an))) 
        x_an=x_an+h_x 
     
    t_an=t_an+h_t 
    u_an=np.insert(u_an,j,u_tran,axis=0) 
    del u_tran 
print('The matrix of exact values of the position of the oscillating string 

for each instant of time:') 
print(u_an) 
#determination of calculation error 
e_tran=[]; count=0 
for j in range(0,int(t/h_t)+1): 
    for i in range(0,int(l/h_x)-1): 
        e_tran.append(abs(u_an[j,i]-u[j,i])) 
        if abs(u_an[j,i]-u[j,i])>=e: 
            count=count+1 
if count>0: 
    print("The calculation error exceeds the specified accuracy. Please 

change the initial parameters of the calculation."). 
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Solving parabolic equations 
 
An example of a problem that can be reduced to a parabolic equation in partial 

derivatives is the problem of non-stationary thermal conductivity described by the 
homogeneous equation (4.2). In particular, in the homogeneous thermal 
conductivity problem, it is necessary to determine the function u(x, t) that satisfies 
the equation in the domain Ω ={(x, t), 0 ≤ x ≤ l, 0 ≤ t ≤T)}. 

 
2

2
u u
t x

α∂ ∂
=

∂ ∂
 (k = const>0), (4.25) 

initial condition 0( ,0) ( )u x u x=  and boundary conditions of the first kind u(0, 
t) = µ1(t) and u(l, t) = µ1(t). 

There are two possible options for constructing the difference equation on the 
calculation grid with steps h along x and τ along t. 

 A variant of approximation using a four-point template, a central difference 
scheme of the second kind (see Section 4.3), and a left difference scheme  

, 1 , 1i j i ju uu
t τ τ

+ −∂
≈ ≈

∂
[                         ] leads to an explicit two-layer scheme, 

namely: , 1 , 1, , 1,
2

2i j i j i j i j i ju u u u u
h

α
τ

+ + −− − + 
≈  

 
 (i = 1, 2, …, n–1;  

j = 0, 1, …, m–1), then 
 , 1 1, 1,(1 2 )i j i j ij i ju u u uδ δ δ+ + −= + − + ,   (4.26)   

where 2h
τδ α= .   

The explicit two-layer difference scheme (4.26) is stable only for δ≤0.5, 
which leads to the need to perform calculations with a very small step in 
t ( 20,5hτ ≤ ). This also limits the speed of operation and requires a large 
expenditure of machine time for computer systems. 

The algorithm for solving parabolic differential equations based on the heat 
conduction equation and the explicit difference scheme (4.26) is presented in 
Figure 4.9. 

Therefore, for parabolic equations, the most widely used implicit scheme is 
the one where the approximation is performed using a four-point template, a 
central difference scheme of the second kind (see Section 4.3), and a right-hand 

difference scheme. , , 1 1i j i ju uu
t τ τ

−−∂
≈ ≈

∂
[                          ] leads to an implicit 

two-layer scheme, namely: , , 1 1, , 1,
2

2i j i j i j i j i ju u u u u
h

α
τ

− + −− − + 
≈  

 
 (i = 1, 2, …, 

n-1;  j = 1, 2, …, m), then 
   , 1 1, 1,(1 2 )i j i j ij i ju u u uδ δ δ− + −− = − + + .   (4.27)  

1 -1 0 
i, j 

 

0 1 -1 
i, j 
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Figure 4.9 – Scheme of the algorithm for solving parabolic partial differential 
equations using the explicit difference method 

 
 
 
The implicit two-layer difference scheme (4.27), supplemented with 

equations from the boundary conditions 0, 1( )j ju tµ=  and , 2 ( )n j ju tµ= , leads to a 
system of equations that has a stable solution for any values of δ. 

The algorithm for solving parabolic differential equations based on the heat 
conduction equation and the implicit difference scheme (4.27) by the sweep 
method is presented in Figure 4.10. 
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Figure 4.10 – Scheme of the algorithm for solving parabolic partial differential 
equations using the implicit difference method 
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Example 4.3. A copper rod of length L = 2,0 m with a constant cross-
sectional area along its length is placed in an insulated material in such a way that 
only its extreme right and left ends interact with the environment. At the initial 
moment of time, the rod has a balanced temperature T = 0 °С, and its left and right 
ends are constantly maintained at temperatures Tl = 80,0 °C and T = 10,0 °C, 
respectively. It is necessary to determine the change in temperature distribution 
along the rod depending on time during one hour (t=3600,0 sec). Compare the 
results of calculations with the help of explicit and implicit difference schemes. 

 
Solution: 

The non-stationary temperature distribution along the length of the body is 
described by the homogeneous heat conduction equation (4.1), namely: 

 
2 2

2
u u
t x

α∂ ∂
=

∂ ∂
.   (4.28) 

To formulate the problem and fulfill the condition of stability of the solution 
of the difference scheme (4.26), it is necessary to introduce a two-dimensional 
calculation grid: along the horizontal axis x with the distance between nodes 
h = 0,2 m (Fig. 4.11); for the explicit difference scheme, the distance along the 
vertical axis for the time variable t with the distance between the nodes 

2 20,5 0,5 0,2 0,02hτ = = ⋅ =  sec; for implicit – τ=0,1 sec. The grid along the 
horizontal axis x contains nx = (L/h)+1 = (2,0/0,2)+1 = 11 nodes, and the grid 
along the vertical axis τ contains: for the explicit difference seven – enτ = (t/τ) +1= 
=(3600,0/0,02)+1=180001 nodes; for implicit – inτ = (t/τ)+1= (3600,0/0,02)+1 =  
=180001. The serial number of the calculation node is denoted by the index i on 
the x-axis, and by the index j on the time axis. 

 
 

  

Figure 4.11 – Calculation diagram of heat transfer along the rod 
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The value of the temperature vector along the rod for the first time layer at 
the moment of time t0 = 0 sec (j = 0) for both explicit and implicit difference 
schemes: 

( ) ( )0 0,0 1,0 ,0 10,0 20,0 0 0 0 0 0 0 0 0 10,0 ,iU u u u u= =   
where 0,0 (0,0) 20,0u u= =  grad; ,0 ( ,0) 0,0i iu u x= =  grad; 

10,0 (2,0;0) 20,0u u= =  grad. 
The value of the temperature distribution vector for the second time layer, at 

the moment of time t1 = 0,02 sec based on the equation of the explicit difference 

scheme (4.26) for the same value of  j = 0, for 2
0,020,00011
0,2h

τδ α= = =  

55,49 10−= ⋅  (α = 0,00011 m/sec2 – coefficient of thermal conductivity for 
copper): 

( ) (1 0,1 1,1 ,1 10,1 20,0 0,0011 0 0 0 0 0 0 0e e e e e
iU u u u u= =   

)0,00055 10,0 , where 0,1 (0;0,02) 20,0eu u= =  grad; 10,1 (2,0;0,02)eu u= =   
=20,0 grad; , 1 1, 1,(1 2 )i j i j ij i ju u u uδ δ δ+ + −= + − + ; 1,1 2,0 1,0 0,0(1 2 )eu u u uδ δ δ= + − + =  

55,49 10−= ⋅ × 5 50,0 (1 2 5,49 10 ) 0,0 5,49 10 20,0 0,00011− −+ − ⋅ ⋅ ⋅ + ⋅ ⋅ =  grad, 
5 5

9,1 10,0 9,0 8,0(1 2 ) 5,49 10 10,0 (1 2 5,49 10 ) 0,0eu u u uδ δ δ − −= + − + = ⋅ ⋅ + − ⋅ ⋅ ⋅ +  
55,49 10 0,0 0,00055−+ ⋅ ⋅ =  grad. 

Similarly, based on the equation of the explicit difference scheme (4.26), the 
temperature distribution vectors for the remaining time layers are determined 
(j = 2, 3, …, 1enτ − ), in particular for the last time layer: 

( )180000 0,180000 1,180000 ,180000 10,180000
e e e e e

iU u u u u= =   

( )20,0 16,74 13,71 11,12 9,12 7,81 7,21 7,25 7,84 8,82 10,0= . 

Using the equation of the implicit difference scheme (4.27), the number of 
calculations can be significantly reduced, specifically for the second time layer 
and the value of j = 1 for each calculation node: 

                      

0,1 1,1 2,1 1,0

1,1 2,1 3,1 2,0

( 1),1 ,1 ( 1),1 ,0

( 3),1 ( 2),1 ( 1),1 ( 2

(1 2 ) ( 1);

(1 2 ) ( 2);
;

(1 2 ) ; ( );
;

(1 2 )
x x x x

i i i

i i i

i i i
k k k k

i i i
n n n n

u u u u i

u u u u i

u u u u i k

u u u u

δ δ δ

δ δ δ

δ δ δ

δ δ δ

− +

− − − −

− + + = − =

− + + = − =

− + + = − =

− + + = −





),0 ( 2).xi n










 = −

  (4.29) 

If the system of equations (4.29) is reduced to the following form:            



195 

                      

1,1 0,1 1,1 1,1 1,1 2,1 1

2,1 1,1 2,1 2,1 2,1 3,1 2,1

,1 ( 1),1 ,1 ,1 ,1 ( 1),1 ,1

2,1 ( 3),1 2,1 ( 2),1 2,

( 1);

( 2);
;
( );
;

x x x x x

i i i

i i i

i i i
k k k k k k k

i i
n n n n n

a u b u c u d i

a u b u c u d i

a u b u c u d i k

a u b u c

− +

− − − − −

+ + = =

+ + = =

+ + = =

+ +





1 ( 1),1 2,1 ( 2).
x x

i
n n xu d i n− −










 = = −

(4.30) 

where ( ) ( )1 1,1 2,1 ,1 ( 2),1, , , , , 0, , , , ,
xk na a a a a δ δ δ−= =    ;   (1 1,1,b b=  

) ( )2,1 ,1 ( 2),1, , , , (1 2 ), (1 2 ), , (1 2 ), , (1 2 )
xk nb b b δ δ δ δ− = − + − + − + − +    ; 

( ) ( )1 1,1 2,1 ,1 ( 2),1, , , , , , , , , , 0
xk nc c c c c δ δ δ−= =    ;   (1 1,1 2,1, , ,d d d=   

) ( ),1 ( 2),1 1,0 0,1 2,0 ,0 ( 2),0 ( 1),1, , ( ), ( ), , ( ), , ( ) ,
x x xk n k n nd d u u u u u uδ δ− − −= − − − − − −    

then, in the obtained tridiagonal matrix of the system of equations (4.30), the 
condition of preferring diagonal elements is fulfilled ( ),1 ,1 ,1i i ib a c≥ + , which 
allows us to use the run-off method (see Chapter 1) to solve this LAES. 

Then the value of the driving coefficients on the straight line: 

− ,1
,1

,1 ,1 ( 1),1

i
i

i i i

c
b a

ξ
ξ −

−
=

+
  (i = 1, 2, …, nx–2) 

( )
5

1,1
1,1 5

1,1 1,1 0,1

5,49 10 0.000275
(1 2 ) 0 0 1 2 (5,49 10 )

c
b a

δξ
ξ δ

−

−

− − − ⋅
= = = =

+ − + + ⋅ − + ⋅ ⋅
,  

       ( )
5

2,1
2,1 5 5

2,1 2,1 1,1

5,49 10 0.000275,
1 2 (5,49 10 ) 5,49 10 0,000275

c
b a

ξ
ξ

−

− −

− − ⋅
= = =

+ − + ⋅ ⋅ + ⋅ ⋅
 

…………………………………………………………………………… , 

( ) (1 1,1 2,1 ,1 9,1, , , , , 0,000275 0,000275 0,000275 0,000275kξ ξ ξ ξ ξ= =   

)0,000275 0,000275 0,000275 0,000275 0,0 ;  

− ,1 ,1 ( 1),1
,1

,1 ,1 ( 1),1

i i i
i

i i i

d a
b a

η
η

ξ
−

−

−
=

+
  (i = 1, 2, …, nx–2) 

     

( )
5

1,1 1,1 0,1 1,0 0,1
1,1 5

1,1 1,1 0,1

( ) 0 0 20,0 (5,49 10 ) 20,0 0.0055,
(1 2 ) 0 0 1 2(5,49 10 )

d a u u
b a

η δ
η

ξ δ

−

−

− − − − ⋅ − − ⋅ ⋅
= = = =

+ − + + ⋅ − + ⋅
 

2,1 2,1 1,1 2,0 1,1
2,1

,12 2,1 1,1 1,1
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(1 2 )

d a u
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η δη
η

ξ δ δξ
− − −
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( )
5

5 5
6( 0,0) (5,49 10 0,0055)

1 2 5,49 10 (5,49 10 0,
1,

000275)
51·10

−

− −
−− − ⋅ ⋅

= =
− + ⋅ ⋅ + ⋅ ⋅

 , 

……………………………………………………………………………… , 

( ) ( 6 10 13
1 1,1 2,1 ,1 9,1, , , , , 0,0055 1,51 10 4,15 10 1,14 10kη η η η η − − −= = ⋅ ⋅ ⋅   

)17 21 24 283,14 10 8,62 10 2,37 10 6,51 10 0,00275− − − −⋅ ⋅ ⋅ ⋅ .  

On the return stroke, the ,1
i
iu  values are determined using recursive equations

,1 ,1 ( 1),1 ,1
i i
i i i iu uξ η+= +  (i=nx–2, nx–3, …, 1): 

( 2),1 9,1 ( 1),1 ( 1),1 ( 2),1

9,1 10,1 9,1

( 3),1 8,1 ( 3),1 ( 2),1 ( 3),1

8,1 9,1 8,1

2 11 2 9 :

0 10,0 0,00275 0,0028 grad;

3 11 3 8:

0,000275 0,00275 6,

x x x x

x x x x

i i i
x n n n n

i

i i i
x n n n n

i

i n u u u

u

i n u u u

u

ξ η

ξ η

ξ η

ξ η

− − − −

− − − −

= − = − = = = + =

= + = ⋅ + =

= − = − = = = + =

= + = ⋅ + 28

7

( 10),1 1,1 ( 10),1 ( 9),1 ( 10),1

6
1,1 2,1 1,1

51 10

7,55 10 grad;
;

10 11 10 1:

0,000275 1,51 10 0,0055
0,0055 grad,

x x x x

i i i
x n n n n

i

i n u u u

u

ξ η

ξ η

−

−

− − − −

−






 ⋅ =
 = ⋅


 = − = − = = = + =


= + = ⋅ ⋅ + =
 =



 

( ) ( 6 10
1 0,1 1,1 ,1 10,1 20,0 0,0055 1,51 10 4,15 10i i i i i

iU u u u u − −= = ⋅ ⋅   

)13 17 14 10 71,14 10 4,71 10 5,71 10 2,08 10 7,55 10 0,0027 10,0− − − − −⋅ ⋅ ⋅ ⋅ ⋅ . 

Similarly, based on the equation of the implicit difference scheme (4.27), the 
temperature distribution vectors are determined for the remaining time layers 
(j = 2, 3, …, 1inτ − ), particularly for the last time layer: 

( )36000 0,36000 1,36000 ,36000 10,36000
i i i i i

iU u u u u= =   

( )20,0 16,74 13,71 11,12 9,12 7,81 7,21 7,25 7,84 8,82 10,0= . 

Based on the results of the calculations, it is possible to construct a diagram 
of the temperature distribution along the rod for different moments of time 
(Fig. 4.12).  

Comparing the temperature values in the nodes of the rod, determined by the 
explicit and implicit methods in the corresponding time layers, it is possible to 
observe a high level of convergence in the calculation results. It is important to 
note the high efficiency of using the implicit calculation method, particularly as 
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the number of calculations using the implicit difference method is reduced by 
three times compared to the explicit method. 

 

 

Figure 4.12 – Diagram of temperature distribution along the rod  
 
The result of solving example 4.3 in the PYTHON programming language: 
 

%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits import mplot3d 
from scipy import * 
from sympy import * 
#entering the length of the rod 
l=float(input()) #l=2.0 
#entering the time value of the heat exchange duration 
t=float(input()) #t=3600.0  
# entering the step value of the calculation grid along the length of the rod 
h_x=float(input()) #h_x=0.2 
#entering the step value of the calculation grid over time 
print("Enter the value of the step of the calculation grid in time for the 

explicit difference scheme (the step should not be more)", 0.5*h_x*h_x, 
"c") 

h_texp=float(input()) #h_texp=0.02 
print("Enter the time grid step value for the implicit difference scheme") 
h_tnexp=float(input()) #h_tnexp=0.1 
#entering the value of the coefficient of thermal conductivity 
a=0.00011 #a=float(input()) a=0.00011 
del_tae=(a*h_texp)/(h_x*h_x); del_tane=(a*h_tnexp)/(h_x*h_x) 
#entering the value of the boundary conditions: 
#entering the value of the temperature of the left end of the rod 
def u_left(t): 
    return 20.0 
#entering the temperature value of the right end of the rod 
def u_right(t): 
    return 10.0 
#introduction of the initial temperature distribution function along the 

length of the rod 
def u_x0(x):     
    return 0 
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#entering the values of boundary and initial conditions: 
u_first,x_coord=[u_left(0)],[0] 
x=h_x 
for i in range(0,int(l/h_x)): 
# for the first time layer 
    u_first.append(u_x0(x)); x_coord.append(x) 
    x=x+h_x 
u_first[int(l/h_x)]=u_right(0) 
ru_first=np.array(u_first) 
u_exp=np.array([u_first]); u_nexp=np.array([u_first]) 
#calculation of the temperature distribution along the rod using an explicit 

difference scheme 
t_0=0 
for j in range(1,int(t/h_texp)+1): 
    t_0=t_0+h_texp; u_next=[u_left(t_0)]    
    for i in range(1,int(l/h_x)):     
        u_next.append((del_tae*u_exp[j-1,i-1])+((1-(2*del_tae))*u_exp[j-

1,i])+(del_tae*u_exp[j-1,i+1])) 
    u_next.append(u_right(t_0)) 
    u_exp=np.insert(u_exp,j,u_next,axis=0) 
    del u_next 
print("Matrix of temperature distribution along the rod by time layers 

determined by the implicit difference method:") 
print(u_exp) 
# determination of the temperature distribution vector along the rod in the 

current time layer by the implicit difference method 
def u_rawnexp(del_tane,h_tnexp, k): 
    a_kof=[0]; b_kof=[-1-(2*del_tane)]; c_kof=[del_tane]; d_kof=[-

u_nexp[k,1]-(del_tane*u_left(h_tnexp))] 
    for i in range(2,int(l/h_x)): 
        a_kof.append(del_tane) 
        b_kof.append((-1-(2*del_tane))) 
        if i==int(l/h_x)-1: 
            c_kof.append(0) 
            d_kof.append((-u_nexp[k,int(l/h_x)-1]-

(del_tane*u_right(h_tnexp)))) 
        else: 
            c_kof.append(del_tane) 
            d_kof.append(-u_nexp[k,i]) 
    et_ta,tet_ta=[-c_kof[0]/b_kof[0]],[d_kof[0]/b_kof[0]] 
    for i in range(1,int(l/h_x)-1):         
        et_ta.append((-c_kof[i])/(b_kof[i]+(a_kof[i]*et_ta[i-1]))) 
        tet_ta.append((d_kof[i]-(a_kof[i]*tet_ta[i-

1]))/(b_kof[i]+(a_kof[i]*et_ta[i-1]))) 
    u=[tet_ta[int(l/h_x)-2]] 
    for i in range(int(l/h_x)-3,-1,-1): 
        u.append((et_ta[i]*u[int(l/h_x)-3-i])+tet_ta[i]) 
    u=list(reversed(u)) 
    u.append(u_right(h_tnexp)) 
    u.insert(0,u_left(h_tnexp)) 
    return u 
#determination of the distribution matrix of the temperature distribution 

along the rod using an implicit difference scheme 
for k in range(0,int(t/h_tnexp)-1): 
    u_nexp=np.insert(u_nexp,k+1,u_rawnexp(del_tane,h_tnexp, k),axis=0) 
print(u_nexp) 
print(len(u_nexp)) 
# construction of the diagram of temperature distribution along the rod by 

time layers 
plt.figure(figsize=(8, 8)) 
plt.xlabel('x',fontsize=15, color='blue') 
plt.ylabel('y',fontsize=15, color='blue') 
for k in range(1,6,2): 
    plt.plot(x_coord, u_exp[36000*k]) 
    plt.plot(x_coord, u_nexp[1440*k]) 
plt.grid(True) 
plt.xlim([0, 2]) 
plt.ylim([0, 20]) 
plt.show(). 
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Conclusions on the application of numerical methods for solving 
differential equations in mathematical physics 

Solving engineering problems in many areas of science and technology is 
connected with partial differential equations. They contain partial derivatives, and 
the sought function depends on several variables at the same time. 

