

Ministry of Education and Science of Ukraine
 Vinnytsia National Technical University

R. Kvyetnyy, Y. Ivanchuk

COMPUTATIONAL METHODS
AND ALGORITHMS

Textbook

Vinnytsia
VNTU
2024

UDC 004.021+519.6
 K97

Recommended by the Academic Council of the Vinnytsia National
Technical University of the Ministry of Education and Science of Ukraine
as a textbook for English-speaking students and postgraduates specializing
in the field of information technologies (record No. 2 of 29.08.2024).

Reviewers:
P. A. Molchanov, Doctor of Technical Sciences, Professor (IPD Scientific LLC., USA)
V. V. Romaniuk, Doctor of Technical Sciences, Professor (KSTEU)
V. M. Mikhalevich, Doctor of Technical Sciences, Professor (VNTU)

Kvyetnyy, R
K97 Computational Methods and Algorithms : textbook [Electronic resource] /

R. Kvyetnyy, Y. Ivanchuk. – Vinnytsia: VNTU, 2024. – (PDF, 281 p.)
ISBN 978-617-8163-19-8 (PDF)
The textbook examines the main applications of computational mathematics

problems in engineering practice, providing examples of solutions and fragments of
programs in the modern algorithmic language Python. The manual presents
computational tasks that are most commonly encountered in the practice of designing
computer systems and information technologies.

The textbook primarily targets specialists in the field of technical sciences.
Therefore, significant attention was given to translating all the described calculation
methods into specific practical algorithms. It might also be interesting for undergraduates
and postgraduates learning majors related to computer science, cybernetic systems, and
information technology.

UDC 004.21+519.6

ISBN 978-617-8163-19-8 (PDF) © VNTU, 2024

3

CONTENT

INTRODUCTION ... 5

Chapter 1. LINEAR ALGEBRA PROBLEMS .. 6
1.1 Solving systems of linear algebraic equations .. 7
1.2 Direct calculation methods ... 8
1.3 Iterative methods ... 30
Control questions and tasks .. 45

Chapter 2. TASKS OF NON-LINEAR MATHEMATICS 51
2.1 Generalized formulation of the problem and the procedure

for localizing the roots of the equation .. 53
2.2 Numerical methods of solving nonlinear algebraic equations 55
2.3 Method of determining complex roots ... 73
2.4 Numerical methods for solving systems of nonlinear algebraic

 equations ... 78
Control questions and tasks .. 85

Chapter 3. DIFFERENTIAL CALCULUS PROBLEMS................................... 91
3.1 Generalized problem statement for ordinary differential equations 95
3.2 Numerical methods for solving ordinary differential equations

for Cauchy-type problems ... 95
3.3 Numerical methods for solving ordinary differential equations

in boundary value problems .. 137
3.4 Numerical methods for solving ordinary differential equations

for «stiff» problems ... 152
Control questions and tasks .. 160

Chapter 4. DIFFERENTIAL EQUATIONS OF MATHEMATICAL
PHYSICS ... 168

4.1 Classification of partial differential equations...................................... 169
4.2 Finite difference method ... 171
4.3 Solving various types of partial differential equations 174
Control questions and tasks .. 200

4

Chapter 5. DATA PROCESSING TASKS ... 205
5.1 І Interpolation ... 205

5.1.1 Different methods .. 206
5.1.2 Lagrangian interpolation .. 216
5.1.3 Spline interpolation .. 221

5.2 Data approximation... 228
5.3 Statistical data processing ... 234
Control questions and tasks .. 240

Chapter 6. NUMERICAL INTEGRATION AND DIFFERENTIATION 245
6.1 Riemann sum .. 245
6.2 Newton-Cotes formulas .. 248
6.3 Chebyshev’s integral... 251
6.4 Gaussian quadrature .. 255
6.5 Algorithms for the application of numerical methods 260
6.6 Monte Carlo integration .. 266
6.7 Estimation of the error in numerical integration 268
6.8 Numerical differentiation .. 269

6.8.1 Numerical differentiation of analytically given functions 269
6.8.2 Numerical differentiation of experimental data.............................271

Control questions and tasks .. 273

Sources .. 279

Sources in Ukrainian ... 280

5

INTRODUCTION

The purpose of this textbook is to present the most common computational
mathematics problems in engineering practice, along with solution examples and
program fragments in the modern algorithmic language Python. The authors have
attempted to summarize their many years of experience teaching courses in
computer mathematics for students and postgraduates in specialties related to
computer science, cybernetic systems, and information technologies. There are a
large number of fundamental textbooks and manuals on computational
mathematics, which serve as the methodological basis for this textbook.

The textbook consists of an introduction and six chapters: Introduction.
Problems of linear algebra. Problems of nonlinear mathematics. Differential
calculus problems. Differential equations of mathematical physics. Data
processing tasks. Numerical integration and differentiation.

The authors limited themselves to computing tasks that are most often
encountered in the practice of designing computer systems and information
technologies. Moreover, the emphasis was placed precisely on the
algorithmization of the problem-solving process. The textbook is primarily aimed
at specialists in the field of technical sciences. Therefore, attention was paid to
bringing all the described calculation methods to specific practical algorithms.
Consequently, some methods and formulas are provided without derivation,
which can be found in specialized literature. These program fragments can be
easily interpreted with minimal training in the field of programming.
Authors have provided illustrative examples in the popular programming
languages of today, C++ and Python. The textbook is aimed at scientists and
engineers in the field of computer science, information technology, robotic
complexes, and computer-integrated automation and control systems. Also,
the textbook will be useful for students and postgraduates of all majors in the
"Information Technologies" and "Electronics and Telecommunications" fields.

At the end of the textbook, we include a list of educational literature that can
be used for studying computer calculation methods. In addition to manuals and
textbooks published by domestic authors and colleagues, we have also included
well-known English-language sources from around the world. These works are
readily available in their entirety in the information space today.

The authors show great gratitude to their colleagues who have worked with
them for many years in the same team to develop a methodology for teaching
disciplines related to computational methods and algorithms and their application
in engineering and scientific applications.

6

Chapter 1. LINEAR ALGEBRA PROBLEMS

This section deals with the solution of one of the most common computational
problems in linear mathematics – the solution of linear algebraic equations
systems (LAES). Moreover, it is assumed that the user is already familiar with
the main information on matrix theory.

The study of many physical systems leads to mathematical models in the form
of LAES. They can appear in the process of mathematical modeling as an
intermediate stage during the solution of a more complex task. There is a
significant number of scientific and technical tasks in which mathematical models
of complex nonlinear systems, in the form of discretization or linearization, are
reduced to solving LAES.

Examples of tasks that use mathematical models in the form of LAES:
− during the simulation of economic tasks, such as management and

production planning, determining the optimal placement of equipment, the
optimal production plan, the optimal plan for the transportation of goods, and the
distribution of personnel, a linear representation of the real world can be
hypothesized. Mathematical models of such problems are described by a system
of linear equations;

− during the design and operation of electrical devices, it is necessary to
calculate and analyze their operation in steady-state modes. The task is reduced
to the calculation of equivalent circuits, which is based on the formation and
solution of LAES;

− during the construction of a mathematical model that links some parameters
xі and yі of the object under study by functional dependence, the basis is formed
by the data obtained as a result of the experiment, where i = 1, 2, ..., n (setting of
data approximation);

− for the study of physical processes in complex systems, mathematical
models are built based on partial differential equations. As a result of
approximating the original model using difference methods, under certain
conditions, mathematical relations in the form of LAES are obtained.

− the essence of many physical processes is mathematically displayed using
integral equations. Considering the complexity of solving many of them, it is
better for the researcher to reduce the problem to solving a mathematical model
in the form of LAES, using known approximation methods;

− the study of automatic control systems in a steady state often leads to static
models in the form of LAES.

7

1.1 Solving systems of linear algebraic equations

The statement of the problem of solving LAES is to determine the unknown
values 1 2, , ..., nx x x that satisfy a system of m linear algebraic equations:

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

... ;
... ;

...;
... ,

n n

n n

m m mn n m

a x a x a x b
a x a x a x b

a x a x a x b

+ + + =
 + + + =


 + + + =

 (1.1)

where a11, a12, …, amn – coefficients with unknown values xij; b1, b2, …, bm – free
members.

A system (1.1) is called homogeneous if all of its free terms are equal to zero
(b1=b2=…=bm=0), otherwise – heterogeneous. A quadratic LAES is a system in
which the number of equations coincides with the number of unknowns (m=n).
The system of equations is indeterminate if n>m and such LAES are called
rectangular. If n<m, then the system is overdetermined.