The complete mathematical formulation of the problem, along with the partial 
differential equations, also includes some additional conditions. If the search for 
a solution is conducted within a limited domain, then boundary conditions are set, 
and the problem is then referred to as a boundary value problem for equations 
with partial derivatives. A problem in which it is necessary to solve a partial 
differential equation under given initial conditions is called a Cauchy problem. 
The problem is solved in an unbounded space, and boundary conditions are not 
specified. Problems in which both boundary and initial conditions are set 
simultaneously are referred to as non-stationary (or mixed) boundary value 
problems. The resulting solution changes over time. 

Depending on the values of the functional coefficients and their ratios, 
different types of differential equations of mathematical physics are 
distinguished: transport, evolutionary, hyperbolic, parabolic, and elliptic. 

There are two types of methods for solving equations of the following types: 
– analytical (the result is derived through various mathematical 

transformations); 
– numerical, where the obtained result corresponds to reality with a given 

accuracy, but requires a lot of algebraic calculations and the use of computing 
power of computer systems. 

When comparing the methods of solving partial differential equations, it is 
necessary to remember that the finite element method approximates the solution 
of the problem, while the finite difference method approximates the derivatives 
of the sought functions. The finite element method, unlike the difference method, 
requires a time-consuming formulation of the problem, high qualification, and 
experience of the researcher, but it is convenient when solving a problem with a 
complex boundary shape and a non-uniform distribution of parameters. 

In the initial stage of solving partial differential equations, the method for 
solving the problem is selected. Usually, it is easier to use the finite difference 
method, as it requires simpler preparation of the problem for solution. However, 
in certain cases, such as problems in mechanics that have a well-developed theory, 
it is advisable to turn to the finite element method. 

When determining the steps to solve a problem, accuracy is the main factor. 
If accuracy is high, then either a very fine mesh or a very fine decomposition is 
required. At the same time, it is necessary to take into account that the error of 
finite-difference methods is of the first order, meaning it is proportional to h2. 

In the case of symmetry in the solution area, the number of nodes can be 
reduced by two or four times due to symmetry along both coordinate axes. This 
allows you to save time and the amount of memory of the computer system. 
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The choice of the initial values of the variables is of great importance for the 
effective solution of the problem. The speed of convergence of the calculation 
results depends significantly on this in the process of using iterative methods. It 
is often advisable to solve the problem in several stages: at the first stage, with the 
help of a coarse grid (or division into large elements), an initial approximation is 
obtained, after which an exact solution is performed on a fine grid. 

To solve partial differential equations, a number of modern and effective 
software tools have been developed, which are used in automating the design of 
technological systems. 

 
 

Control questions and tasks 
 

1.  Provide the definition of partial differential equations. 
2.  What kinds of necessary conditions must be met in order to obtain a 

solution to partial differential equations? 
3.  Provide examples of engineering problems that can be described by partial 

differential equations. 
4. What generalized functional equation characterizes all types of partial 

differential equations?  
5.  What are the types of second-order partial differential equations, 

depending on the input functional coefficients? 
6.  Provide examples of engineering problems that are described by the 

corresponding types of differential equations in mathematical physics. 
7.  Determine the type of partial differential equations given in Table 4.2. 

 
Table 4.2 – Output data for the task 

Version Differential equation 

1 
2 2

2 6 0u u
t t x

∂ ∂
+ =

∂ ∂ ∂
  

2 
2 2 2

2 26 9 0u u u
t t x x

∂ ∂ ∂
− + =

∂ ∂ ∂ ∂
 

3 
2 2 2

2 26 9 0u u u
y x y x
∂ ∂ ∂

− + =
∂ ∂ ∂ ∂

 

4 
2

3 5u u u u
t x t x
∂ ∂ ∂

− + =
∂ ∂ ∂ ∂

 

5 
2 2 2

2
2 22u u ux xu

x x y y
∂ ∂ ∂

− + =
∂ ∂ ∂ ∂

 

6 
2 2 2

2
2 210 25 0u u u xy u

x x y y
∂ ∂ ∂

+ + − =
∂ ∂ ∂ ∂
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8.  What are the methods for solving partial differential equations? Provide a 
comparative analysis of each method. 

9.  Describe the heat conduction equation. 
10.  How are computational templates for partial derivatives constructed? 
11.  Compile calculation templates for the Laplace operator and the 

biharmonic operator. 
12.  Create calculation templates for the partial differential equations provided 

in Table 4.3. 

Table 4.3 – Output data for the task 
Version Differential equation 

7 
2 2

2 0u u
x y x
∂ ∂

+ =
∂ ∂ ∂

  

8 
2 2

2 0u u u
t t x x

∂ ∂ ∂
− + =

∂ ∂ ∂ ∂
 

9  

10 
2 4

4 ( , )u u u x t
t x x
∂ ∂

− =
∂ ∂ ∂

 

11 
2 2 2

2 2 ( , )u u ux xu x y
x x y y
∂ ∂ ∂

− + =
∂ ∂ ∂ ∂

 

12 
2 3 2

2 3 0u u u u
x x y x y
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂ ∂

 

 
13. What different methods are used to calculate the classical Dirichlet 

problem for the Laplace equation in a rectangular domain? 
14. Describe the wave equation. 
15. Develop an algorithm for solving elliptic partial differential equations. 
16. Create a three-layer scheme for solving hyperbolic equations. 
17. What necessary and sufficient stability condition must be met for the 

numerical solution of hyperbolic partial differential equations? 
18. Develop an algorithm for solving hyperbolic equations with partial 

derivatives. 
19. Compare the effectiveness of using explicit and implicit schemes for 

solving parabolic equations with partial derivatives. 
20. Develop an algorithm for solving parabolic equations with partial 

derivatives using the explicit difference method. 
21. Develop an algorithm for solving parabolic equations with partial 

derivatives using the implicit difference method. 
22. Under what conditions are explicit and implicit two-layer difference 

schemes for solving parabolic partial differential equations stable? 

2 3

2 3 0u u
y x
∂ ∂

− =
∂ ∂
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23. How is the step chosen when solving partial differential equations? 
24. Provide a general algorithm for solving partial differential equations 

using the difference method. 
25.  Determine the steady-state temperature distribution in a rectangular plate 

measuring 2,0 1,5l h× = ×  m, for which the following boundary conditions are set 
(Table 4.4): ( ) ), (0u y yϕ= , ( ) ), (yu l y = Ψ , 1( ), 0 ( )u x xµ= , 2( ), ( )u hx xµ=  (
0 x l≤ ≤ , 0 y h≤ ≤ ). Construct a diagram of the stationary temperature 
distribution in the plate. 

 
Table 4.4 – Output data for the task 

Version 
Functions of initial conditions Functions of boundary conditions 

φ(y) Ψ(y) μ1(x) μ2(x) 
13 cos(0,5y) e-4cos(0,5y) e-x e-xcos(0,5x) 
14 e2y(2y2+1) e2y(2y2+3) e6(x+19) x+1,0 
15 tgy tg2(y+0,9) tg2(x+0,4) tg2(x) 
16 0,0 cosy 5cosx+sinx 10sinx+xsin(1,0) 
17 –cosy 62cos(y2) 2x3+3x–1 (15x2+1)cos(x) 
18 5y(y–1) 11y(y–1) 12(x2–x)+60 0,0 
 
26. It is necessary to determine the position of the string depending on time 

(the total time of the oscillating process T), which performs free oscillations with 
fixed ends (the distance between the points of fixing the ends l = 4,0 м) with initial 

conditions ( ) ), 0 (u x xϕ= , ( ,0) ( )u x x
t

ψ∂
=

∂
 (0 x l≤ ≤ ) and boundary conditions 

1(0 ), ( )u t tµ= , 2( ), ( )u tl tµ=  (0 t T≤ ≤ ) (Table 4.5). The phase velocity 
coefficient а=1,2 m/sec. Plot the position of the oscillating string at different 
times. 

 
Table 4.5 – Output data for the task 

Ver-
sion 

Functions of initial 
conditions 

Total 
oscillation 

time,  
T (sec) 

Functions of boundary 
conditions 

φ(x) Ψ(x) μ1(t) μ2(t) 

19 0,5(x+1)2 (x+0,5)cos(πx) 1,0 0,5 2,0–3t 
20 x2cos(πx) x2(x+1) 0,2 0,5t t–1,0 
21 x+1 0,0 1,2 0,5t2 t+1,0 

22 exsinx ex(cosx+sinx) 2,0 cos2t+sint cos2(t+6,0)+ 
+sinx 

23 cos2x+sinx 2xsin(2x) 2,0 etsint et+2sin(t+2,0) 
24 cos2(0,5x) –0,5sinx 6,0 cos2(0,5t) cos2(0,5t+3,0) 
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27. It is necessary to determine the change in temperature distribution along 

the rod depending on time during the time t0 = 30,0 min. A rod of length L with a 
cross-sectional area constant along its length is placed in an insulated material in 
such a way that only its extreme right and left ends interact with the environment. 
At the initial moment of time, the rod has a balanced temperature ( ) ), 0 (u x xϕ= , 
and the temperature 1(0, ) ( ),u t tµ= 2( ), ( )u tl tµ=  (0 t T≤ ≤ ) remains constant at 
its left and right ends (Table 4.6). Construct a diagram of the temperature 
distribution of the rod for different moments of time. 

 
Table 4.6 – Output data for the task 

Ver-
sion 

Functions 
of initial 

conditions 
φ(x) 

Rod 
length, 

l(m) 

Functions of boundary 
conditions 

Rod 
material 

A type 
of 

diffe-
rence 

method 
μ1(t) μ2(t) 

25 x2 1,3 50sint 40cos2t Steel Implicit 

26 15,0 2,2 20cost+ 
+10sint 80,0 Copper Explicit 

27 2x+5 1,5 0,05t+5,0 0,01t–15,0 Silver Implicit 
28 10sinx 1,4 2e0,001t+3,0 0,01t+20sint Graphite Explicit 
29 5ex 2,5 –30,0 70sint Cast iron Implicit 

30 cos(x)+ 
+10sin(x) 3,0 35sin2(0,3t) –20,0 Glass Explicit 

 
28.  Create a computational template of the Laplace operator for three 

coordinates. 
29. The transverse deformation w of a thin rectangular plate, l h× =  

=3,0×1,7 m in size and uniformly loaded with pressure p, is determined by the 
equation: 
                                                        Δ2w=p/D,                                                (4.31) 

where 
3

212(1 )
EtD
ν

=
−

 – bending stiffness, E = 2,1⋅1011 MPa – elasticity modulus, 

ν = 0,3 – Poisson’s ratio, t = 0,005 m – plate thickness, p = 100,0 Pa – the pressure 
with which the plate is uniformly loaded. Determine the plate deformation 
distribution w(x, y) depending on the given load p.  

30.  The Navier-Stokes equation, which describes the steady motion of a 
viscous fluid in a pipe of arbitrary cross-section, has the form: 

  
2 2

2 2
1v v dp

x y dtµ
∂ ∂

+ =
∂ ∂

,   (4.32) 
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where v – fluid velocity modulus (it is zero at the pipe walls), μ – viscosity 
coefficient, dp/dz – derivative of pressure along the length of the pipe. Taking 
dp/dz=-5000,0 Pa/m and μ=1,5⋅10-4 N⋅sec/m2, determine the distribution of the 
velocity modulus in the cross section of the pipe shown in Figure 4.13. 
 

 
Figure 4.13 – Pipeline cross-section diagram 
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Chapter 5. DATA PROCESSING TASKS 
 
A very important task in the process of identifying mathematical models is 

the processing of experimental data obtained during active or passive 
identification experiments. Various methods and algorithms are used for this 
purpose, and the choice of method depends on the type of modeling object, model, 
and the available computing power of computer tools. Among the main methods 
of data processing, we highlight interpolation, approximation, and statistical data 
processing. 

5.1 Interpolation 

The purpose of interpolation is to construct the function F(x) (interpolant) 
from a given class of functions, which takes on values at individual points 
xiϵ[a; b] (i=0, 1, 2, …, n) (interpolation nodes, and their set is an interpolation 
grid): 
  0 0 1 1( ) , ( ) , ..., ( ) , ..., ( ) ,i i n nF x y F x y F x y F x y= = = =  (5.1) 

which coincide with the previously specified values (for example, obtained from 
the experiment) at these points of the unknown function y = f(x). Geometrically, 
this means that it is necessary to define a curve y = F(x) of a certain type, which 
passes through the system of points M(xi, yi) (і = 0, 1, 2, ..., n). 

In general, this problem has both an infinite set of solutions and no solutions 
at all. However, it becomes unique if, instead of an arbitrary function F(x), we 
look for a polynomial Pn(x) of no higher than the n-th power that satisfies the 
condition (5.1), i.e.: 

          0 0 1 1( ) , ( ) , , ( ) , , ( )n n n i i n n nP x y P x y P x y P x y= = = =  . 

The interpolation formula Y = F(x) is used for the approximate calculation of 
the values of the function f(x) for x≠xi (i = 0, 1, 2, …, n). It should be noted that 
there is interpolation in the narrow sense when xϵ[x0; xn], and extrapolation when 
x is outside the interval [x0; xn] i.e. x < x0 or x > xn. 

When analyzing the interpolation procedure, it is necessary to specify the 
constraints that are imposed on the set of base points (xi, yi). The initial 
interpolation grid of points should only describe a smooth function. According to 
the conditions of a specific problem, the values of the derivative function must be 
set at the edge points of the input interpolation grid to obtain an unambiguous 
result. 

The main methods of interpolation include: 
1. Linear interpolation (linear interpolation). The simplest and fastest 

method, in which the specified nodal points (xi, yi) are connected by straight lines. 
2. Interpolation using polynomials. A polynomial of the n-th order is used, 

which in the general case has the form: 
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          nn
nn

n axaxaxaxPxP ++++== −
−

1
1

10 ...)()( , 

where ai (i=0, 1, …, n) – constant coefficients. 
All methods of finding the interpolation polynomial are reduced to obtaining 

constant coefficients. Such methods include: 
a) interpolation by difference methods; 
b) interpolation according to Lagrange; 
c) Hermit polynomial interpolation. 

3. Polynomial spline interpolation. Nodal points are connected using a 
polynomial of a given order, which is chosen depending on the method. The most 
common spline interpolation methods include: 

 a) classical cubic splines; 
 b) Hermit splines; 
 c) B-splines; 
 d) Bezier curves. 

This section considers the algorithmization and application of the most 
common interpolation methods in engineering practice. 

5.1.1 Different methods 

There are many well-known finite-difference interpolation methods. The 
most common is Newton’s method for «forward» interpolation (Newton–Gregory 
method). The interpolation polynomial in this case has the form: 

0 1 0 2 0 1( ) ( ) ( )( )nP x C C x x C x x x x= + − + − − + ... 

0 1 1( )( ) ... ( )n nC x x x x x x −+ − − − . 

Coefficients Сі are determined from equations: 
( )n i iP x y=  ( = 0, 1, 2, , i n ), 

which allows you to record the system: 

  

0 0

0 1 1 0 1

0 1 2 0 2 2 0 2 1 2

0 1 0 0 1 1

,
( ) ,
( ) ( )( ) ,

( ) ... ( )( )...( ) .n n n n n n n

C y
C C x x y
C C x x C x x x x y

C C x x C x x x x x x y−

=
 + − = + − + − − =



+ − + + − − − =



 (5.2) 

Equation (5.2) is a LAES with a triangular matrix. If you take a step 
xi+1–xi = h, then in the region of change of values of interpolation nodes xϵ[x0; xn], 
a one-dimensional uniform interpolation grid will be obtained. This will allow us 
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to use the difference image of the system (5.2), resulting in difference expressions 
for determining the coefficients: 

0 0C y= , 1 0 0
1

y y yC
h h
− ∆

= = , 

where Δy0 – right difference of the first order at the point y0; 
2

2 1 0 0
2 2 2

2
2 2

y y y yC
h h

− + ∆
= = , 

where Δ2y0 – right difference of the second order; 

0

( !)

j

j j
yC

j h
∆

= , 

where Δjy0 – right difference of the j-th order. 
Then equation (5.2) can be written as: 

2
0 0

0 0 0 12( ) ( ) ( )( )
1! 2!n

y yP x y x x x x x x
h h

∆ ∆
= + − + − − +

 

  0
0 1 1( )( ) ( ).

!

n

nn
y x x x x x x

n h −
∆

+ − − −      (5.3)  

From a practical standpoint, the expression is used to determine higher order 
differences: 

1 1 1
1( )j j j j

i i i iy y y y− − −
+∆ = ∆ ∆ = ∆ − ∆ , (i=0, 1, 2, …, n–j). 

In the case when n=1, from (5.3) we obtain the formula for linear 
interpolation: 

0
1 0 0( ) ( )yP x y x x

h
∆

= + − , 

and if n=2 – parabolic or quadratic interpolation formula: 
2

0 0
2 0 0 0 12( ) ( ) ( )( )

2
y yP x y x x x x x x
h h
∆ ∆

= + − + − − . 

If an unlimited number of values of the function x is specified, then n can be 
any number. In practice, n is chosen in such a way that the difference Δnyi is 
constant within a given level of accuracy. Any tabular value of the argument x can 
be used as the initial value of x0. When the number of function values is finite, the 
number of n is limited and cannot exceed the number of function values y reduced 
by one. 

The scheme of the algorithm for implementing interpolation according to 
Newton’s first interpolation formula will take the form shown in Figure 5.1. 
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Figure 5.1 – Algorithm of the first interpolation method Newton’s 
 interpolation formula 

 
 

To find the differences, you need to use recursion. For this, the function 
 float right(float y[], int p, int i) is created. The algorithm for determining finite 
differences for a given function is shown in Figure 5.2. 
 
 

6 
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Figure 5.2 – Algorithm for determining finite differences: 
y[] is an array of y values; p is the order of difference; i is the ordinal number of 

the variable y for which the difference is calculated 
 

 
Consider the procedure for finding differences in the C++ programming 

language: 
 

#include <stdio.h>  
#include <math.h> 
#include <conio.h> 
const int n = 6; 
float y (float x) 
{return (1/(pow(x,4)+5));} 
float right(float y[], int p, int i) 
{ 
 if (p == 1) 
return y[i+1]-y[i]; 
 else  
return right(y,p-1,i+1)-right(y,p-1,i); 
} 
void main() 
{ 
float x[6] = {1, 1.1, 1.2, 1.3, 1.4, 1.5}; 
float y[6] = {0.16667, 0.15470, 0.14137, 0.12729, 0.11310, 0.09938}; 
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 for (int i = 1; i<n; i++) { 
for (int j = 0; j<n-i; j++) 
printf("%9.5f ", right(y, i, j)); 
printf("\n"); 
}  } 

 
 
Result: 

-0.01197 -0.01333 -0.01408 -0.01419 -0.01372 
-0.00136 -0.00075 -0.00011  0.00047 
 0.00061   0.00064   0.00058 
 0.00003  -0.00006 
-0.00009 

 
 
Implementation of the Newton’s method algorithm according to the first 

interpolation formula in the C++ programming language: 
 

#include <stdio.h> 
#include <math.h> 
#include <conio.h> 
const int n = 6; 
float y (float x) 
{return (1/(pow(x,4)+5));} 
float right(float y[], int p, int i) // auxiliary function for finding 

differences from array Y, order of difference p, coefficient i 
{ 
if (p == 1) 
 return y[i+1]-y[i]; 
 else  
{ 
return right(y,p-1,i+1)-right(y,p-1,i); 
 }   
}; 
void main() 
{   
float X[6] = {1, 1.1, 1.2, 1.3, 1.4, 1.5}; 
float Y[6] = {0.16667, 0.15470, 0.14137, 0.12729, 0.11310, 0.09938}; 
float h = 0.1, d = 1, Pr; 
float x = 1.07;  
float P = Y[0]; 
for (int i = 1; i<n-1; i++) 
{ 
Pr = 1; 
for (int j = 0; j<i; j++) 
Pr = Pr * (x-X[j]); 
d = d * i * h; 
P = P + (right(Y, i, 0)*Pr/d); 
}  
printf("x = %.5f y = %.5f", x, P); 
getch(); 
}. 

 
Formula (5.3) is called Newton’s first interpolation formula. This expression 

is inconvenient for interpolation around the last values of yi. In this case, as a rule, 
Newton’s second interpolation formula is used, which is obtained by using the 
left differences from the last value (xn, yn) («backward» interpolation). Then the 
interpolation polynomial will look like this: 
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0 1 2 1 3 1 2( ) ( ) ( )( ) ( )( )( )n n n n n n nP x C C x x C x x x x C x x x x x x− − −= + − + − − + − − − +    

1 1( )( ) ( ).n n nC x x x x x x−+ − − −   

The coefficients Cj are determined as follows: 

nyC =0 , 1
1

n ny yC
h h

−∆ ∇
= = , 

where ny∇  – «left» difference of the first order at the point yn; 
2 2

2
2 2 22! 2

n ny yC
h h
−∆ ∇

= = , 

where ny2∇  – «left» difference of the second order; 

…, 
! !

j j
n j n

j j j

y yC
j h j h

−∆ ∇
= = , 

where n
j y∇  – j-th order left difference. 

The final expression for Newton’s second interpolation formula: 
2

1 2
12( ) ( ) ( )( )

1! 2!
n n

n n n n n
y yP x y x x x x x x
h h
− −

−
∆ ∆

= + − + − − +  

0
1 1( )( ) ( )

!

n

n nn
y x x x x x x

n h −
∆

+ − − −  . 

Newton's interpolation formulas can be used to extrapolate a function. If x<x0, 

then it is convenient to use Newton’s first interpolation formula, and .
h

xx 00 <
−

 

If x>xn, then Newton’s second interpolation formula is used, where 

.
h

xx n 0>
−

 

Thus, the first Newton’s interpolation formula is generally used for forward 
interpolation and backward extrapolation, and the second for backward 
interpolation and forward extrapolation. 

Newton’s formulas use «left» and «right» differences. Using «central» 
differences to obtain interpolation formulas leads to the Gaussian’s, Stirling’s, and 
Bessel’s formulas.  

It should be noted that the «central» differences are not used in the usual way, 
but by applying the «right» differences with a gradual shift of the indices to the 
left. 

It is convenient to consider these Newton’s formulas on (2n+1) equidistant 
interpolation nodes: 

( 1) 1 0 1 1, , , , , , , , ,n n n nx x x x x x x− − − − −   
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and 1 consti i ix x x h+∆ = − = =  ( = , ( 1), , 1i n n n− − − − ), and for the function 
y = f(x), its values at these nodes yi = f(xi) are known. 

Let it be necessary to construct a polynomial P(x) of degree no higher than 2n 
such that ( )i iP x y= . Then the polynomial P(x) is defined as: 

0 1 0 2 0 1 3 1( ) ( ) ( )( ) ( )P x C C x x C x x x x C x x−= + − + − − + − ×

0 1( )( )x x x x× − − + 2 1 ( 1)... ( )...n nC x x− − −+ − ×  (5.4) 

1 0 1 1...( )( )( )...( )( )n nx x x x x x x x x x− −× − − − − − . 

Similarly to Newton’s interpolation formulas, using (5.4), are determined: 

0 0C y= ; 0
1

yC
h
∆

= ; 
2

1
2 22!

yC
h
−∆

= ; …, 
2 1

( 1)
2 1 2 1(2 1)!

n
n

n n

y
C

n h

−
− −

− −

∆
=

−
;

2

2 2(2 )!

n
n

n n
yC

n h
−∆

= . 

Substituting the found values of the coefficients in (5.4), we obtain the first 
Gaussian’s interpolation formula, which contains the differences (Table 5.1): 

2 3 4 5 6
0 1 1 2 2 2, , , , , ,y y y y y y− − − − −∆ ∆ ∆ ∆ ∆ ∆  . 

Similarly, a second Gaussian's interpolation formula, containing 
central differences, can be obtained: 

2 3 4 5 6
1 1 2 2 3 3, , , , , ,y y y y y y− − − − − −∆ ∆ ∆ ∆ ∆ ∆  . 

Using the arithmetic mean of the first and second interpolation formulas of 
Gauss, we obtain Stirling’s formula. These formulas enable us to derive Bessel’s 
interpolation formula. In general, it is recommended to use interpolation formulas 
with central differences within the interval, while at its boundary nodes, Newton’s 
formulas are typically used (refer to Table 5.1). 

The interpolation errors for Newton’s formulas can be estimated, 
respectively, for the first and second formulas as: 

1
0

( 1)...( )( )
( 1)!

n
n

q q q nx y
n

+− −
∆ = ∆

+
; 

,
)!1(

))...(1()( 1
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n
n y

n
nqqqx +∆

+
++

=∆

where .
h

xxq n−
=  

For the Stirling’s formula: 
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)!12(2

)( 22222
12

)1(
12

nqqqq
n

yy
x n

n
n

n

n −−−
+

∆+∆
=∆ −

+
−−

+

 

For the case of unequally spaced values of the argument, interpolation 
formulas can be obtained using the definition of divided differences. 



213 

Table 5.1 – Application of difference interpolation formulas 

 
 

For example, the operation 1
1

1

[ , ] i i
i i

i i

y yx x
x x

+
+

+

−
=

−
 is referred to as the divided 

difference of the first order, while the operation 1 2 1
1 2

2

[ , ] [ , ][ , , ] i i i i
i i i

i i

x x x xx x x
x x

+ + +
+ +

+

−
=

−
 is 

referred to as the divided difference of the second order. 
Divided differences of order n are obtained from the recurrence relation: 

1 1 1
2

[ , , ] [ , , ][ , , , ] i i n i i n
i i i n

i n i

x x x xx x x
x x

+ + + + −
+ +

+

−
=

−
 

 . 

Newton’s interpolation formula for unequally spaced values of the argument 
can also be obtained: 

0 0 1 0 0 1 2 0 1( ) [ , ]( ) [ , , ]( )( ) ...P x y x x x x x x x x x x x= + − + − − +  
0 1 0 1 1[ , , , ]( )( ) ( )n nx x x x x x x x x −+ − − −  . 
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Example 5.1. The production site manufactures construction metal structures 
from sheet and profile rolled metal. The site operates consistently, and the orders 
are generally the same type, with a slight variation in the number of workers. 
There is data available on the total output of products (in thousand units) for the 
previous four months. The goal is to determine the function that represents the 
dependence of output (in thousand units) over the entire production period. To 
solve this, we will use Newton’s first interpolation formula, taking into account 
the known values of the interpolation nodes (as shown in Table 5.2). Finally, we 
will find the value of the total output in one and a half months (x = 1.5) by 
performing the interpolation. 

 

Table 5.2 – Output data 
i 0 1 2 3 

xi, month number 1 2 3 4 
yi, thousand units 2 5 10 17 

Solution: 
We determine the values of the differences of different orders: 
1)  x0=1, y0=2; 
2)  x1=2, y1=5, Δy0= y1– y0=5–2=3; 
3)  x2=3, y2=10, Δy1= y2– y1=10–5=5; 
4)  x2=4, y3=17, Δy2= y3– y2=17–10=7; 
5)  Δ2y0=Δy1–Δy0=5–3=2; 
6)  Δ3y0=Δ(Δ2y0)=Δ2y1–Δ2y0=(Δy2–Δy1)–(Δy1–Δy0)=(7–5)–(5–3)=0. 
We determine the values of the coefficients of the interpolation polynomial 

(5.3): 

0 0 2C y= = ; 0
1 1

3 3
1! 1 1

yC
h

∆
= = =

⋅
; 

2
0

2 2 2

2 1
2! 1 2 1

yC
h

∆
= = =

⋅ ⋅
; 

3
0

3 3 3

0 0
3! 1 2 3 1

yC
h

∆
= = =

⋅ ⋅ ⋅
. 

Interpolation polynomial function: 
0 1 2 3( ) ( 1) ( 1)( 2) ( 1)( 2)( 3)P x C C x C x x C x x x= + − + − − + − − − , 

( ) 2 3( 1) ( 1)( 2)P x x x x= + − + − − . 
The value of the interpolation function at a point х = 1,5: 

(1,5) 2 3(1,5 1) (1,5 1)(1,5 2) 3,25P = + − + − − =  thousand units. 
 
Example 5.2. Table 5.3 shows the results of measuring beam deflection from 

a uniformly distributed vertical force load. Determine the deflection function 
along the length of the beam. Solve the interpolation problem using Newton’s 
formula based on the known values of the interpolation nodes (Table 5.3) and find 
the value of the function at the point x = 0,4 m. 
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Table 5.3 – Output data 
i 0 1 2 3 

xi, m 0,0 0,1 0,3 0,5 
yi, mm – 0,5 0,0 0,2 1,0 

Solution: 
Using Newton’s interpolation polynomial, based on the initial data given in 

Table 5.3, we have the case of unequally spaced nodes for n = 3. Then, the value 
of the divided differences: 

1 0

0
0

1
1

0,0 ( 0,5)[ ] 5,0
0,1

, y y
x x

x x − − −
= = =

−
; 

2 1
1 2

2 1

0,2 0,0[ , ] 1,0
0,3 0,1

y yx x
x x
− −

= = =
− −

; 

3 2
2 3

3 2

1,0 0,2[ , ] 4,0
0,5 0,3

y yx x
x x
− −

= = =
− −

; 

1 2 0
0 1 2

1

2 0

[ , ] [ , ] 1,0 5,0 40]
0,

[ ,
3 ,0 3

,
0

x x xx xx
x x

x − −
= = = −

− −
; 

2 3 1
1 2 3

2

3 1

[ , ] [ , ] 4,[ 0 1,0 15]
0,5 0

,
,1 2

, xx x xx x x
x x
− −

= = =
− −

; 

1 2 3 0 1 2

3
1 2

0
0 3[ , , ,

15 40
[ , , ] [ , , ] 1252 3]

0,5 0,0 3
x x x x x x x x

x
x

x
x

 − − −  = = =
− −

. 

The results of the calculations are given in Table 5.4. 
 
Table 5.4 – Results of the calculation of split differences 
n xn yn [xn, xn+1] [xn, xn+1, xn+2] [xn, xn+1, xn+2, xn+3] 
0 0 – 0,5    
1 0,1 0,0 5,0 – 40/3 125/3 
2 0,3 0,2 1,0 15/2  
3 0,5 1,0 4,0   
 
Newton’s interpolation formula for unequally spaced values of the argument: 

0 0 1 0 0 1 2 0 1 0 1 2 3 0

1 2

3 2

( ) [ , ]( ) [ , , ]( )( ) [ , , , ]( )
40( )( ) 0,5 5( 0) ( 0)( 0,1)
3

125 125 91( 0)( 0,1)( 0,3) 30 0,5.
3 3 12

P x y x x x x x x x x x x x x x x x x x

x x x x x x x

x x x x x x

= + − + − − + − ×

 × − − = − + − + − − − + 
 

+ − − − = − + −

 

For x = 0,4 m; ( ) 3 2125 91(0,4) 30 (0,4) (0,4) 0,5 0,36
3 12

0,4y P − + − == ⋅= mm. 
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5.1.2 Lagrangian interpolation 

The Lagrangian interpolation is used in general cases with arbitrarily located 
nodes. 

The interpolation polynomial for the Lagrange’s method is given in the form: 

0 0 1 1( ) ( ) ( ) ( )n n nP x y b x y b x y b x= + + + , 

where all bj(x) (j=0, 1, 2, …, n) are polynomials of degree n, the coefficients of 
which can be found using the (n+1)-th equation. 

( )n i iP x y= , 

as a result, a system of equations will be obtained: 

0 0 0 1 1 0 0 0

0 0 1 1

( ) ( ) ... ( ) ;
;

( ) ( ) ... ( ) .

n n

n n n n n n

y b x y b x y b x y

y b x y b x y b x y

+ + + =


 + + + =

  

If the value of bj(xi) is determined so that: 

1, ;
( )

0, ,j
i j

b x
i j
=

=  ≠
 

then the system of equations will be defined. 
This condition means that any polynomial bj(x) is zero for every xi except 

when xi is equal to xj. Therefore, in the general case, the polynomial bj(x) has the 
following form: 

0 1 1 1( ) ( )( )...( )( )...( )j j j j nb x C x x x x x x x x x x− += − − − − − . 

If bj(x) = 1, then the coefficients Cj are determined from the expression: 

  ).)...()()...(/(1 110 njjjjjjj xxxxxxxxC −−−−= +−  (5.5) 

Then for the defined polynomial, we get: 

 0 1 1 1

0 0 1 1 1

( )( )...( )( )...( )
( )

( )( )...( )( )...( )
n j j n

n j
j j j j j j j j n

x x x x x x x x x x
P x y

x x x x x x x x x x
− +

= − +

− − − − −
=

− − − − −
∑ .  (5.6) 

Then for the defined polynomial, we get: 

0 1 1 1( ) ( )( )...( )( )...( )j j j nL x x x x x x x x x x x− += − − − − − , 

can be written down 

 
0

( )
( )

( )
n j

n j
j j j

L x
P x y

L x=
= ∑ .   (5.7) 

It is necessary to note two main properties of Lagrange polynomials: 
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1. ( )
0

( ) / ( ) 1
n

j j j
j

L x L x
=

=∑ . 

2. If Pn(x) depends linearly on yj, then the principle of superposition is valid: 
the interpolation polynomial of the sum of several functions is equal to the sum 
of the interpolation polynomials of the components. 

The Lagrangian interpolation error is estimated by the residual term of the 
interpolation formula. 

If the interpolation nodes are different from each other, and the function f(x) 
is such that it has a continuous derivative of order (n+1) on the interval [a; b], 
where the interpolation nodes are located, it is possible to write the residual term 
of the interpolation formula ( ) ( ) ( )n nR x f x P x= −  in the form: 

( 1)

1
( )( ) ( )

( 1)!

n

n n
fR x x

n
ξ ω

+

+=
+

, 

where [ ] ( ) ( )1 2 1 0 1 2 0 1; , min , , , , , max , , , ,n nx x x x x x x xξ α α α α∈ = =   . 
Then 

1
1( ) ( )

( 1)!
n

n n
MR x x
n

ω+
+≤

+
, 

where 
[ ]

( ) ( )
1 2

1
1 ,

max n
n x

M f x
α α

+
+ ∈
= .  

The scheme of the algorithm for implementing the Lagrangian interpolation 
is presented in Figure 5.3. 

Consider the implementation of finding differences in the C++ programming 
language: 

 
#include <stdio.h> 
#include <math.h> 
#include <conio.h> 
 
const int n = 4; 
 
void main() 
{ 
  float X[n] = {1, 2, 3, 4}; 
  float Y[n] = {15, 17, 7, 21}; 
  float x = 2.5; 
  float yx = 0, Pr; 
  for (int i=0; i<n; i++) 
  { 
    Pr = 1; 
     for (int j=0; j<n; j++) 
       if (i!=j) 
         Pr = Pr * ((x-X[j])/(X[i]-X[j])); 
     yx = yx + Y[i]*Pr; 
  } 
  printf("y = %.4f\n", yx); 
  getch(); 
} 
Result: 
y = 11.2500. 
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Figure 5.3 – Scheme of the interpolation algorithm according to the 
Lagrangian interpolation 

 
 

Example 5.3. Find the value of the function of the change of motion 
acceleration depending on the time of the body’s movement y=f(x) based on its 
experimental table values (Table 5.5) and find the value of the function at the 
point x = 0,4 sec. 
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Table 5.5 – Output data 
i 0 1 2 3 

xi, sec 0,0 0,1 0,3 0,5 
yi, 

m/sec2 – 0,5 0,0 0,2 1,0 

Solution: 
Using the Lagrange interpolation polynomial formula: 

33
1 2 3

0
0 00 0 0 1 0 2 0 3

0 2 3 0 1 3
1 2

1 0 1 2 1 3 2 0 2 1 2 3

3

0 1
3

( )( )( )
( )( )( )

( )( )( ) ( )( )( )
( )( )(

(

) ( )( )( )
( )( )(

)
nn j j

i i
i ij ji j i jj i j i

P
x x x x x x x x x xy y y
x x x x x x x x x x

x x x x x x x x x x x xy y
x x x x x x x x x x x x

x

x

x x x xy

= == =
≠ ≠

=
− − − − −

= = +
− − − − −

− − − − − −
+ + +

− − − − − −

− −
+

∑ ∑∏ ∏

2

3 0 3 1 3 2

) ( 0,1)( 0,3)( 0,5)0,5
( )( )( ) (0,0 0,1)(0,0 0,3)(0,0 0,5)
( 0,0)( 0,3)( 0,5) ( 0,0)( 0,1)( 0,5)0 0,2

(0,1 0,0)(0,1 0,3)(0,1 0,5) (0,3 0,0)(0,3 0,1)(0,3 0,5)
( 0,0)( 0,1)1,0

x x x x
x x x x x x
x x x x x x

x x

− − − −
= − +

− − − − − −

− − − − − −
+ + +

− − − − − −
− −

+ 3 2( 0,3) 125 9130 0,5.
(0,5 0,0)(0,5 0,1)(0,5 0,3) 3 12

x x x x−
= − + −

− − −

For x=0,4 sec; ( ) 3 2125 910,4 30 0,4 0,4 0,5
3 2

0,4  
1

y L − ⋅ + −≈ = =

=0,3999 m/sec2. 

Example 5.4. Determine the Lagrange interpolation polynomial based on 
tabular data (Table 5.6) obtained from the function siny x x= + , with an 
interpolation error Δ=0,2⋅10-4. 

Table 5.6 – Output data 
i 0 1 2 3 
ix  1,40 1,50 1,70 1,80 
iy  2,38545 2,49749 2,69166 2,77385 

Solution: 
We find the Lagrange interpolation polynomial in the form: 

33
1 2 3

0
0 00 0 0 1 0 2 0 3

0 2 3 0 1 3
1 2

1 0 1 2 1 3 2 0 2 1

3

2 3

( )( )( )
( )( )( )

( )( )( ) ( )( )( )
( )( )( ) ( )( )

(

( )

)
nn j j

i i
i ij ji j i jj i j i

x x x x x x x x x xy y y
x x x x x x x x x x

x x x x x x x x x x x xy y
x x x x x x x x x x x x

P x
= == =

≠ ≠

− − − − −
= = +

− − − − −

− − − − − −
+ + +

− − − −

=

− −

∑ ∑∏ ∏
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0 1 2
3

3 0 3 1 3 2

( )( )( ) ( 1,5)( 1,7)( 1,8)2,38548
( )( )( ) (1,4 1,5)(1,4 1,7)(1,4 1,8)

( 1,4)( 1,7)( 1,8)2,49749
(1,5 1,4)(1,5 1,7)(1,5 1,8)

( 1,4)( 1,5)( 1,8)2,69166
(1,7 1,4)(1,7 1

x x x x x x x x xy
x x x x x x

x x x

x x x

− − − − − −
+ = +

− − − − − −

− − −
+ +

− − −
− − −

+
− − ,5)(1,7 1,8)

( 1,4)( 1,5)( 1,7)2,77385
(1,8 1,4)(1,8 1,5)(1,8 1,7)

198,79( 1,5)( 1,7)( 1,8) 416,2483( 1,4)( 1,7)( 1,8)
448,61( 1,4)( 1,5)( 1,8) 231,1542( 1,4)( 1,5)( 1,7).

x x x

x x x x x x
x x x x x x

+
−

− − −
+ =

− − −
= − − − − + − − − −
− − − − + − − −

 

Lagrangian interpolation error estimation: 
51 4

3 1 4
0,98545( ) ( ) ( ) ( ) 0,0004 1,64 10

( 1)! 4! 4!
n

n n
M MR x R x x x
n

ω ω −+
+= ≤ = = ⋅ = ⋅

+
, 

де 4 0 1 2 3(1,6) ( )( )( )( ) (1,6 1,4)(1,6 1,5)(1,6 1,7)x x x x x x x xω = − − − − = − − − ×  

(1,6 1,8) 0,2 0,1 ( 0,1) ( 0,2) 0,0004× − = ⋅ ⋅ − ⋅ − = ; α1=min(x, x0, x1, x2, x3)=min(1,6; 
1,4; 1,5; 1,7; 1,8)=1,4; α2=max(x, x0, x1, x2, x3)=max(1,6; 1,4; 1,5; 1,7; 1,8)=1,8; 

[ ]
( ) ( )

[ ]1 2

4
1 4 , 1,4;1,8

max max sin( ) 0,98545n x x
M M f x x

α α+ ∈ ∈
= = = = . 