Also, the solution of LAES is a set of n numbers с1, с2, …, сn, such that when
substituted into system (1.1) instead of 1 2, , ..., nx x x , all of its equations become
identities. System (1.1) is called compatible if it has at least one solution, and
incompatible if it has no solutions. Solutions are considered different if at least
one of the values of the variables does not match. A compatible system with a
single solution is called determinate, and in the case of multiple solutions, it is
called indeterminate.

Also, LAES (1.1) can be written in matrix form:
=AX B ,

where

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

a a a

 
 
 =
 
 
 





   



Α – square or rectangular matrix with real or

complex coefficients,

1

2

m

b
b

b

 
 
 =
 
 
 



B – column of free members (given vector),

1

2

m

x
x

x

 
 
 =
 
 
 



Χ – column of unknowns (searched vector).

8

In this section of the textbook, we will consider the methods of solving the
quadratic LAES, specifically when m = n.

The geometric meaning of the LAES solution consists in finding the point
of intersection of n-dimensional hyperplanes in an m-dimensional hyperspace.
The solution is the column (vector) X. If there are only two equations, then we
have the case of two lines on a plane that can intersect, be parallel, or coincide.
Therefore, any LAES can have: a single solution; an infinite set of solutions; or
no solution at all.

A necessary and sufficient condition for the existence of a unique solution of
the quadratic LAES (1.1) is the non-zero determinant A (linear independence of
the equations):

11 12 1

21 22 21

1 2

det 0

n

n n nn

a a a
a a a

a a a

= ≠









A .

Methods of solving LAES can be divided into direct and iterative. Direct
methods include methods that allow you to obtain an exact solution (Cramer’s
rule, Gaussian elimination, Tridiagonal matrix algorithm). Iterative methods
include methods based on obtaining and refining successive approximations to
the exact solution. Iterative methods are effective when there are many zero
coefficients or a high order of the system (Gauss method is effective up to order
104, iterative – up to 106).

1.2 Direct calculation methods

The most popular direct methods include the Gaussian elimination and its
variants, the Cramer’s rule (determinants), the Methods of matrix inversion, and
Tridiagonal matrix algorithm used in problems with diagonal matrices. However,
Cramer’s rule (determinants), which is discussed in detail in standard courses of
higher mathematics, cannot be applied in most practical problems due to the great
complexity of calculating the determinants even in the case of a small increase in
the order of the system. Therefore, this section will focus on considering the
Gaussian elimination, which, while inferior to iterative methods in certain
practical areas, is nevertheless the most universal. Tridiagonal matrix algorithm
used in problems with diagonal matrices will also be considered.

Gaussian elimination

This method is one of the most common methods of solving LAES. It is based
on the idea of successively excluding unknown variables. This process transforms
the original system into a triangular form, where all coefficients below the main
diagonal are zero. There are various computational schemes that can be used to

9

implement this method. The most common schemes involve selecting the main
element by row, by column, or by the entire matrix.

 The classical Gaussian elimination is based on reducing the matrix A of the
coefficients of system (1.1) to triangular form:

* * * ... * *
0 * * ... * *
0 0 * ... * *

...
0 0 0 ... * *
0 0 0 ... 0 *

    

and consists of two staches: a direct may and an inverted substitution. The direct
run step ends when one of the system’s equations becomes an equation with only
one unknown. Next, the inverse substitution is performed to determine all
unknown xij values. In order to minimize calculation errors, the Gaussian
elimination is used with the selection of the main element. By main element, we
refer to the maximum element max

ija of matrix A, chosen from a given set of rows
and columns. The algorithm of this method is as follows: first, identify the main
element max

ija of matrix A and rearrange the corresponding equations and columns
to position it in the place of the element a11 (remember to record the
rearrangement of columns to correctly match the variables with the obtained
values). Then, normalize the first equation by dividing it by a11= max

ija :

 12 1 1
1 2max max max... n

n
ij ij ij

a a bx x x
a a a

+ + + = . (1.2)

By successively multiplying (1.2) by а21, а31, …, аn1, and subtracting the
respective 2nd, ..., n-th equations from system (1.1), we obtain a LAES of the
form А1Х=В1:

1 1 1
1 12 2 1 1

1 1 1
22 2 2 2

1 1 1
2 2

;
0 ;
...;
0 ,

n n

n n

n nn n n

x a x a x b
a x a x b

a x a x b

 + + + =
 + + + =


 + + + =







where 1 1
1 1ij ij j ia a a a= − ⋅ , 1 1

1 1i i ib b b a= − ⋅ ∀ (2,i n= і 2,j n=); 1 max
1 1 /j n ija a a= ;

1 max
1 1 / ijb b a= .