Since 5 4( ) 1,64 10 0,2 10nR x − −= ⋅ < ∆ = ⋅ , which corresponds to the condition 
of the problem. 

To determine the value of the Lagrangian interpolation polynomial at the 

point x = 1,6, the formula 
33

3
0 0

( ) j
i

i j i jj i

x x
P x y

x x= =
≠

−
=

−
∑ ∏  is used. Calculations are 

performed step by step based on the formula, and the results are summarized in 
Table 5.7. 

 

Table 5.7 – Calculation results of the interpolation polynomial 

i  ix x−  i jx x− , i j≠  П(xi–xj), 
i≠j 0

n j
i

j i jj i

x x
y

x x=
≠

 −
  − 

∏  
0 0

nn j
i

i j i jj i

x x
y

x x= =
≠

 −
  − 

∑ ∏  

0 0,2 – 0,1 – 0,3 – 0,4 – 0,012 – 0,3978500 – 0,3978500 
1 0,1 0,1 – 0,2 – 0,3 0,006 1,6649930 1,2671430 
2 – 0,1 0,3 0,2 – 0,1 – 0,006 1,7944400 3,0615830 
3 – 0,2 0,4 0,3 0,1 0,012 – 0,4623083 2,5992747 

 

Based on the calculation results (see Table 5.6), the value of the Lagrange 
interpolation polynomial P3(1,6) = 2,5992747. To compare the value of the 
function siny x x= +  at point x=1,6 to seven decimal places, it is 
y(1,6)=2,5995736. 
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5.1.3 Spline interpolation 
 
Interpolation with a Lagrange or Newton polynomial over the entire segment 

using a large number of interpolation nodes often leads to an inaccurate 
approximation, which is explained by the significant accumulation of errors in the 
calculation process. In addition, due to the divergence of the interpolation process, 
increasing the number of nodes does not always lead to increased accuracy. In 
order to avoid large errors, the entire segment is divided into partial segments, and 
on each of the partial segments, the function f(x) is approximately replaced by a 
polynomial of low degree (the so-called piecewise polynomial interpolation). 

One way to interpolate over the entire segment is to use spline functions. A 
spline function, or spline, is a piecewise polynomial function that is defined on a 
segment and has a certain number of continuous derivatives on this segment. 

The word «spline» means a «flexible ruler» used to draw smooth curves 
through given points in a plane. The main advantage of splines is the ability to 
locally change the shape of the curve on a selected range of values. 

Classic cubic spline 
Consider the most well-known and common interpolation spline of the third 

order. In machine-building drawings, these splines are widely used in the form of 
patterns (flexible rulers), which are deformed so that with their help it is possible 
to draw a curve through given points (xi, yi). It can be shown (using the theory of 
elastic transverse bending of a beam under small deformations) that a spline is a 
group of combined cubic polynomials where the first and second derivatives of 
the corresponding functions of the polynomials are continuous at the junctions. 
Such functions are called cubic splines (Fig. 5.4), for the construction of which it 
is necessary to set the coefficients that uniquely determine the polynomial in the 
interval between two points. 

For a mathematical description of cubic splines, consider the segment [a; b] 
of the real OX axis. The interpolation grid, a = x0 < x1 < … < xn = b, consists of 
nodes where the values of the function f(x) are determined as yi = f(xi) (i = 0, 1, 
…, n). It is necessary to construct a continuous function – spline S(x) on the 
segment [a; b] that satisfies the following requirements: 

1. On each segment [xi-1; xi], the spline S(x) is a polynomial Si(x) of degree 
not higher than three (Fig. 5.4): 
   2 3

1 2 3 4( )i i i i iS x k k x k x k x= + + + ,   (5.8) 

where kij – constant coefficients to be determined. 
2. At nodes xi, the spline Si(x) acquires given values yi = f(xi) (i = 0, 1, …, n), 

which is: 

  
1

( ) ( 1, 2, , );
( ) ( 0,1, , 1).

i i i

i i i

S x y i n
S x y i n+

= =
 = = −





   (5.9) 
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Figure 5.4 – Spline interpolation scheme 

 
 
Condition (5.19) is necessary for passing splines through the nodes of a given 

interpolation grid a = x0 < x1 < …< xn = b, yi = f(xi) (i = 0, 1, …, n). This 
condition (5.19) forms 2n equations. 

3. At internal nodes xi (i = 1, 2, …, n–1), the spline has continuous first and 
second derivatives, namely: 

1

1

( ) ( ) ( 1, 1);

( ) ( ) ( 1, 1).
i i i i

i i i i

S x S x i n

S x S x i n
+

+

 ′ ′= = −


′′′′ = = −
 

That is, the following expressions will be obtained: 
3 2

4 3 2 1

2
4 3

4 3

( ) ( 1, );

( ) 3 2 ( 1, 1);

( ) 6 2 ( 1, 1).

i i i i i

i i i i

i i i

S x k x k x k x k i n

S x k x k x c i n

S x k x k i n

 = + + + =
 ′ = + + = −
 ′′ = + = −

 

At the points of spline conjugation, their first and second derivatives must be 
equal to each other. The number of such conditions should be 2n–2. To find the 
spline, it is necessary to determine the coefficients kij of the polynomials Si(x) 
(i = 1, 2, …, n–1) with 4n unknowns, which satisfy the system of 4n–2 equations. 

Two additional equations are needed to obtain the solution of the system of 
equations. They are obtained by determining the curvature value of the spline 
graph at the ends of the general interpolation curve, namely: 0 1( )S x σ′′ = , 

2( )nS x σ′′ = . 
The algorithm for solving the interpolation problem using a third-order 

polynomial is presented in Figure 5.5. 
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Figure 5.5 – Scheme of the algorithm for solving the interpolation problem 
using a third-order polynomial 

 
If σ1 = σ2 = 0, then such a spline is called natural. If there is additional 

information about the behavior of the function at the ends of the interpolation 
interval, then additional boundary conditions are recorded. Thus, the obtained 
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cubic spline, which is «glued» from cubic parabolas, passes through the given 
points, is a piecewise smooth and continuous function. 

To construct the curve function (5.18), it is necessary to determine four 
coefficients. The expression (5.18) can be written in the form proposed by Charles 
Hermite, which allows us to reduce the number of computational operations. For 
this, individual cubic equations can be written in the form: 

 2 2
1 1( ) ( ) ( ) ( 1, )i i i i i i i iS x ty ty x k d tt k d t t i n− − = + + ∆ − − − =  ,  (5.10) 

where 1
1, , 1i

i i i
i

x xx x x t t t
x

−
−

−
∆ = − = = −

∆
, 1i i iy y y −∆ = − , i

i
i

y d
x

∆
=

∆
, Δxi, Δyi – 

length of the interval; t and t  are auxiliary variables; x is an intermediate point on 
the segment [xi-1; xi]. 

Each of the Si(x) equations (5.20) contains only two constant unknown 
coefficients. After the first equation Si(x) is written, only one new unknown 
coefficient is added with each subsequent equation. Then for x=xi-1 t=0, 1t = , and 
for x=xi t=1, t=0. 

Accordingly, all conditions, except for the conditions for the second 
derivatives, are satisfied. Second derivatives for interior points are expressed as 
ratios: 

1 1 1 1 1 12 ( ) 3( )i i i i i i i i x i ik x k x x k x d x d x− + + + + +∆ + ∆ + ∆ + ∆ = ∆ + ∆ , 

and for the two outer ones – 2k0+k1=3d1 і km-1+2km=3dm. 
Thus, the system of equations to be solved is linear, and its matrix is 

tridiagonal (see Chapter 1): 

1
0

1 2 2 1
12 1 2 1

2 3 3 2
23 2 3 2

1 1

2 1 0 0 0
2( ) 0 0

30 2( ) 0

0 0 0 1 2 m m m m
n

m

d
k

d x d x
kx x x x

d x d x
kx x x x

d x d x
k

d
− −

∆ + ∆
∆ ∆ + ∆ ∆

∆ + ∆
⋅ =∆ ∆ + ∆ ∆

∆ + ∆


    

. 

In many cases, the spline interpolation method is the most convenient, as it 
allows you to obtain an analytical piecewise polynomial function. There are 
higher-order splines. The application of this method is also possible in other areas 
of computational mathematics, for example, in numerical integration or for 
solving differential equations. 

 
Example  5.5. Determine the deflection function of a normally loaded rod 

along its length using spline interpolation based on a third-order polynomial for 
the function y=f(x), which is given in the table (Table 5.10), and also determine 
the approximate value of the deflection of the rod at the point x=2,5 m. 
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Table 5.8 – Output date 
i 0 1 2 3 

ix , m 1,0 2,0 3,0 4,0 
iy , 10-2 mm 15,0 17,0 7,0 21,0 

 
Solution: 

According to three ranges of values of the argument xi (see Table 5.10), on 
the basis of condition (5.18), the following system of m=3 equations will be 
obtained: 

 

3 2
1 1 1 1

3 2
2 2 2 2

3 2
3 3 3 3

, [1; 2];
, [2; 3];
, [3; 4].

A x B x C x D x
y A x B x C x D x

A x B x C x D x

 + + + ∈


= + + + ∈
 + + + ∈

  (5.11) 

In order to determine the unknown coefficients коефіцієнти A1, B1, C1, D1, 
A2, B2, C2, D2, A3, B3, C3, D3, it is necessary to create a system with the number of 
m·4=12 equations and 12 unknowns. 

The first 2m equations are composed based on the requirement that the splines 
must converge at the specified nodal points: 

1) 3 2
1 0 1 0 1 0 1 0A x B x C x D y+ + + = ; 

2) 3 2
1 1 1 1 1 1 1 1A x B x C x D y+ + + = ; 

3) 3 2
2 1 2 1 2 1 2 1;A x B x C x D y+ + + =  

4) 3 2
2 2 2 2 2 2 2 2;A x B x C x D y+ + + =  

5) 3 2
3 2 3 2 3 2 3 2;A x B x C x D y+ + + =  

6) 3 2
3 3 3 3 3 3 3 3.A x B x C x D y+ + + =   

The following 2m–2 equations are formed under the condition that the first 
and second derivatives are equal at the points of conjugation of the splines: 

7) 2 2
1 1 1 1 1 2 1 2 1 23 2 3 2A x B x C A x B x C+ + = + + ; 

8) 2 2
2 2 2 2 2 3 2 3 2 33 2 3 2A x B x C A x B x C+ + = + + ; 

9) 1 1 1 2 1 26 2 6 2A x B A x B+ = + ; 
10) 2 2 2 3 2 36 2 6 2A x B A x B+ = + . 
For the last two equations, an additional condition is used that the value of the 

second derivative at the extreme points must be equal to zero, namely: 
11) 1 0 16 2 0A x B+ = ; 
12) 3 3 36 2 0A x B+ = .  
Substituting the initial data (see Table 5.10), we obtain a system of 12 

equations with 12 unknowns: 
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1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

3 3 3 3

3 3 3 3

1 1 1 2 2 2

2 2 2 3 3 3

1 1 2 2

2 2 3 3

1 1

15;
8 4 2 17;
8 4 2 17;
27 9 3 7;
27 9 3 7;
64 16 4 21;
12 4 12 4 ;
27 6 27 6 ;
12 2 12 2 ;
18 2 18 2 ;
6 2 0

A B C D
A B C D
A B C D

A B C D
A B C D
A B C D
A B C A B C
A B C A B C
A B A B
A B A B

A B

+ + + =
+ + + =
+ + + =
+ + + =
+ + + =
+ + + =
+ + = + +
+ + = + +
+ = +
+ = +
+ =

3 3

;
24 2 0.A B


















 + =

    (5.12) 

Submitting the system of equations (5.22) in matrix form, we obtain: 

           

1 1 1 1 2 2 2 2 3 3 3 3

1 1 1 1 1 0 0 0 0 0 0 0 0
2 8 4 2 1 0 0 0 0 0 0 0 0
3 0 0 0 0 8 4 2 1 0 0 0 0
4 0 0 0 0 27 9 3 1 0 0 0 0
5 0 0 0 0 0 0 0 0 27 9 3 1
6 0 0 0 0 0 0 0 0 64 16 4 1
7 12 4 1 0 12 4 1 0 0 0 0 0
8 0 0 0 0 27 6 1 0 27 6 1 0
9 12 2 0 0 12 2 0 0 0 0 0 0

10 0 0 0 0 18 2 0 0 18 2 0 0
11 6 2 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0

A B C D A B C D A B C D

− − −
− − −

− −
− −

15
17
17
7
7
21

.
0
0
0
0
0

0 24 2 0 0 0  

(5.13) 

After solving the system of equations (5.22), for example, using the Gaussian 
elimination, we substitute the found coefficients in (5.21), which allows us to 
obtain a solution to the given problem. 

When solving the problem using the Gaussian elimination, it is necessary to 
first transform the system (5.23) into the form so that there are no zero elements 
in the main diagonal (it is necessary to change the corresponding equations), 
namely: 
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1 1 1 1 2 2 2 2 3 3 3 3

11 6 2 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0
7 12 4 1 0 12 4 1 0 0 0 0 0
2 8 4 2 1 0 0 0 1 0 0 0 0
8 0 0 0 0 27 6 1 0 27 6 1 0
9 12 2 0 0 12 2 0 0 0 0 0 0
3 0 0 0 0 8 4 2 1 0 0 0 0
4 0 0 0 0 27 9 3 1 0 0 0 0

10 0 0 0 0 18 2 0 0 18 2 0 0
12 0 0 0 0 0 0 0 0 24 2 0 0
5 0 0 0 0 0 0 0 0 27 9 3 1
6 0 0 0 0 0 0 0 0

A B C D A B C D A B C D

− − −

− − −
− −

− −

0
15
0

17
0
0

.
17
7
0
0
7

64 16 4 1 21  

(5.14) 

Let’s solve the system of equations using the Gaussian elimination. The 
C/C++ program looks like this: 

 
#include <iostream> 
#include <stdlib.h> 
 
int main(int argc, char *argv[]) 
{ 
 int n = 12; 
 float a[12][12] = {6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
                    1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
                    12, 4, 1, 0, -12, -4, -1, 0, 0, 0, 0, 0, 
                    8, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
                    0, 0, 0, 0, 27, 6, 1, 0, -27, -6, -1, 0, 
                    12, 2, 0, 0, -12, -2, 0, 0, 0, 0, 0, 0, 
                    0, 0, 0, 0, 8, 4, 2, 1, 0, 0, 0, 0, 
                    0, 0, 0, 0, 27, 9, 3, 1, 0, 0, 0, 0, 
                    0, 0, 0, 0, 18, 2, 0, 0, -18, -2, 0, 0, 
                    0, 0, 0, 0, 0, 0, 0, 0, 24, 2, 0, 0, 
                    0, 0, 0, 0, 0, 0, 0, 0, 27, 9, 3, 1, 
                    0, 0, 0, 0, 0, 0, 0, 0, 64, 16, 4, 1}; 
 float b[12] = {0, 15, 0, 17, 0, 0, 17, 7, 0, 0, 7, 21}; 
 float d; 
 
for (int i=0; i<n-1; i++) 
    for (int j=i+1; j < n; j++) 
    { 
       d = a[j][i] / a [i][i]; 
       for (int m=0; m < n; m++) 
           a[j][m] = a[i][m] * d - a[j][m]; 
       b[j] = b[i]*d - b[j]; 
    }  
     
    float x[12]; 
     
    for (int i=n-1; i>=0; i--) 
    { 
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        float D = 0; 
        for (int j=n-1; j>i; j--) 
             D = D + x[j]*a[i][j]; 
        x[i] = (b[i]-D) / a[i][i];    
    } 
    for (int i=0; i<n; i++) 
       cout <<  "x[" << i << "]=" << x[i] << endl;   
     
  system("PAUSE");  
  return 0; } 

 
In the process of solving the system of equations (5.24), the following 

coefficient values were obtained: A1 = – 4,8; B1=14,4; C1 = –7,6; D1 = 13,0; 
 A2 = 12,0; B2 = –86,4; C2 = 194,0; D2 = –121,4; A3 = –7,2; B3 = 86,4; C3 = –324,4; 
D3 = 397,0. 

Accordingly, the system of equations (5.21) will have the form: 
3 2

3 2

3 2

4,8 14,4 7,6 13, [1; 2];
12 86,4 194 121,4, [2; 3];

7,2 86,4 324,4 397, [3; 4].

x x x x
y x x x x

x x x x

− + − + ∈


= − + − ∈
− + − + ∈

  

Then 3 2 2(2,5) 12 2,5 86,4 2,5 194 2,5 121,4 11,1 10 mmy −= ⋅ − ⋅ + ⋅ − = ⋅ . 

5.2 Data approximation 

Approximation is an approximate description provided by one function (the 
approximating function) of a given form of another function (the approximated 
function), which can be given in any form (for data approximation, it is provided 
in the form of data arrays). 

There are two main approaches to data approximation. For one of them, it is 
necessary that the approximating curve (perhaps piecewise smooth) passes 
through all the points specified in the table. This is implemented using the 
interpolation methods discussed in the previous subsection. Another approach is 
to approximate the data with a simple function that is applied to all table values, 
but not necessarily through all points. This approach is called curve fitting, which 
is sought to be drawn so that its deviation from tabular data is minimal. As a rule, 
the least squares (LS) is used, that is, the sum of the squares of the differences 
between the value of the function determined by the selected approximating curve 
and the tabular data is minimized. 

At the same level as the most common LS, the Chebyshev’s method is also 
used, in which the maximum distance of the approximating curve from the 
approximated one is minimized. In general, the criterion of closeness can be any 
measure justified by the statement of the problem, which leads to the use of 
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various mathematical methods and models of approximation, as well as 
algorithms for finding the parameters of the approximating function. 

Let the table specify (n+1) points (x0, y0), (x1, y1), …, (xn, yn) and it is necessary 
to determine the approximating curve g(x) in the range x0≤x≤xn (Fig. 5.6). In this 
case, the error in each table point: 

  ( )i i ig x yε = − .    (5.15) 

Then the sum of squared errors is determined by the expression: 

 [ ]2

0
( )

n

i i
i

E g x y
=

= −∑ .     (5.16) 

 
Figure 5.6 – Schematic diagram of data approximation 

 
As a rule, the function g(x) is chosen as a linear combination of typical 

functions gk(x): 
  ( ) 1 1 2 2( ) ( ) ... ( )k kg x C g x C g x C g x= + + + .   (5.17) 

The minimum condition of the function E is determined by the equations: 

   
1 2

0
k

E E E
C C C
∂ ∂ ∂

= = = =
∂ ∂ ∂

 .  (5.18) 

Since 
2

1 1 2 2
0

( ) ( ) ... ( )
n

i i k k i i
i

E C g x C g x C g x y
=
 = + + + − ∑ , 

then from formula (5.25) we obtain the following system of equations: 
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[ ]

[ ]

[ ]

1 1 1 1 1
1

1 1 1
2

1 1

2 ( ) ... ( ) ( ) 0;

2 ( ) ... ( ) ( ) 0;

;

2 ( ) ... ( ) ( ) 0.

k k i i

i k k i i i

i k k i i k i
k

E C g x C g x y g x
C
E C g x C g x y g x
C

E C g x C g x y g x
C

∂ = + + − =∂
∂ = + + − =∂



∂ = + + − =∂

∑

∑

∑



  

This system of k equations can be written in matrix form, namely: 

 

2
1 11 1 2 1

2
2 21 2 2 2

2
31 2

( )( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( )

.

( )( ) ( ) ( ) ( ) ( )

i ii i i i k i

i ii i i i k i

k i ii k i i k i k i

C g x yg x g x g x g x g x
C g x yg x g x g x g x g x

C g x yg x g x g x g x g x

=

∑∑ ∑ ∑
∑∑ ∑ ∑

∑∑ ∑ ∑





 
   



  (5.19) 

Since the elements of the matrix on the left and the column vector on the right 
parts of (5.29) are determined by tabular data, the resulting system of k linear 
equations with k unknowns has a solution. 

If we switch to the matrix form of the record, then the general formula of LS 
takes the following form: 

 1[ ]T T−= ⋅ ⋅ ⋅C U U U Y , (5.20) 

where 

1

2

k

C
C

C

=


C ,  

1

2

n

y
y

y

=


Y , 

1 1 1

1 2 2

1

( ) ( )
( ) ( )

( ) ( )

k

k

k k n

g x g x
g x g x

g x g x

=





  



U .  

The choice of the type of function g(x) must be made taking into account the 
nature of tabular data (periodicity, symmetry properties, existence of asymptotics, 
etc.). 

For example, by approximation, a quadratic function will be obtained:  
2

0 1 2( )g x C C x C x= + +  ⟹ 
2

2
0 1 2

1
( )

n

i
i

E C C x C x y
=

= + + −  ∑ ; 

2
0 1 2

00

2
0 1 2

01

2 2
0 1 2

02

2 ( ) 0;

2 ( ) 0;

2 ( ) 0;

n

i
i

n

i i
i

n

i i
i

E C C x C x y
C
E C C x C x y x
C
E C C x C x y x
C

=

=

=

 ∂
= + + − =   ∂

 ∂
= + + − =   ∂

 ∂
= + + − =   ∂

∑

∑

∑
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2
0

2 3
1

2 4 2
3 2

( 1) i i i

i i i i i
i

i i i i

n x x C y
x x x C x y
x x x C x y

+    
     =    
        

∑ ∑ ∑
∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

. 

Sometimes tabular data is divided into several parts and a separate 
approximating curve is selected for each part. This approach satisfies those cases 
when the data correspond to different physical states of the system. 

The residual mean square error of approximation is estimated using the 
following expression: 

    .)1/( +=∆ nE     (5.21) 

The algorithm for solving the approximation problem using the method of 
least squares will take the form (Fig. 5.7). 

If orthogonal polynomials for which ( ) ( ) 0j i k ig x g x =∑  (j≠k), are used during 
the construction of the approximating function gi(x), then the system (5.29) is 
simplified and the matrix becomes diagonal. For their part, the coefficients are 
determined from such ratios: 

  2

0 0
( ) / ( )

n n

j j i i j i
i i

C g x y g x
= =

= ∑ ∑ .  (5.22) 

This approach simplifies the task, which allows orthogonal polynomials to be 
used in many standard curve fitting programs. 

 
Example 5.6. The distribution function of the company’s profit rate f(x) in 

thousand USD by calendar months, presented in tabular form (Table 5.9), it is 
necessary to approximate the type function: 
 2

1 2 3 4( ) sin 2x C x C x C C xφ = + + + .   (5.23) 

 
Table 5.9 – Output data 

i 1 2 3 4 5 
X, 

month 0 1 2 3 4 

)(xf , 
thousand 

USD 
–1,0 2,0 3,0 –2,0 5,0 

 
Solution: 

Let’s introduce functional notation based on the approximating function 
(5.33): 2

1( )g x x= , 2 ( )g x x= , 3( ) 1g x = , 4 ( ) sin 2g x x= . 

Based on system (5.29) written in matrix form, we obtain: 



232 

 
 

Figure 5.7 – Scheme of the algorithm for solving the approximation problem 
using the method of least squares 
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3 
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4 
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5 
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6 

1 
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mean square error 

8 

9 

7 
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2 2 2 2 2

1 1 1 1

2 2 1

1 1 1 1 2

32

41 1 1

2 2

1 1 1 1

( ) sin 2

sin 2

1 sin 2

sin 2 sin 2 sin 2 sin 2

n n n n

i i i i i i
i i i i

n n n n

i i i i i i
i i i i

n n n

i i i
i i i

n n n n

i i i i i i
i i i i

x x x x x x

Cx x x x x x
C
C

x x x C

x x x x x x

= = = =

= = = =

= = =

= = = =

 
 
 
 

 
 
 ×
 

 
 

 
 
  

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑

2

1

1

1

1

( )

( )

.

( )

( )sin 2

n

i i
i
n

i i
i
n

i
i
n

i i
i

f x x

f x x

f x

f x x

=

=

=

=

 
 
 
 

  
  
  =
  

   
  

 
 
  

∑

∑

∑

∑

 

Let’s calculate all elements of the matrix: 

5
2 2 4 4 4 4 4

1 1
( ) 0 1 2 3 4 354

n

i i
i i

x x
= =

= = + + + + =∑ ∑ ; 

5
2 3 3 3 3 3

1 1
0 1 2 3 4 100

n

i i i
i i

x x x
= =

= = + + + + =∑ ∑ ; 

2 2 2 2 2

1
0 1 2 3 4 30

n

i
i

x
=

= + + + + =∑ ; 

2

1
sin2 0 sin 2 4sin 4 9sin 6 16sin8 0,909 3,027 2,515

n

i i
i

x x
=

= + + + + == − + +∑   

+15,83=11,197;  

2 2 2 2 2

1
( ) 1 0 2 1 3 2 2 3 5 4 2 12 18 80 76

n

i i
i

x f x
=

= − ⋅ + ⋅ + ⋅ − ⋅ + ⋅ = + − + =∑ . 

Similarly, calculations are performed for the remaining elements of the 
matrix: 

  

1

2

3

4

354,0 100,0 30,0 11,197 76,0
100,0 30,0 10,0 2,515 22,0
30,0 10,0 1,0 0,862 7,0

11,197 2,515 0,862 2,456 5,054

C
C
C
C

    
    
    × =
    
    

    

.   (5.24) 

Solving the system of equations (5.34) (see Chapter 1) will yield unknown 
coefficients С1,2,3,4: C1 = –0,0376; C2 = 0,6645; C3 = 0,2115; C4 = 1,4745. 

So, the approximating function will look like this: 

xxxx 2sin4745,12115,06645,00376,0)( 2 +++−=ϕ . 

For a complete solution, it is necessary to determine the residual error. 
According to formula (5.31), it is necessary to determine the sum of squares of 
deviations of the obtained function φ(x) from the given f(x). First, the value of the 
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function φ(x) at the specified points is determined, after which the square of the 
difference between the two functions is calculated (Table 5.10). 

 
Table 5.10 – The results of calculating the squared differences between two 

functions 
i 0 1 2 3 4 
x 0,000 1,000 2,000 3,000 4,000 

f(x) – 1,000 2,000 3,000 – 2,000 5,000 
φ(x) 0,211 2,179 0,274 1,455 3,727 

φ(x) – f(x) 1,212 0,197 – 2,726 3,455 – 1,273 
(φ(x) – f(x))2 1,468 0,032 7,430 11,934 1,621 

 
From Table 5.12, the value of the sum of squared errors: 

[ ]
4 2

0
( ) ( ) 1,468 0,032 7,430 11,934 1,621 22,485i i

i
E x f xϕ

=
= − = + + + + =∑ . 

Then the value of the residual root mean square error: 

22,485 1,936
1 5 1

E
n

∆ = = =
+ +

. 

From a practical point of view, the resulting root mean square error Δ=1,936 
of the approximation of the function f(x) is quite large. In order to reduce the 
approximation error, it is necessary to first select the optimal type of φ(x) function 

5.3 Statistical data processing 

When processing the results of experimental data, there is a need to evaluate 
the characteristics of a random variable. 

The arithmetic mean of the results of N independent tests is used to estimate 
X  the unknown value of the mathematical expectation mX of the random variable 
X: 

  1X

n

i
i

x

N
==
∑

,    (5.25) 

and to estimate the value of the dispersion Dx for a sufficiently large number of 
experimental data (N≥30) – the ratio: 

 
2

2 1
( )

1

N

i
i

x X

x x
D

N
σ =

−
= =

−

∑
.    (5.26)  
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Consider the implementation of finding the mathematical expectation and 
variance in the C++ programming language: 

 
#include <cmath> 
#include <iostream> 
using namespace std; 
 
double sum(int size, double sample[]){ 
    double sum = 0; 
    for (int i = 0; i < size; i++){ 
        sum+=sample[i]; 
    } 
    return sum; 
} 
 
double mExp(int size, double sample[]){ 
    return sum(size, sample)/size; 
} 
 
double variance(int size, double sample[]){ 
    double mean = mExp(size, sample); 
    double diffsSquared[size]; 
    for (int i=0; i<size;i++) { 
        diffsSquared[i] = pow(sample[i]-mean,2); 
    } 
 
    return sum(size,diffsSquared)/(size-1); 
} 
 
int main(int argc, char *argv[]) { 
    int size = argc-2; 
    double sample [size]; 
 
    for (int i = 0; i < size; i++){ 
        sample[i]=stod(*(argv+2+i)); 
    } 
    string mode(*(argv+1)); 
    cout << "Mode: " << mode << endl; 
    if ("expectation" == mode) { 
        cout << "Expectation: " << mExp(size,sample) << endl;    
    } else if ("variance" == mode) { 
        cout << "Variance: " << variance(size,sample) << endl; 
 
    } else { 
        cout << "Unknown mode" << endl; 
    } 
    return 0; 
}. 

 
If the normal distribution law of the quantity X is considered, then it can be 

shown that the quantity:  

/
X

X

X mT
Nσ

−
= , 

has a Student’s t-distribution with k=N–1 degrees of freedom. The degree of 
freedom in statistics is defined as the difference between the number of 
experiments and the number of model coefficients that can be calculated based on 
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the results of these experiments independently of each other. For example, in a 
normal distribution, there are two parameters, and Poisson distribution has one. 
From here, you can determine the confidence interval for the true value of x: from 
the known values of the confidence probability P, namely from Table 5.11, the 

value of ɛ is determined, from where XD
N

ε∆ = . 

Thus, if a random variable is normally distributed with expectation mX and 
variance DX, then the true value of x lies in the interval (mX–Δ, mX+Δ) with 
confidence probability P. 

To evaluate the type of distribution law under the confidence distribution law, 
the Kolmogorov–Smirnov and Pearson’s chi-squared test are most widely used 
(Student’s t-test is used only under the normal distribution law), which allow, 
based on the comparison of the empirical distribution function * ( )Xf x , obtained 
in the form of a histogram as a result of processing experimental data with 
hypothetical fX(x), corresponding to the proposed hypothesis, to conclude about 
their coincidence at the level of significance α, which is defined as the probability 
that a reliable hypothesis will be rejected. 

 
Table 5.11 – Values for the interval –ɛ<t<ɛ, where the value t has the 

Student’s distribution depending on the reliable probability P and the number of 
degrees of freedom k 

 
k Р=0,90 Р=0,95 Р=0,99 
1 2 3 4 
1 6,310 12,71 63,7 
2 2,920 4,30 9,92 
3 2,350 3,18 5,84 
4 2,130 2,77 4,60 
5 2,020 2,57 4,03 
6 1,943 2,45 3,71 
7 1,895 2,36 3,50 
8 1,860 2,31 3,36 
9 1,833 2,26 3,25 

10 1,812 2,23 3,17 
11 1,796 2,20 3,11 
12 1,782 2,18 3,06 
13 1,771 2,16 3,01 
14 1,761 2,14 1,98 
15 1,753 2,13 2,95 
16 1,746 2,12 2,92 
17 1,740 2,11 2,90 
18 1,734 2,10 2,86 
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Continuation of Table 5.11 
1 2 3 4 

19 1,729 2,09 2,86 
20 1,725 2,08 2,84 
22 1,717 2,07 2,82 
24 1,711 2,06 2,80 
26 1,706 2,06 2,78 
28 1,701 2,05 2,76 
30 1,697 2,04 2,75 
40 1,684 2,02 2,70 
60 1,671 2,00 2,66 
120 1,658 1,98 2,62 
240 1,645 1,96 2,58 

 
In the Kolmogorov–Smirnov test, the measure is the magnitude: 

*

max
( ) ( )X Xf x f x nλ = − , 

which is compared with the critical value given in Table 5.12. 
 

Table 5.12 – Critical values of λ0 depending on the level of significance 
α 0,500 0,400 0,300 0,200 0,100 0,050 0,020 0,001 0,001 
λ0 0,828 0,895 0,974 1,073 1,224 1,358 1,520 1,627 1,950 

 
Under the condition λ < λcr, the hypothesis of the coincidence of fX(x) and 

* ( )Xf x  is accepted. 
In the Pearson’s chi-squared test, the value is calculated: 

  
2*

2

0

( ) ( )
( )

k X i X i

i X i

f x f x
x

f x=

 − = ∑ ,  (5.27) 

where k – the number of histogram digits (discrete fX(xi) values). 
From Table 5.13, the critical value of χ2 is determined, taking into account the 

value of α and the number of degrees of freedom: 
, 

where l – the number of parameters contained in the distribution law (for normal 
l=2, Poisson’s l=1, etc.). 

For χ2 <  χ2
cr, the hypothesis is accepted. 

If we compare analytically obtained probability distribution laws, the mean 
squared error is a measure of their closeness.  

To assess the interdependence of random variables that have a stochastic 
relationship, the correlation coefficient is used: 

1−−= lkr
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( )( )1

1

n

i x i Y
i

xy
x y

x m y m
r

n σ σ
=

− −
=

−

∑
,    (5.28) 

where n – sample size. 
When determining the interdependence of the values of random variables at 

different points in time, the correlation coefficient is estimated by the formula: 

   
[ ][ ]

1
( ) ( )1( )

1

n m

i x i X
i

X
X

x t m x t m
r

n m D

τ
τ

−

=

− + −
=

− −

∑
 ,    (5.29) 

where x(ti) – the value of the random variable X at the moment of time ti, and 
x(ti+τ) – at the moment of time that differs from ti at the time interval τ. Thus, 
x(ti) = xi, x(ti+τ) = xj, τ is the time interval between i and j values of x (i–j = m). 

 
Table 5.13 – Critical points of the distribution x is a random variable that is 

distributed according to the χ2 law with k degrees of freedom  
Number of 
degrees of 
freedom  

α=0,010 α=0; 
0,025 α=0,050 α=0,950 α=0,975 α=0,990 

1 6,6 6,0 3,8 0,0039 0,00098 0,00016 
2 9,2 7,4 6,0 0,103 0,051 0,020 
3 11,3 9,4 7,8 0,352 0,216 0,115 
4 13,3 11,1 9,5 0,711 0,484 0,297 
5 15,1 12,8 11,1 1,15 0,831 0,554 
6 16,8 14,4 12,6 1,64 1,24 0,872 
7 18,5 16,0 14,1 2,17 1,69 1,24 
8 20,1 17,5 15,5 2,73 2,18 1,65 
9 21,7 19,0 16,9 3,33 2,70 2,09 
10 23,2 20,5 18,3 3,94 3,25 2,56 
11 24,7 21,9 19,7 4,57 3,82 3,05 
12 26,2 23,3 21,0 5,23 4,40 3,57 
13 27,7 24,7 22,4 5,89 5,01 4,11 
14 29,1 26,1 23,7 6,57 5,63 4,66 
15 30,6 27,5 25,0 7,26 6,26 5,23 
16 32,0 28,8 26,3 7,96 6,91 5,81 

 
The correlation interval is defined as the time interval during which the 

correlation function decreases by 95%. 
Determining the correlation coefficient (normalized correlation function) and 

correlation function based on known data arrays x and y on the basis of the above 
formulas does not cause difficulties, and the approximation of the form of the 

k
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correlation function by typical correlation functions (Table 5.14) can be carried 
out by the method of least squares. 

 
Table 5.14 – Typical correlation functions 

Type Parameters 

 , 
Rx(τ*) – known value of correlation function 

  

  

  

 
,   

for two known values of the correlation 
function Rx(τ), and Rx( *

1τ )=0. 
 

 

Conclusions regarding the application of data processing problem 
solving methods 

Data processing tasks combine a number of questions that arise for 
researchers during the processing of experimental data or in the process of tests 
with the objects under study. Problems of approximating unknown functions are 
generally approximation problems. If obtaining a function of the given form is the 
final result, then the process of solving the problem itself is determined by the 
choice of the criterion of proximity of the approximated and approximating 
functions. Most often, this method is the method of least squares, where the 
measure of closeness is the sum of the squares of the deviations of these functions, 
but there are also other formulations of the problem. In general, the criterion of 
closeness is chosen by the researcher himself. When the approximation is used to 
estimate the value of an unknown function at a certain point, the interpolation 
problem is considered, which is solved by the known methods of Lagrange, 
difference, splines, etc. The choice of an effective algorithm depends on the 
answers to the following questions: how accurate is the chosen method, how much 
machine time is spent on its use, how smooth is the interpolation function, how 
many data points does it require, etc. The errors of interpolation methods depend 
on whether all the points obtained from the experiment are used. The Lagrangian 
polynomial explicitly contains the function values at the interpolation nodes, so it 
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is useful when the function values change and the interpolation nodes are fixed. 
The effectiveness of the application of different interpolation methods depends on 
the location of the point at which the function value is being searched. If it is 
located at the beginning of the interval, it is more convenient to use Newton's first 
interpolation formula; at the end, the second formula is more suitable; and in the 
middle, formulas based on central differences are preferred. Splines are 
effectively used when multiple interpolation calculations are required and in the 
case of a large fixed database. They are also effective in the case of 
multidimensional interpolation and are widely used (spatial interpolation based 
on Bezier curves) for the reconstruction and processing of spatial images in 
computer graphics. Extrapolation is the procedure of interpolating beyond the 
specified interval. During statistical data processing, it is necessary to evaluate the 
main characteristics of a random variable. These procedures are included in the 
set of classic problems of processing experimental data in combination with 
algorithms and methods for their solution, which must be in the arsenal of an 
engineer and a researcher. 

 
 
Control questions and tasks 
 
1.  Formulate the problem of interpolation. In which cases is interpolation 

impossible? 
2.  What restrictions are placed on the set of base points when solving an 

interpolation problem? 
3.  Compile an algorithm and program for solving the problem of interpolation 

using the Lagrangian interpolation. 
4.  Compile an algorithm and program for solving the problem of interpolation 

using Newton’s first interpolation formula. 
5.  Compile an algorithm and program for solving the problem of interpolation 

using Newton’s second interpolation formula. 
6.  Compile an algorithm and program for solving the interpolation problem 

using interpolation formulas with central differences. 
7.  Derive Newton’s interpolation formula for equidistant nodes. 
8. What is spline interpolation? How are spline coefficients determined? 
9. What is extrapolation? 
10.  What is the more generalized concept – extrapolation or interpolation? 
11. What is an approximation? What is the difference between approximation 

and interpolation? 
12. In what ways is the approximation problem solved? 
13.  Give the main formula for the method of least squares. 
14.  Derive the system of equations for determining the coefficients of the 

approximating polynomial in the least squares method. 
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15.  What are polynomials called orthogonal? Please provide examples. 
16.  Construct the n-th degree Lagrangian interpolation polynomial for the 

function y(x) on the given interval, and calculate its value at the given point. 
Divide the interval into 10 and 20 points, and compare the errors: 

а) 2

2
3 4 1

xy
x x

=
+ +

 on the interval xϵ[2; 4], x=3,0; 

b) 
1

3 2
y

x
=

+
 on the interval xϵ[1; 3], х=2,0;  

c) 2

1
2 3 5

y
x x

=
+ +

 on the interval  ϵ[2; 3], x=2,2; 

d) 
lg(2 )

xy
x

=
+

 on the interval xϵ[4; 5], x=4,3. 

17.  Solve the problem of interpolation using the Lagrange’s method for the 
function given in the table and calculate the value of the function at the point 
x=2,2: 

a) 

b) 

 c) 

 
18. The calibration table below for a thermocouple gives the voltmeter 

readings when the temperature changes with a constant step. Using Lagrangian 
interpolation polynomial, find the voltmeter readings at T=55 0C. 
 

i 0 1 2 3 4 5 
T, 0C  0 20 40 60 80 100 

U, 
mV – 0,670 – 0,254 0,171 0,609 1,057 1,517 

 
19. Construct a diagonal table of finite differences for the given function 

using Newton’s first interpolation formula and calculate the interpolation value 
at the given point by dividing the interval into 10 and 20 points. Compare the 
calculation errors: 

i 0 1 2  3  
xi 2  4  5  8  
yi 10  15  9  25 

i 0 1 2  3  
xi 1 3  5  8  
yi 11 5  9  12  

i 0  1 2  3  
xi – 5 – 3 0 3 
yi – 24 – 12 4 22 
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а) 3 2

1( )
2 3 1

y x
x x

=
+ +

 on the interval xϵ[4; 5], x=4,2; 

b) 
23

1( )
3 5

y x
x

=
+

 on the interval xϵ[6; 7], x=6,4;  

c) 
3

1( )
3

y x
x x

=
+

 on the interval xϵ[1; 3], x=1,2. 

20. Solve the interpolation problem using Newton’s first interpolation 
formula and calculate the value of the function at the point x=1,5. 

a) 

b) 

c) 

 
21. Construct a diagonal table of finite differences for the given function using 

Newton’s second interpolation formula and calculate the interpolation value at the 
given point by dividing the interval into 10 and 20 points, compare the calculation 
errors: 

а) 4 3

1( )
3

y x
x x x

=
+ +

 on the interval xϵ[1; 3], x=1,5; 

b) 
5

1( )
5

y x
x x x

=
+

 on the interval xϵ[3; 5], x=4,0; 

c) 
3

1( )
4 5

y x
x x x

=
+ +

 on the interval xϵ[6; 8], x=7,6. 

22. Solve the interpolation problem using Newton’s second interpolation 
formula and calculate the value of the function at the point x=6,2. 

a) 

 

i 0  1 2  3  
xi 0 2 4 6 
yi – 2 15  7 24 

i 0  1 2  3  
xi – 2 0 2 4 
yi 10 5  7 12  

i 0  1 2  3  
xi – 5 0 5 10 
yi – 24 – 12 4 22 

i 0  1 2  3  
xi 2  4  6 8  
yi 10  – 2 9  5 
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b) 

 c) 

23. Construct a diagonal table of finite differences for the given function using
Stirling’s formula and calculate the interpolation value at the given point by 
dividing the interval into 10 and 20 points, compare the calculation errors: 

а) 3 2

1( )
2 3 1

y x
x x

=
+ +

 on the interval xϵ[4; 6], x=5,0; 

b) 2 3sin( )y x x x= + −  on the interval xϵ[6; 7], x=6,8;

c) 
3

1( )
3

y x
x x

=
+

 on the interval xϵ[1; 3], x=1,2. 

24. Solve the interpolation problem using Stirling’s formula and calculate the
value of the function at the point x=2,2: 

a) 

b) 

c) 

25. Construct third-order splines for the function yi(xi) given in the table:
а)

i 0  1 2 3  
xi 1 3  5  7 
yi 11 2 9  10 

i 0  1 2 3  
xi – 4 0 4 8 
yi – 24 – 12 4 22 

i 0  1 2 3  
xi 0 2 4 6 
yi – 2 15 7 24 

i 0  1 2 3  
xi – 3 0 3 6 
yi 10 5  7 12 

i 0  1 2 3  
xi – 4 0 4 8 
yi – 15 – 12 4 10 

i 0  1 2 3  
xi 2 4 5 8 
yi 10 15 9 25 
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c) 

26. Using the method of least squares, approximate the given tabular data
with a function of the following form: 

а) 1 2( )x C C xϕ = + ; 
b) 2

1 2 3( )x C C x C xϕ = + + ; 
c) 1 2 3( ) sin(3 )x C C x C xϕ = + + . 

Determine the corresponding coefficients С1, С2, С3 and the residual error. 

i 0 1 2 3 4 
x – 4,0 1,0 3,0 5,0 12,0 

f(x) 2,4 – 5,0 1,2 7,0 4,0 

27. Develop an algorithm and compile a program for evaluating the statistical
characteristics of the results of measuring the random variable X. 

28. Write an algorithm and a program for estimating the correlation
coefficient of two random variables. 

29. Write an algorithm and program to construct a histogram of a random
variable, and also construct a histogram for a random variable obtained from a 
standard random number generator. 

30. Compose an algorithm and program to estimate the autocorrelation
coefficient of a random variable and approximate the resulting function with one 
of the typical correlation functions from Table 5.14. 

i 0  1 2 3  
xi 1 3 5 8 
yi 11 5 9 12 

i 0  1 2 3  
xi – 5 – 3 0 3 
yi – 24 – 12 4 22 

b) 
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Chapter 6. NUMERICAL INTEGRATION AND DIFFERENTIATION 
 

In many tasks related to the development, analysis, identification and quality 
assessment of various methods and means of mathematical modeling, as well as 
information technologies, there is a need to calculate certain integrals. 

The function F(x) on a given interval D is called the original function for the 
function f(x) or the integral of f(x), provided that f(x) is the derivative of the 
function F(x) throughout this interval, or the same, that f(x)dx serves as a 
differential for F(x): 

( ) ( )F x f x′ =  or ( ) ( )dF x f x dx= . 

If the function f(x) is continuous on the interval [a; b] and its original function 
F(x) is known, then the definite integral from a to b can be calculated using the 
fundamental theorem of calculus: 

 ∫ −==
b

a
aFbFdxxfI )()()( . (6.1) 

The graphic interpretation of the integral is the area of the curved trapezoid 
bounded by the curve y = f(x), two ordinates x1 = a and x2 = b and the line 
segment x. 

Very often, calculating the value of an integral is not only a difficult process 
(due to the complexity of analytical transformations), but also impossible 
altogether (due to the presence of improper integrals), especially when the integral 
function is given by a set of numerical data (experimental data). 

Therefore, the task of numerical integration (numerical integration) of the 
function consists in calculating the value of the definite integral based on a 
number of values of the integral function (replacing the original integral function 
with a certain approximating function). Numerical integration formulas are often 
called quadrature. 

The most famous methods of finding definite integrals are: 
− rectangle formulas; 
− Newton-Cotes, Gaussian quadrature, Chebyshev polynomials formulas, 

which are based on the use of so-called quadrature formulas obtained by replacing 
f(x) with interpolation polynomials; 

− Monte Carlo methods, which are based on the use of statistical models. 
 
 

6.1  Riemann sum 

Let it be necessary to determine the value of the integral of the function f(x) 
on the segment [a; b]. The idea of the Riemann sum is to divide the segment of 
integration [a; b] into elementary segments [xi-1; xi] by points 
a = x0 < x1 < … < xn = b, based on which rectangles with height f(ξi) are 
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constructed. With a uniform division of the segment xi = a+i·h (h is a step), 

therefore 
( )a bh

n
−

= . 

The value of the integral of the function f(x) is approximately expressed as 
the sum of the areas of the constructed rectangles. The generalized quadrature 
formula for rectangles has the form: 

 1
1

( ) ( )( )
b n

i i i
ia

I f x dx f x xξ −
=

= ≈ −∑∫ ,  (6.2) 

where the point ξi ϵ [xi; xi-1]. 
Depending on the selection of the position of the ξi point, the formulas of the 

left, right and middle rectangles are distinguished 
For ξi = xi–1, the formula for left rectangles with first-order accuracy is O(h): 
– for non-equidistant nodes 

 1
1

( )( )
n

i i i
i

I f x xξ −
=

≈ −∑ ;   (6.3) 

– for equidistant nodes 

   1
1

( )
n

i
i

I h f x −
=

≈ ∑ .  (6.4) 

The geometric interpretation is given in Figure 6.1, a). 
For ξI = xi the formula of right rectangular quadrants with first order accuracy 

is O(h): 
– for non-equidistant nodes 

  1
1

( )( )
n

i i i
i

I f x x x −
=

≈ −∑ ; (6.5) 

– for equidistant nodes 

 
1

( )
n

i
i

I h f x
=

≈ ∑ .   (6.6) 

The geometric interpretation is given in Figure 6.1, b). 

In the case of 1

2
i i

i
x xξ − +

= , the formula for averaging rectangles with a 

different order of accuracy is O(h2): 
– for non-equidistant nodes 

  1
1

1
( )( )

2
n

i i
i i

i

x xI f x x−
−

=

+
≈ −∑ ;   (6.7) 

– for equidistant nodes 

 1
1 2

n

i
i

hI h f x −
=

 ≈ + 
 

∑ .   (6.8) 

The geometric interpretation is given in Figure 6.1, c). 
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Figure 6.1 – Scheme of numerical integration by the Riemann sum: 

a) left; b) right; c) average 
 

Formulas for left and right rectilinear equations can be used for both 
analytically defined functions and functions defined in tables. The method of 
average rectilinear equations (Riemann sum) can only be used to find integrals 
from analytically defined functions. 

Example 6.1 Determine the value of the integral ∫ +
=

1

0
21 x

dxI  by the method 

of left, right, and middle rectangles (Riemann sum) to calculate with step size 
h=0,2. 

Solution: 
According to the formula for left-handed rectangles (6.4), we obtain: 

5

1
1

2 2 2 2 2

( ) ( (0) (0,2) (0,4) (0,6) (0,8))

1 1 1 1 10,2 0,833732.
1,0 0 1,0 0,2 1,0 0,4 1,0 0,6 1,0 0,8

lr i
i

I h f x h f f f f f−
=

= = ⋅ + + + + =

 = + + + + = + + + + + 

∑
 

According to the formula for right-handed rectangles (6.6), we obtain: 
5

1

2 2 2 2 2

( ) ( (0,2) (0,4) (0,6) (0,8) (1,0))

1 1 1 1 10,2 0,733732.
1,0 0,2 1,0 0,4 1,0 0,6 1,0 0,8 1,0 1,0

rr i
i

I h f x h f f f f f
=

= = ⋅ + + + + =

 = + + + + = + + + + + 

∑
 

According to the formula for average rectilinear curves (6.8), we obtain: 

5

1
1

0,2 0,2 0,20 0,2 0,4
2 2 2

2 0,2 0,20,6 0,8
2 2

mr i
i

f f f
hI h f x h

f f
−

=

      + + + + + +              = + =        + + + +        

∑ = 

   
а) b) c) 
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2 2 2 2 2
1 1 1 1 10,2 0,786826

1,0 0,1 1,0 0,3 1,0 0,5 1,0 0,7 1,0 0,9
 = + + + + = + + + + + 

. 

The exact value of the integral based on analytical decoupling: 
1 1

2 0
0

( ) 0,785398
1 4

dxI arctg x
x

π
= = = =

+∫ . 

The relative difference in calculation by means of equalization between the 
values of the analytical decoupling of the integral and the numerical method 
according to the formula: 

– left-handed rectangular  

0,785398 0,833732100% 100% 6,15%
0,785398

lr
л

I I
I

ε − −
= ⋅ = ⋅ = , 

– right-winged rectangular  

0,785398 0,733732100% 100% 6,58%
0,785398

rr
п

I I
I

ε − −
= ⋅ = ⋅ = , 

– medium-sized rectangular  

0,785398 0,786826100% 100% 0,18%
0,785398

mr
с

I I
I

ε − −
= ⋅ = ⋅ = . 

The method of left and right triangles (Riemann sum) for a given alignment 
introduces a fundamental calculation error. The most precise result is achieved by 
using the method of average rectilinearity. As the number of intervals increases 
(as the values of h decrease), the accuracy of the integral calculation will also 
increase. 

 

6.2  Newton-Cotes formulas 

To derive the Newton-Cotes formulas, the integral is written in the form: 

   
0

( ) ( )
b n

i i
ia

f x dx A f x
=

= + ∆∑∫ ,  (6.9) 

where xi – interpolation nodes;  
A – coefficients that depend on the type of formula;  
Δ – error of the quadrature formula. 
By replacing the integrand function in equation (6.9) with the corresponding 

Lagrange polynomial for n equidistant nodes with a step 
b ah

n
−

= , one can obtain 
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the following formula for calculating the Аі coefficients for an arbitrary number 
of nodes: 

1

0

( 1) ( 1) ( )
!( 1)! ( )

n т

i
b a q q q nA dq

n i n q i

−− − − − =   − − 
∫

   (i=0, 1, 2, …, n),  (6.10) 

where 
x aq

h
−

= – cast variable.

Usually, the coefficients i
i

AH
b a

=
−

 are called Cotes' coefficients. Formula 

(6.9) will take the form: 

∫ ∑
=

−=
b

a

n

i
ii xfHabdxxf

0
)()()( , (6.11) 

and has the following properties 
0

1
n

i
i

H
=

=∑  і i n iH H −= . 

For n = 1 and n = 2, from (6.10) and (6.11) we obtain the trapezoidal 
and Simpson’s rules. Table 6.1 shows the values of the Cotes' 
coefficients for n = 1, 2, …, 8. Since the Cotes coefficients for a large 
number of ordinates are complex, in practice, for approximating definite 
integrals, the integration interval is divided into a large number of small intervals 
and Newton’s quadrature formula is applied to each of them – Cotes with a 
small number of ordinates. After that, formulas of simpler structure will be 
obtained, which can have sufficiently high accuracy. 

Table 6.1 – Values of the coefficients of the Newton-Cotes formula 
 Common 

denominator 
N 

1 1 1 2 
2 1 4 1 6 
3 1 3 3 1 8 
4 7 32 12 32 7 90 
5 19 75 50 50 75 19 288 
6 41 216 27 272 27 216 41 840 
7 751 3577 1223 2989 2989 1223 3577 751 17280 
8 989 5888 –928 10496 –4540 10496 –928 5888 989 28350 

ii HH =


0H


1H


2H


3H


4H


5H


6H


7H


8H


For example, the trapezoidal and Simpson’s rules obtained in this way have 
the following form: 
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[ ]0 1 2 1( ) 2 ( ) 2 ( ) ... 2 ( ) ( )
2 n n
hI f x f x f x f x f x−= + + + + + ,  (6.12) 

[ ]0 1 2 3 2 1( ) 4 ( ) 2 ( ) 4 ( ) ... 2 ( ) 4 ( ) ( ) .
3 n n n
hI f x f x f x f x f x f x f x− −= + + + + + + + (6.13) 

Moreover, the errors of the component formulas are, respectively: 

3

212
hn M∆ = −  та

5

4180
hn M∆ = − .

Similarly, it is possible to obtain Newton-Cotes component formulas for 
higher orders. 

To estimate the calculation error in practice, the Runge’s method (Richardson 
extrapolation) is used, similar to the use of one-step numerical methods for 
solving the Cauchy problem (see Chapter 3). 

Example 6.2. Determine the value of the integral ∫ +
=

1

0
21 x

dxI  using the

Newton-Cotes formulas, namely the trapezoid formula with a step of 
h = 0,2 and Simpson’s rule with a step of h = 0,25. 

Solution: 

Since the value of the integral function is 2
1( )

1
f x

x
=

+
, then for h = 0.2, the 

interval xϵ[0; 11,0] will be divided into five segments. Using the trapezoid 
formula (6.13), we have: 

[ ]

[ ]

0 1 2 3 4 5

2 2 2 2 2

2

( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) ( )
2

(0) 2 (0,2) 2 (0,4) 2 (0,6) 2 (0,8) (1,0)
2
0,2 1 1 1 1 12 2 2 2
2 1,0 0 1,0 0,2 1,0 0,4 1,0 0,6 1,0 0,8

1 0,783730.
1,0 1,0

t
hI f x f x f x f x f x f x

h f f f f f f

= + + + + + =

= + ⋅ + ⋅ + ⋅ + ⋅ + =

= + ⋅ + ⋅ + ⋅ + ⋅ + + + + + +
+ =+ 

Also, using Simpson’s formula (6.13) with a step size of h = 0.25, we 
obtain: 
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[ ]

[ ]

0 1 2 3 4

2 2 2 2 2

( ) 4 ( ) 2 ( ) 4 ( ) ( )
3

(0) 4 (0,25) 2 (0,5) 4 (0,75) (1,0)
3
0,2 1 1 1 1 14 2 4
3 1,0 0 1,0 0,25 1,0 0,5 1,0 0,75 1,0 1,0

0,785392.

s
hI f x f x f x f x f x

h f f f f f

= + + + + =

= + + + + =

 = + ⋅ + ⋅ + ⋅ + = + + + + + 
=

 

The relative error of the calculation can be determined by comparing the 
values of the analytical solution of the integral (refer to Example 6.1) and the 
numerical method, using the formula: 

– trapezium  
0,785398 0,783730100% 100% 0,21%

0,785398
т

t
I I

I
ε − −
= ⋅ = ⋅ = , 

– Simpson’s (parabola)  

40,785398 0,785392100% 100% 7,63 10 %
0,785398

с
s

I I
I

ε −− −
= ⋅ = ⋅ = ⋅ . 

The most accurate result of the solution can be obtained using the Simpson’s 
(parabola) formula, given that the calculation step is much larger than that of the 
trapezoidal formula for calculating the integral.  

 

6.3  Chebyshev’s integral 

If you replace 
2 2i i

a b b ax t+ −
= +  in expression (6.9), the corresponding 

expression will be reduced to the following form: 

 
1

1
1

( ) ( )n
i ii

f t dt A f t
=

−

=∑∫  .   (6.14) 

During the derivation of the Chebyshev’s formula, the following conditions 
are used: the coefficients Ai are equal to each other; the quadrature formula (6.14) 
has a high degree of accuracy for all polynomials up to and including the n-th 
power. 

Given that A1=A2=…=An=A and f(t)=1, then 
1

2
n

i
i

A nA
=

= =∑ , whence A=2/n. 

Under these conditions, formula (6.14) will have the following form: 

 
1

1
1

2( ) ( )n
i if t dt f t

n =
−

= ∑∫ .  (6.15) 
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To determine ti, the second condition is used, according to which it is required 
that the formula (6.15) has a high degree of calculation accuracy for the function 
of the form: 
 ( ) kf t t=  (k=1, 2, …, n).    (6.16) 

After substituting these functions into (6.15), we obtain a system of equations: 

     

1 2

2 2 2
1 2

1

1 2

0;

;
3

;

1 ( 1)
.

2( 1)

n

n

n
n n n

n

t t t
nt t t

n
t t t

n

+

+ + + =

 + + + =



  − − + + + =

+









  (6.17) 

The system of equations (6.17) has a solution for n < 8 and n = 9, which 
imposes limitations on the accuracy of the calculation, as a drawback of using 
Chebyshev’s integral. The values of the abscissa ti in Chebyshev’s integral for 
different values of n are given in Table 6.2. 

 
Table 6.2 – The value of the abscissa ti in Chebyshev’s integral 
      

2 1; 2 0,5773500 
6 

1; 6 0,866247 

3 
1; 3 0,7071070 2; 5 0,422519 

2 0,0 3; 4 0,266635 

4 
1; 4 0,7946540 

7 

1; 7 0,883862 

2; 3 0,1875920 2; 6 0,529657 

5 
1; 5 0,8324980 3; 5 0,323912 

2; 4 0,3745413 4 0,0 
3 0,0 

 
For an arbitrary interval [a; b], formula (6.15) takes the form: 

  
1

( )
n

i
i

b aI f x
n =

−
= ∑ ,   (6.18) 

where 
2 2i i

a b b ax t+ −
= + . 

Calculation error by the Chebyshev’s integral: 

  

1

1
( 1) 1

1

2 ( ) ( )
( 1)! ( 1)! 2

n

nb n
n n

i
ia

a bx
b a a bf x dx x f x

n n n

+

+
+ +

=

+ −  − +  ∆ = = − + +  
∑∫ .  (6.19) 

n i it n i it
 

 



 

 

 


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Example 6.3. Determine the value of the integral ∫ +
=

1

0
21 x

dxI  using the

Chebyshev's integral (the order of the method is n = 3). 

Solution: 
For order n = 3, we obtain the abscissa value from Table 6.2: 

t1= – 0,707107; t2=0; t3=0,707107. 
If we substitute the obtained abscissa values into formula 6.19, we get: 

[ ] [1 2 3
1

1,0 0( ) ( ) ( ) ( ) 0,9790 0,80
3

0,57852 0.78584,

n

ch i
i

b a b aI f x f x f x f x
n n=

− − −
= = + + = + +

+ =

∑

where 1 1
0 1,0 1,0 0 ( 0,707107) 0,14645

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + ⋅ − = ;

2 2
a bх +

= + 2
0 1,0 1,0 0 0 0,5

2 2 2
b a t− + −

⋅ = + ⋅ = ;

3 3
0 1,0 1,0 0

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + × 0,707107 0,85355= ;

1 2 2
1

1 1( ) 0,9790
1 1,0 0,14645

f x
x

= = =
+ +

; 2( )f x = 2 2
2

1 1 0,8
1 1 0,5x

= =
+ +

; 

. 

Example 6.4. Determine the value of the integral ∫ +
=

1

0
21 x

dxI  using the

Simpson’s rule with a calculation step of h = 0,5 (the order of Chebyshev’s 
integral method is n = 3). 

Solution: 
For the calculation step h = 0.5, the interval xϵ[0; 1,0] is divided into two 

equal intervals, for which I = I1+I2, respectively. 
The values of the integrals I1 and I2 for each of the intervals are determined 

by Chebyshev’s integral. Therefore, from Table 6.2, we obtain the values of the 
abscissa: t1 =  – 0,707107; t2 = 0; t3 = 0,707107. 

The value of the integral I1 for the interval [0; 0,5]: 

[ ] [1 1 2 3
1

0,5 0( ) ( ) ( ) ( ) 0,99467 0,94118
3

n

i
i

b a b aI f x f x f x f x
n n=

− − −
= = + + = + +∑  

]0,84592 0.46363,+ =

3 2 2
3

1 1( ) 0,57852
1 1 0,85355

f x
x

= = =
+ +
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where 1 1
0 0,5 0,5 0 ( 0,707107) 0,07322

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + ⋅ − = ;

2 2
a bх +

= + 2
0 0,5 0,5 0 0 0,250

2 2 2
b a t− + −

⋅ = + ⋅ = ; 

3 3
0 0,5

2 2 2
a b b aх t+ − +

= + ⋅ = +
0,5 0 (0,707107) 0,42678

2
−

⋅ = ; 

1 2 2
1

1 1( ) 0,99467
1 1 0,07322

f x
x

= = =
+ +

;  

2 2 2
2

1 1( ) 0,94118
1 1 0,25

f x
x

= = =
+ +

; 3 2 2
3

1 1( ) 0,84592
1 1 0,42678

f x
x

= = =
+ +

. 

The value of the integral I2 for the interval [0,5; 1,0]: 

[ ] [2 4 5 6
1

1,0 0,5( ) ( ) ( ) ( ) 0,75268 0,64
3

n

i
i

b a b aI f x f x f x f x
n n=

− − −
= = + + = + +∑  

]0,53795 0.32177+ = , 

where 4 1
0,5 1 1 0,5 ( 0,707107) 0,57322

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + ⋅ − = ; 

5 2
a bх +

= ; 

6 3
0 0,5

2 2 2
a b b aх t+ − +

= + ⋅ = +
0,5 0 (0,707107) 0,92678

2
−

⋅ = ; 

4 2 2
4

1 1( ) 0,75268
1 1 0,57322

f x
x

= = =
+ +

; 

5 2 2
5

1 1( ) 0,640
1 1 0,75

f x
x

= = =
+ +

; 6 2 2
6

1 1( ) 0,53795
1 1 0,92678

f x
x

= = =
+ +

. 

Then the full value of the integral: 
1

1 22
0

0,46363 0,32177 0,78540
1ch

dxI I I
x

= = + = + =
+∫ . 

The relative error of the calculation can be obtained by comparing the values 
of the analytical solution of the integral (see Example 6.1) with the Chebyshev’s 
integral: 

– for the whole interval (see Example 6.3) 

0,785398 0,785840100% 100% 0,056 %
0,785398

ch
wi

I I
I

ε − −
= ⋅ = ⋅ = , 

– by the method of curved trapezoids (see Example 6.4) 

40,785398 0,785400100% 100% 2,55 10 %
0,785398

ch
ct

I I
I

ε −− −
= ⋅ = ⋅ = ⋅ . 

2
0,5 1 1 0,5 0 0,750

2 2 2
b a t− + −

+ ⋅ = + ⋅ =
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The use of the Chebyshev’s integral, compared to the trapezoidal and 
Simpson’s rule, is the most productive, as it allows you to consider the entire 
integration interval in general, while providing higher calculation accuracy. In 
order to further increase the accuracy of the calculation, based on the Chebyshev’s 
integral, it is advisable to reduce the calculation intervals within the general 
integration interval. 

6.4 Gaussian quadrature 

The Gaussian quadrature is known as the formula of the highest algebraic 
accuracy. For a formula of the form (6.14), the highest accuracy can be achieved 
for polynomials of degree (2n–1), which are defined by 2n constants ti and Ai  
(i = 1, 2, …, n). 

To ensure this condition, it is necessary and sufficient that it is fulfilled for 
functions of the type: 

( ) kf t t= ( 0,1, , 2 1)k n= − . 

Given that the function f(t) can be approximated by polynomials of degree 

(2n–1), namely 
2 1

0
( )

n
k

k
k

f t c t
−

=

= ∑ , it is possible to obtain: 

1 12 1 2 1 2 1

0 0 1 1 01 1

( ) ( )
n n n n n

k k
k k k i i i k i i i

k k i i k
f t dt C t dt C At A C t A f t

− − −

= = = = =− −

= = =∑ ∑ ∑ ∑ ∑∫ ∫ . 

The task is to determine the coefficients Аі and abscissa points ti. To determine 
these constants, it is necessary to consider the implementation of formula (6.14) 
for functions of the form f(t) = tk (k = 0, 1, …, 2n–1). 

Given that: 
1

1

2 / ( 1)
0

k k
t dt

−

+ 
=  
 

∫ , 

we get a system of equations: 

 

1

1

2

1

2 2

1

2 1

1

2;

0;

1;

2 ;
2 1

0.

n

i
i

n

i i
i

n

i i
i

n
n

i i
i

n
n

i i
i

A

At

At

At
n

At

=

=

=

−

=

−

=

 =

 =

 =

 = −
 =


∑

∑

∑

∑

∑

 (6.20) 
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The system of equations (6.20) is nonlinear, its solution is associated with 
significant computational difficulties. But if you use the system for polynomials 
of the form: 

 ( ) ( )k
nf t t P t=  ( 0,1, , 1)k n= − ,   (6.21) 

where Pn(t) – the Legendre polynomials can then be reduced to a linear system 
with respect to the coefficients Ai, using the given points ti. 

Legendre polynomials are called polynomials of the form 

21( ) ( 1)
2 !

n

n n n

dP x x
n dx

= −   , 

which have the following basic properties: 
1)  Pn(1) = 1, Pn(–1) = (–1)n for any integer n; 
2)  orthogonality 

  
1

1

( ) ( ) 0n kP x Q x dx
−

=∫ ,   (6.22) 

where Qk(x) – any polynomial of degree k < n; 
3)  presence of n real roots on the interval [–1; 1]. 
Since the powers of the polynomials in the ratio (6.21) do not exceed the value 

2n–1, the system (6.20) must be fulfilled, and the formula (6.14) takes the 
following form: 

  
1

11

( ) ( )
n

k k
n i i n i

i
t P t dt At P t

=−

= ∑∫ . (6.23) 

As a result of the orthogonality property (6.22), the left part of the expression 
(6.23) is equal to zero. Then:  

 
1

( ) 0
n

k
i i n i

i
At P t

=

=∑ ,    (6.24) 

which is always ensured for any values of Ai at the points ti, corresponds to the 
roots of the corresponding Legendre polynomials. 

By substituting these ti values into the system (6.20) and considering the first 
n equations, it is possible to determine the coefficients Ai. 

The formula (6.14), where ti are the zeros of the Legendre polynomials Pn(t), 
and Ai (i = 1, 2, …, n) are determined from the system (6.20), is called the 
Gaussian quadrature. 

Table 6.3 shows the values of ti and Ai in the Gaussian quadrature for different 
values of n ranging from 1 to 8. 

For an arbitrary interval [a; b] the formula for the Gaussian quadrature takes 
the form: 

   
1

( )
2

n

i i
i

b aI A f x
=

−
= ∑ ,  (6.25) 
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where 
2 2i i

a b b ax t+ −
= + . 

The estimate of the error of the Gaussian quadrature with n nodes is 
determined from the ratio: 

 [ ]
2 1 4

2
3

( ) ( !)
(2 )! (2 1)

n
nb a n M

n n

+−
∆ ≤

+ ,   (6.26) 

where M2n – the maximum value of the 2nd derivative on the interval [a; b]. 
 
Table 6.3 – Elements of the Gaussian quadrature 

    
1 1 0,0 2,0 
2 1; 2 0,57735027 1,0 

3 
1; 3 0,77459667 =0,55555556 

2 0,0 =0,88888889 

4 
1; 4 0,86113631 0,34785484 
2; 3 0,33998104 0,65214516 

5 
1; 5 0,90617985 0,23692689 
2; 4 0,53846931 0,47862867 

3 0,0 0,56888889 

6 
1; 6 0,93246951 0,17132450 
2; 5 0,66120939 0,36076158 
3; 4 0,238619119 0,46791394 

7 

1; 7 0,94910791 0,12948496 
2; 6 0,74153119 0,27970540 
3; 5 0,40584515 0,38183006 

4 0,0 0,41795918 

8 

1; 8 0,96028986 0,10122854 
2; 7 0,79666648 0,22238104 
3; 6 0,52553142 0,31370664 
4; 5 0,18343464 0,36268378 

 

Example 6.5. Determine the value of the integral 
1

2

0

(1 )I x dx= +∫  using the 

Gaussian quadrature (the order of the method is n = 3). 

n i it iA



 9
5

9
8




























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Solution: 
For order n=3, we choose the abscissa value from Table 6.3:  

t1 = – 0,77459667; A1 = 0,55555556; t2 = 0; A2 = 0,88888889; t3 = 0,77459667; 
A2 = 0,55555556. 

If we substitute the obtained abscissa values into formula (6.25), we will have: 

1 1 1 2 2 3 3

1,0 0( ( ) ( ) ( )) (1,012702 0,55555556
2 2

1,250 0,88888889 1,787298 0,55555556) 1.333333,

b aI A f x A f x A f x− −
= + + = ⋅ +

+ ⋅ + ⋅ =
 

where 1 1

0 1,0 1,0 0 ( 0,77459667) 0,112702
2 2 2 2

a b b aх t+ − + −
= + ⋅ = + ⋅ − = ; 

2 2

0 1,0 1,0 0 0 0,50
2 2 2 2

a b b aх t+ − + −
= + ⋅ = + ⋅ = ; 

3 3

0 1,0 1,0 0 (0,77459667) 0,887298
2 2 2 2

a b b aх t+ − + −
= + ⋅ = + ⋅ = ; 

2 2
1 1( ) 1 1 0,112702 1,012702f x x= + = + = ; 2 2

2 2( ) 1 1 0,5 1,250f x x= + = + = ; 
2 2

3 3( ) 1 1 0,887298 1,787298f x x= + = + = . 

The exact value of the integral is based on the analytical solution: 

    
1 12 2

00

1 4(1 ) ( 3) 1,333333
3 3

I x dx x x= + = + = =∫ .  (6.27) 

 

Example 6.6. Determine the value of the integral 
1

2

0

(1 )I x dx= +∫  using the 

trapezoidal rule with a calculation step of h = 0,5 (the order of the Gaussian 
quadrature is n = 3). 

Solution: 
For the calculation step h = 0.5, the interval x∈[0; 1] is divided into two equal 

intervals, resulting in I = I1+I2, respectively. 
The values of the integrals I1 and I2 for each of the intervals are determined 

by Gaussian quadrature. Therefore, from Table 6.3, we obtain the values of the 
abscissa: 
t1 = – 0,77459667; A1 = 0,55555556; t2 = 0; A2 = 0,88888889; t3 = 0,77459667; 
A2 =  0,55555556. 

The value of the integral I1 for the interval [0; 0,5]: 

[ ]1 1 1 2 2 3 3
0,5 0( ) ( ) ( ) (1,003175 0,55555556

2 2
1,0625 0,88888889 0,196825 0,55555556) 0.541667,

b aI A f x A f x A f x− −
= + + = ⋅ +

+ ⋅ + ⋅ =
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where 1 1
0 0,5 0,5 0 ( 0,77459667) 0,056351

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + ⋅ − = ; 

2 2
0 0,5 0,5 0 0 0,250

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + ⋅ = ; 3 32 2
a b b aх t+ −

= + ⋅ =  

0 0,5 0,5 0 (0,77459667) 0,443649
2 2
+ −

= + ⋅ = ; 2 2
1 1( ) 1 1 0,056351f x x= + = + =   

1,003175= ; 2 2
2 2( ) 1 1 0,25 1,06250f x x= + = + = ; 2

3 3( ) 1 1f x x= + = +  
20,443649 1,196825+ = . 

The value of the integral I2 for the interval [0.5; 1.0]: 

 

where 1 1
0,5 1,0 1,0 0,5 ( 0,77459667) 0,556351

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + ⋅ − = ; 

2 2
0,5 1,0 1,0 0,5 0 0,750

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + ⋅ = ; 3 32 2
a b b aх t+ −

= + ⋅ =  

0,5 1,0 1,0 0,5 (0,77459667) 0,943649
2 2
+ −

= + ⋅ = ; 2
4 4( ) 1 1f x x= + = +  

20,556351 1,309526+ = ; 2 2
5 5( ) 1 1 0,750 1,5625f x x= + = + = ; 2

6 6( ) 1f x x= + =  
21 0,943649 1,890474= + = . 

Then, the full value of the integral: 
1

2
1 2

0

(1 ) 0,541677 0,791667 1,333333I x dx I I= + = + = + =∫ . 

Comparing the results of the numerical and analytical solutions, one can note 
the high accuracy of the calculation of the integral value. 

Example 6.7. Determine the value of the integral ∫ +
=

1

0
21 x

dxI  using the 

Gaussian quadrature method (with an order of n = 5). 

Solution: 

Let’s replace the variable 
1 1

2 2 2 2
a b b ax ξ ξ+ −

= + = + , де a=0 і b=1,0. Also 

1 1
12 2
2

d
dx

d

ξ

ξ

 +  = = . Based on the formula (6.25), the new value of the 

( )2 1 4 2 5 3 6
0,5 0( ) ( ) ( ) (1,309526 0,55555556

2 2
1,5625 0,88888889 1,890474 0,55555556) 0.791667,

b aI A f x A f x A f x− −
= + + = ⋅ +

+ ⋅ + ⋅ =
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integration interval is for xϵ[x1; x2] = [0; 1]: 1 12 1 2,0 0 1,0 1,0tξ = − = ⋅ − = − ; 
ξ2 = 2t2–1 = 2⋅1,0–1,0 = 1,0. 

Also, the function 2
1( )

1
f x

x
=

+
will look like this after substitution: 

2
4( )

4 ( 1)
ϕ ξ

ξ
=

+ +
. 

After substituting and replacing all components, the new integral expression 
will look like this: 

1

2
1

2
4 ( 1)

dI ξ
ξ−

=
+ +∫ . 

According to the Gauss quadrature (6.25): 

( ) ( ) ( ) ( )
1

2 1 2 1
1 1 2 2 3 3

11

2 ( ) 2
2 2

n

i i
i

I d A f A A Aξ ξ ξ ξϕ ξ ξ ε ϕ ε ϕ ε ϕ ε
=−

− −  = = = + + +  
∑∫  

( ) ( ) ( )4 4 5 5
1,0 ( 1,0 –0,90611)2 0,23 798466926885

2
A Aϕ ε ϕ ε ϕ− − + + = ⋅ +    

 

( )( 0,538469310,478628670 0,568888889 0,478628670 00)f f+ − + +⋅ ⋅ ×  

( )0,538469310 0,236926885 0,906179846( ) 0,78539816f f⋅ =× + , 

where  and, accordingly, 

the values of the parameters Ai and f(ti) are given in Table 6.4. 
 

Table 6.4 – Results of calculating the integral of the function 
i ti f(ti) Ai 
1 – 0,9061179846 0,24945107 0,236926885 
2 – 0,538469310 0,23735995 0,478628670 
3 0,0 0,20000000 0,568888889 
4 0,538469310 0,15706211 0,478628670 
5 0,906179846 0,13100114 0,236926885 

 
Comparing the results of the numerical and analytical (see Example 6.1) 

solutions, it is possible to observe the high accuracy of the calculation of the value 
of the integral. 

6.5 Algorithms for the application of numerical methods 

The sequence of application of Newton-Cotes formulas: 
1.  Selection of the formula and definition (see Table 6.1) for the 

 coefficients Hi. 
2.  Algorithm and program compilation, moreover: 

1 2 2 1 1,0 ( 1,0) 1,0 ( 1,0)
2 2 2 2i i ii t t tε ξ ξ ξ ξ+ − + − − −

= + = + =
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− in the case of setting discrete values  yi = f(xi) through step h, these values 
are substituted into the selected formula, for example, in (6.12) or (6.13); 

− in the case of setting the function y = f(x), the value yi = f(xi) is 
determined, and xi = x0+ih = a+ih (a ≤ x ≤ b). 

3.  Error estimation.  
The algorithm for solving the integral using the trapezoidal rule is presented 

in Figure 6.5. 
 

 

Figure 6.5 – Scheme of the algorithm for solving integrals using the 
 trapezoidal rule 

 
Consider the implementation of the trapezoidal rule in the C++ programming 

language: 
 

#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
 
FILE *fp; 
const int n_h = 2; 
 
float f(float x) 
{   return (sin(x)/(x*x + 1)); } 
 
float Metod_Trapets (float a, float b, float h) 
{ 
    float I, x = a + h; 
 fprintf (fp, «\n--- Metod trapets – h = %.3f ---\n», h); 
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 I = f(a) + f(b); 
 for (x; x<b; x+=h) 
   I = I + 2*f(x); 
    
   I = h*I/2; 
   fprintf (fp, «I = %9.7f\n», I); 
   return 0; 
} 
 
int main() 
 
{ 
 float a = 0, b = 1; 
 float h[n_h] = {0.1, 0.05}; 
    if ( (fp = fopen(«Data.txt», «w»)) == NULL) 
    { 
        printf(«Error opening file\n»); 
        return 0; 
    } 
 for (int i=0; i<n_h; i++) 
 { 
   Metod_Trapets (a, b, h[i]); 
 } 
 printf(«End!»); 
 getch(); 
 fclose(fp); 
 return 0; 
}. 

  
 
When solving a problem using Simpson’s rule for an odd number of intervals, 

it is suggested to additionally split each interval in half. The algorithm of the 
Simpson’s rule for an odd number of intervals is presented in Figure 6.6. 

 

Figure 6.6 – Scheme of the algorithm for solving integrals using the Simpson’s 
rule for an odd number of intervals 
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The sequence of application of the Gaussian quadrature: 
1.  Selection of the order of the method and determination (see Table 6.3) of 

coefficients Ai and values of ti (–1 ≤ t ≤ 1). 
2.  Division of the interval a ≤ x ≤ b into l segments (Fig. 6.7). 
3.  Determination of integral values for each interval (j = 1, 2, …, l) 

. 

 

Figure 6.7 – The diagram illustrating the division of the integration interval into 
segments in the Gaussian quadrature 

 
In this case, the values of the abscissa xi within each interval j are determined 

by the formula: 

  1 1

2 2
j i j j

i i

a a a a
x t+ ++ −
= + , (6.28) 

where 1j ja a h+ = + , moreover 1a a= , 1la b+ = , 
b ah

n
−

=  ( 1, 2, ,j l=  ).  

The values of the integral Ij are determined by the formula: 

   
1

1

1

( )
( ) ( )

2

j

j

a n
j j

j i i
ia

a a
I f x dx A f x

+

+

=

−
= = ∑∫ . (6.29) 

The algorithm of the Gaussian quadrature is presented in Figure 6.8, b). 
Consider the implementation of the Gaussian quadrature function in the C++ 

programming language: 
 

const int n_G = 4; // method order for the Gaussian method 
float t_G[n_G]= {-0.86113631, -0.33998104, 0.33998104, 0.86113631}; // 

coefficients t [i] for the Gaussian method n=4 
float A_G[n_G]= {0.34785484, 0.65214516, 0.65214516, 0.34785484}; // 

coefficients A[i] for the Gaussian quadrature n=4 

∑
=

=
l

j
jII

1
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float Method_Gaussa (float a, float b) 
{ 

float I; 
fprintf (fp, "\n--- Metod Gaussa_simple \n"); 
float F = 0;  
for (int i=0; i<n_G; i++) 
{ 
 float x = (a+b)/2 + (b-a)*t_G[i]/2; 
 F = F + A_G[i]*f(x); 

} 
I =  (b-a)*F/2; 

 fprintf (fp, "I = %9.7f\n", I); 
 return 0; 

} 

Accordingly, you need to add to the main function: 
Method_Gaussa (a, b); 

In the Chebyshev's integral, the sequence of actions is similar to the 
Gaussian quadrature, but in step 1, the coefficients ti are taken from Table 6.2, 
and in step 3, the formula is used to determine the jth integral: 

1
1

1

( )
( ) ( )

j

j

a n
j j

j i
ia

a a
I f x dx f x

n

+

+

=

−
= = ∑∫ , (6.30) 

where xi is estimated in a similar way as in the Gaussian quadrature, according to 
formula (6.25). 

The algorithm of the Chebyshev’s integral is presented in Figure 6.8, a). 
Let’s consider the implementation of the Chebyshev's integral function in 

the C++ programming language: 

const int n = 4; // order of the method for the Chebyshev method 
float t[n]= {-0.794654, -0.187592, 0.187592, 0.794654}; 

float Method_Chebisheva (float a, float b) 
{ 

 float I; 
fprintf (fp, "\n--- Metod Chebisheva_simple \n"); 
float F = 0;  
for (int i=0; i<n; i++) 
{ 
 float x = (a+b)/2 + (b-a)*t[i]/2; 
 F = F + f(x); 

} 
I =  (b-a)*F/n; 

 fprintf (fp, "I = %9.7f\n", I); 
 return 0; 

} 

To the main function, respectively, should be added: 
Method_Chebisheva (a, b); 
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   а)                                         b)  

Figure 6.8 – Schemes of algorithms for solving problems by: 

a) Chebyshev’s integral; b) Gaussian quadrature 
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6.6 Monte Carlo integration 

The Monte Carlo integration is the most famous application of statistical 
modeling for solving applied mathematical problems. 

If the sequence of random numbers {xi}ϵX with the probability distribution 
law fx(x) is subjected to the functional transformation ( )i iy xφ= , then the 
mathematical expectation of the sequence of random numbers {yi}ϵY: 

 ∫
∞

∞−
= dxxfxm xy )()(ϕ  (6.31) 

for a sample size (n > 1000) with sufficiently high accuracy (Δrelative < 0,1), the 
estimate can be obtained using the formula: 

 
1

1 n

y i
i

m y
n =

= ∑ . (6.32) 

If expressions (6.31) and (6.32) include the area indicator function [a; b]: 

[ ] 1, ;
, ,

0, , ,
a x b

a b x
x a x b
≤ ≤

=  < >
1  

and choose ( )( )
( )X

f xx
f x

ϕ = , where f(x) is the integrand function, and the values of 

a and b are the limits of integration from formula (6.14). Then the final expression 
will have the form: 

[ ]
1

1 ( )( ) , ,
( )

b n
i

y i
i x ia

f xI m f x dx a b x
n f x=

= = = ∑∫ 1 . 

The scheme of the numerical integration algorithm using the Monte Carlo 
integration is presented in Figure 6.9. 

The error of the Monte Carlo integration is determined by the error of 
generating a pseudorandom sequence of numbers generated by a computer system 
and the size of the sample. It can be estimated from this ratio: 

 
1

2 (1 )n P
∆ =

− . (6.33) 

where Р – guaranteed probability of hitting an error in the [–Δ; +Δ] interval. 
The number of trials does not depend on the dimension of the integral I. 

Therefore, the Monte Carlo integration is advantageous to use for calculating 
multiple integrals, where the use of other methods of numerical integration is 
time-consuming. For example, calculating a ten-fold integral in a unit volume 
with a step of h=0,1 requires calculating the sum of approximately 1010 
components. 
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Figure 6.9 – Scheme of the Monte Carlo integration algorithm 
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6.7 Estimation of the error in numerical integration 

In the case when the integrand function is given analytically, the task of 
determining the integral with a predetermined accuracy can be set. Since the 
accuracy of the quadrature formulas discussed above depends on the 
calculation step h, the accuracy of the result can be increased by reducing the 
step. For example, by dividing the calculation step in half. 

To determine the value of the integral with the specified accuracy ε, it is 
necessary to choose the appropriate quadrature formula and the initial step h=h0. 
Then, calculate the integral with a step of h/2. It is necessary to reduce the 
calculation step by dividing it in half until the condition is fulfilled: 

/2h hI I ε− < . 

If this condition is fulfilled, the value of the integral is equal to Ih/2. 
It is also possible to use the Runge method (in order to avoid introducing 

additional errors into the calculation, it is necessary to choose steps that are close 
in value in the first and second calculations): 

1 2

1 1
2 1

h h
p p

I I
c

h h+ +

−
=

−
, 

where 
1 2

1 1
1 2
p p

h hI I ch I ch∗ + += + = + . 
Also, the errors in calculating integrals using numerical methods can be 

calculated using the following formulas: 

– trapezoidal rule
3

212
nh M∆ = ,

where M2 – the maximum value of the second derivative of f(x) in the 
computational domain xϵ[a; b]; 

– Simpson’s rule
5

4180
nh M∆ = ,

where M5 – the maximum value of the fourth derivative of f(x) in the 
computational domain xϵ[a; b]; 

– Chebyshev's integral
1

1

1
( )

( 1)! 2

nn
n

i
i

b a a bx f x
n n

+

+

=

− + ∆ = − +  
∑ ; 

– Gaussian quadrature
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[ ]
2 1 4

2
3

( ) ( !)
(2 )! (2 1)

n
nb a n M

n n

+−
∆ ≤

+
;                      

– method of rectangles (left, right) 
2

12
nh М∆ = , 

where M1 – the maximum value of the first derivative f(x) in the computational 
domain xϵ[a; b]; 

– Riemann sum (averages) 
3

224
nh М∆ = . 

 

6.8 Numerical differentiation  

The task is to find the derivative at a point for a given differentiable function 
f(x), which is given by tabular data or an analytical expression х0. 

6.8.1 Numerical differentiation of analytically given functions 

Approximate differentiation of analytically given functions is necessary when 
developing a universal procedure for finding the derivative for a large number of 
different functions, or in the case when the analytical form of the derivative 
function is too cumbersome and leads to a loss of accuracy. 

The basis of numerical differentiation of analytically given functions is the 
definition of the derivative:  

0 0
0 0

( ) ( )( ) lim
h

f x h f xf x
h→

+ −′ = . 

Since it is not known what value h to take, it is necessary to construct the 
sequence {hk} such that hk→0 (for example, 0,5k

kh = ) and, accordingly, the 
sequence {Dk} is formed, where: 

   
k

k
k h

xfhxfD )()( −+
=  (k=1, 2, …, n).  (6.34) 

The sequence elements are calculated as long as the condition is met:  

1 1n n n nD D D D+ −− < − . 

If the accuracy ɛ with which it is necessary to determine the derivative is 
known, then the condition for completing the calculation of the derivative by this 
method with the order of accuracy h: 
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1n nD D ε+ − < . 

Let fϵC3[a; b], then the order of accuracy of the previous method can be 
increased by using other expressions instead of formula (6.34). 

Formula for the second-order O(h2) accuracy in calculating the derivative: 

 
( ) ( )( )

2
f x h f x hf x

h
+ − −′ ≈ .   (6.35) 

Formula (6.35) can be obtained by expanding the function f(x) into a Taylor 
series: 

 
(2) 2 (3) 3

1( ) ( )( ) ( ) ( )
2! 3!

f x h f C hf x h f x f x h ⋅ ⋅′+ = + ⋅ + + ;  (6.36) 

   
(2) 2 (3) 3

1( ) ( )( ) ( ) ( )
2! 3!

f x h f C hf x h f x f x h ⋅ ⋅′− = − ⋅ + − . (6.37) 

If expression (6.37) is subtracted from equation (6.36), we have: 
(3) (3) 3

1 2( ( ) ( ))( ) ( ) 2 ( )
3!

f C f C hf x h f x h f x h + ⋅′+ − − = ⋅ + , 

or 

  2( ) ( )( ) ( )
2

f x h f x hf x O h
h

+ − −′ = + .  (6.38) 

Similarly, formulas similar to those can be obtained for higher derivatives of 
the order of accuracy O(h2): 

 2
( ) 2 ( ) ( )( ) f x h f x f x hf x

h
+ − + −′′ ≈ ;  (6.39) 

   3
( 2 ) 2 ( ) 2 ( ) ( 2 )( )

2
f x h f x h f x h f x hf x

h
+ − + + − − −′′′ ≈ ;  (6.40) 

  (4)
4

( 2 ) 4 ( ) 6 ( ) 4 ( ) ( 2 )( ) f x h f x h f x f x h f x hf x
h

+ − + + − − + −
≈ . (6.41) 

The derivative calculation algorithm itself remains unchanged, namely: the 
sequence {hk} is formed so that the value hk→0 and the elements of the 
sequence {Dk} are calculated accordingly, for the calculation of which one of 
the obtained formulas (6.38)–(6.41) is used instead of expression (6.34). 

There are also higher-order accuracy formulas that can be found in specialized 
literature. 
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6.8.2 Numerical differentiation of experimental data 

During the solution of many practical problems, there is a need to determine 
the derivatives of functions that are given by arrays of experimentally obtained 
data. In this case, direct differentiation can give false results due to unseparated 
«noise» that greatly distorts the value of the derivative. An example is shown in 
Figure 6.10, where f(x) is the true signal, and ( )f x  is the measured signal (with 
«noise»). 

It is clear that the value of the derivative of the function f(x) contains a 
significant random component, which introduces a large error in determining the 
real derivative. A practical solution to this problem is to use the smoothed signal 
obtained from the experiment through interpolation or approximation, followed 
by differentiation of the interpolation polynomial P(x) (or approximation 
function). Additionally, in order to obtain higher-order derivatives, it is necessary 
to establish the condition for their convergence to the signal and its interpolation 
polynomial. The error value of the derivative of the interpolation function Δ*(x) is 
equal to the derivative of the error of this function ( )x′∆ : 

( ) ( ) ( )x f x P x∆ = − ; *( ) ( ) ( )x f x P x′ ′∆ = − , 

that is, due to the linearity of the differentiation and subtraction operations, we get  
*( ) ( )x x′∆ = ∆ . 

 

   
а) b) c) 

Figure 6.10 – Diagrams of signal functions: 
a) – valid; b) – measured; c) – a derivative 

 
In the handbooks, there are special tables that allow you to determine the 

value of derivatives using various difference interpolation formulas. Such 
formulas are easy to obtain for any interpolation method by differentiating the 
interpolation formulas in the general form. 

Example 6.8. Determine the acceleration and speed of the car as the value of 
the derivative of the displacement function f(x) over time, as provided in tabular 
data (Table 6.5). 
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Table 6.5 – Output data 
i 0 1 2 3 4 5 

x, sec 0 1,0 2,0 3,0 4,0 5,0 
y, m 3,0 6,0 9,0 10,0 11,0 12,0 
 

Solution: 
For an approximate estimation of the derivatives of the function f(x), the left 

finite differences are used. Namely, the value of the differentiation step and: 
h = xi –xi-1 =  x1 –x0 = 1,0 – 0,0 =  x2 – x1 = x3 – x2 = x4 – x3 = x5 – x4 = 1,0 sec. 

The speed of the car is the value of the first derivative, as given by the formula 
(6.34): 

1 0
0

2 1
1

5 4
4

6,0 3,0 3,0 m / sec;
1,0

9,0 6,0 3,0 m / sec;
1,0

;
12,0 11,0 1,0 m / sec.

1,0

y yy
h

y yy
h

y yy
h

− − ′ = = =


− − ′ = = =




− − ′ = = =



 

The values of the second (car acceleration) and third derivatives are based on 
formula (6.34): 

21 0
0

22 1
1

25 4
3

3,0 3,0 0 m / sec ;
1,0

1,0 3,0 2,0 m / sec ;
1,0

;
1,0 1,0 0 m / sec .

1,0

y yy
h

y yy
h

y yy
h

′ ′− − ′′ = = =


′ ′− − ′′= = = −




′ ′− − ′′ = = =



 

1 0
0

2 1
1

3 2
2

( 2,0) 0,0 2,0;
1,0

0,0 ( 2,0) 2,0;
1,0

0,0 0,0 0.
1,0

y yy
h

y yy
h

y yy
h

′′ ′′− − − ′′′= = = −


′′ ′′− − − ′′′= = =

 ′′ ′′− −′′′= = =

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The results of the derivative calculation are entered in Table 6.6. 

Table 6.6 – Results of calculating the derivatives of the function f(x) 
i 0 1 2 3 4 5 

x, sec 0,0 1,0 2,0 3,0 4,0 5,0 
y, m 3,0 6,0 9,0 10,0 11,0 12,0 

y′ , m/sec 3,0 3,0 1,0 1,0 1,0 
y′′ , m/sec2 0,0 –2,0 0,0 0,0 

y′′′  –2,0 2,0 0,0 

Conclusions on the application of numerical integration and 
differentiation methods 

Numerical integration of the functions given by the array of experimental data 
is carried out using Newton-Cotes methods. In the case of an analytical integration 
task, it is possible to use more accurate methods such as Gaussian quadrature 
and Chebyshev's integral, or the Monte Carlo integration. The Gaussian 
quadrature and Chebyshev's integral, also known as methods of the highest 
algebraic accuracy, require the ability to calculate the integral function at 
any point within the integration interval, which is determined by the order 
of the method and the integration intervals. This is only possible in the case of 
an analytical task because any approximation methods introduce additional 
errors. The Monte Carlo integration, based on the generation and processing 
of random numbers, utilizes the fact that the mathematical expectation of a 
random variable is estimated by the average value of a sequence of 
random numbers. This allows for the construction of an integral 
approximation algorithm as a sequence of operations using a generated set of 
random (or pseudo-random) numbers. The advantages of this method are 
particularly evident when calculating multiple integrals. Due to the complexity 
of analytical calculations, the estimation of errors in the application of 
numerical integration methods is often carried out by performing multiple 
calculations with different step sizes. In the process of numerical 
differentiation, it is necessary to understand the nature of the data 
being differentiated. In the presence of significant random errors, 
preliminary smoothing of the data should be performed. 

Control questions and tasks 

1. What is the process of integrating a function called? What is the issue with
numerical integration of a function? 
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2.  What are the methods of numerical integration? Provide a comparative 
analysis of them. 

3.  What is the essence of the rectangular method for numerical integration of 
functions? What is the peculiarity of using the methods of left, right, and middle 
rectangles for numerical integration of functions? 

4.  How does the use of the left, right, and middle rectangle methods affect 
the accuracy of numerical integration of functions? Define the calculation error 
using the appropriate numerical methods. 

5.  How are Cotes coefficients determined? What are the properties of Cotes 
coefficients when using them to determine the value of the integral of a function? 

6. What is the sequence of application of Newton-Cotes methods? Develop 
appropriate algorithms. How do simple Newton-Cotes formulas differ from 
complex ones? 

7.  How are the Newton-Cotes formulas obtained? Derive the simple 
trapezoidal and Simpson’s rules for numerical integration, as well as the 
components of the formulas. 

8.  What is the peculiarity of using Simpson’s rule for an even and odd number 
of intervals on the entire integration interval? 

9.  How are errors estimated using Newton-Cotes methods of numerical 
integration of functions? 

10.  Calculate the integral using the appropriate numerical method based on 
the initial data given in Table 6.7. Compile an algorithm and a calculation 
program. Estimate the calculation error. 

 
Table 6.7 – Output data for the task 

Variant Integral function (I) Calculation step 
(h) 

Type of calculation 
method 

1 
10,0

2

1,0

lnx xdx∫  0,20 Trapezoidal rule 

2 
10,0

2
1,0 1

x dx
x+∫  0,25 Riemann sum 

3 
10,0

1,0

sin
ln

x x dx
x∫  0,20 Simpson’s rule 

4 
10,0

1,0

arctg x dx
x∫  0,25 Riemann sum 

5 
10,0

1,0

sin lgx x dx∫  0,50 Trapezoidal rule 
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Continuation of Table 6.7 

Variant Integral function (I) Calculation step 
(h) 

Type of calculation 
method 

6 
10,0

1,0

sin xdx
x∫  0,30 Simpson’s rule 

7 
10,0

3

1,0

lnx xdx∫  0,50 Trapezoidal rule 

8 
10,0

1,0 ln
x dx
x∫  0,30 Simpson’s rule 

9 
10,0

1,0

cos lnx xdx∫  0,50 Riemann sum 

10 
310,0

1,0

4x dx
x
+

∫  0,60 Simpson’s rule 

11 
10,0

2
1,0

cos x dx
x∫  0,20 Riemann sum 

12 
1,0

0

cos
ln

x dx
x∫  0,20 Simpson’s rule 

13 
10,0

4

1,0

lgx xdx∫  0,25 Trapezoidal rule 

11.  Derive the Chebyshev’s integral for numerical integration of a function 
given at three points. 

12.  What is the fundamental drawback of Chebyshev’s integral for numerical 
integration of a function? 

13.  What are Legendre polynomials and what are their main properties? 
Obtain the expressions for the first five Legendre polynomials. 

14.  Derive the Gaussian quadrature for the numerical integration of a 
function. 

15.  How are the coefficients in the Gaussian quadrature for numerical 
integration determined? Why is it called the formula of the highest algebraic 
accuracy? 

16.  How are the methods of Gaussian quadrature and Chebyshev’s integral 
used, and what is the fundamental difference between them? Describe the 
methodology, sequence of actions, and develop an algorithm. 

17.  Calculate the integral using the appropriate numerical method based on 
the initial data given in Table 6.8. Compile an algorithm and a calculation 
program. Estimate the calculation error. 
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Table 6.8 – Output data for the task 

Variant Integral 
 function (I) 

Method 
order (n) 

Type of calculation 
method 

14 
10,0

2
1,0

ln
1
x x dx

x+∫  3 Chebyshev’s integral 

15 
10,0 2

1,0 ln
x dx

x∫  5 Gaussian quadrature 

16 
10,0

4
1,0

lg x dx
x∫  4 Chebyshev’s integral 

17 
10,0

1,0

ln sinx x dx∫  6 Gaussian quadrature 

18 
210,0

1,0 1
x dx
x +∫  3 Chebyshev’s integral 

19 
10,0

2
1,0

ln x dx
x∫  5 Gaussian quadrature 

20 
10,0

1,0

( )x arctg x dx⋅∫  4 Chebyshev’s integral 

21 
10,0

1,0 1
arcсtg x dx

x +∫  3 Gaussian quadrature 

22 ( )
10,0

1,0

sin3 lg 1x x dx+∫  6 Chebyshev’s integral 

23 
10,0

1,0

sin xdx
x∫  7 Gaussian quadrature 

24 ( )
10,0

1,0

ln 1xx x dx+∫  3 Chebyshev’s integral 

25 
10,0

2
1,0

1
ln
x dx

x
+

∫  5 Gaussian quadrature 

26 
10,0

1,0

cos
ln

x dx
x∫  4 Chebyshev’s integral 

27 
210,0

1,0

1
2

x dx
x

+
−∫  6 Gaussian quadrature 

28 
10,0

1,0

cos2
x

x dx
x∫  5 Chebyshev’s integral 
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Continuation of Table 6.8 

Variant Integral 
 function (I) 

Method 
order (n) 

Type of calculation 
method 

29 ( )
1,0

0

cos
ln 2

xx dx
x +∫  3 Gaussian quadrature 

30 ( )
10,0

2

1,0

lg 2 sinx x xdx+∫  3 Chebyshev’s integral 

 
18.  Give a comparative analysis of Chebyshev’s integral, Gaussian 

quadrature and Newton-Cotes methods. 
19.  What is the use of the Monte Carlo integration for the numerical 

integration of functions? How is the calculation error determined? How can the 
accuracy of the method be increased? 

20.  Determine the value of the integral 
10,0

2

0

I x dx= ∫  using the numerical 

Monte Carlo integration. Compare the obtained value with the value of the 
analytical expression for different sample sizes of the sequence of random 
numbers. 

21.  Develop a Monte Carlo numerical integration program for the double 
integral 2 2

( )

( ) ,I x y dxdy
σ

= +∫∫  where the region of integration σ is determined by 

such inequalities as: 0,5 1,0x≥ ≥  and 0 2 1y x≥ ≥ − . Will the points with 
coordinates (0,55; 0,75), (0,25; 0,75), (0,25; 0,25), (0,99; 0,70) fall into this region 
of integration? 

22.  How are errors estimated when using the Chebyshev’s integral and 
Gaussian quadrature of numerical integration of functions? 

23.  How is numerical differentiation of analytically given functions carried 
out? How can the accuracy of numerical differentiation of a function be 
increased? 

24.  How is the error determined during the numerical differentiation of 
analytically given functions? 

25.  Differentiate the function f(x)=x2sin(x) on the interval x∈[0; 10,0]. 
Estimate the calculation error by comparing the values of the derivative function 
calculated using analytical and numerical methods. 

26.  Determine the second and third derivatives of the function f(x)=xln(x) on 
the interval xϵ[0; 5.0]. Estimate the calculation error by comparing the values of 
the derivative function calculated using analytical and numerical methods. 
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27.  How is numerical differentiation of functions determined using 
experimental data carried out? 

28.  Determine the values of the first and second derivatives of the function 
f(x), which are given by tabular data (Table 6.9). 

 
Table 6.9 – Output data for the task 

i 0 1 2 3 4 5 6 8 

x 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 

y 2,5 3,4 5,2 5,8 5,9 6,3 6,8 7,1 

 
30. How is the error of numerical differentiation of an experimentally 

determined function determined? 
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