10

Let the matrices Ак and Вк be obtained at some step (the initial matrices
correspond to А0 and В0), and the diagonal element 1, 1

k
k ka + + is the maximum

modulus element of the matrix Ак for rows i > k and columns j > k (if necessary,
the corresponding equations and columns are rearranged).

We will provide formulas for calculating matrices Аk+1 and Вk+1:

1

, 1, , 1
1

, 1,

(або);
/ (1,);

(1,),

k
ij

k k k k
ij i j k j i k

k k k
ij i j k j

a i k j k
a m a a i k j k

a m a i k j k

+
+ +

+
+

 ≤ ≤
= = = + >
 − ⋅ > + >

 (1.3)

1

1 1, 1
1
1 , 1

();
/ (1);

(1).

k
i

k k k
i k k k

k k k
i k i k

b i k
b b a i k

b b a i k

+
+ + +

+
+ +

 ≤
= = +
 − ⋅ > +

 (1.4)

When programming the method, it is sufficient to use a two-dimensional array
with n rows and n + 1 columns to store the information of the coefficient values
of the matrices. This array will hold the extended matrix of the system (A|B).

Conditions for terminating the direct run of the Gaussian elimination

A problem may arise during the calculation process:

element 01,1 =++
k

kkа .

This situation occurs when all elements of the matrix Аk in rows i > k are
equal to zero. The system in this case looks like this:

1 12 2 1 1

22 2 2 2

1

1 1 1

... ;

0 ... ;
...;
0 ...0 ... ;

0 ...0 0 0 ... 0 ;
...........................

k k k
n n

k k k
n n

k k k
k kk k kn n k

k
k k k n k

x a x a x b

a x a x b

x a x a x b

x x x x b
−

− + +

+ + + =

+ + + =

+ + + + =

+ + + + + =

1 1

....................................;
0 ...0 0 0 ... 0 .k

k k k n nx x x x b− +












+ + + + + =

If the application of formulas (1.3) and (1.4) is impossible, then the system
has an infinite set of solutions or none at all, which can be determined from the
matrix Вk.

11

If all elements bi
k = 0 under the condition i ≥ k+1, then the system has an

infinite set of solutions, and the roots х1, …, хk are called dependent and are
expressed through the values хk+1, …, xn, which are called independent. If at least
one element bi

k ≠ 0 for i ≥ k+1, then the system has no solutions.
In the absence of the case of the problem of dividing by zero and obtaining

the triangular matrix Аn, the system has a unique solution. Then the Gaussian
elimination is used to find its inverse:

1 1

1

;

(1, 1).

n
n n

i
n n

n i n i n k n k
k

x b

x b a x i n− − − + − +
=

 =



= − ⋅ = −
∑

 (1.5)

Example 1.1. Solve the LAES by the Gaussian elimination with the selection

of the main element:

1 2 3 4

1 2 3 4

1 2 3 4

1 3 4

5 6 7 8 1;
10 10 11 12 2;
15 4 3 5 3;
2 20 2 4.

x x x x
x x x x
x x x x

x x x

⋅ + ⋅ + ⋅ + ⋅ =
 ⋅ + ⋅ + ⋅ + ⋅ =
 ⋅ + ⋅ − ⋅ + ⋅ =
 ⋅ + ⋅ − ⋅ =

Solution:

A matrix of coefficients A and a column of free members B are formed:

5 6 7 8 1
10 10 11 12 2

; .
15 4 3 5 3
2 0 20 2 4

   
   
   = =
   −
   −   

A B

The main element of matrix A is equal to max
13 43 20a a= = . After rearranging

the rows, a new value of a11 is obtained, namely a11=20, and the values of the new
matrices will be obtained.

2 0 20 2 4
10 10 11 12 2

; .
15 4 3 5 3
5 6 7 8 1

−   
   
   = =
   −
   
   

A B

12

Let’s calculate the elements of matrix A1 and column B1:

3 31 2 4 2 1 4

3 32 1 4 2 1 4

4 42 0 2 0 2 220 20
2 210 10 11 12 11 10 10 12
3 315 4 3 5 3 4 15 5
1 15 6 7 8 7 6 5 8

4 / 200 / 20 2 / 20 2 / 20 0 0,1 0,120 / 20 1
211 10 10 12 11 10 1
33 4 15 5
17 6 5 8

x b x bx x x x x x

x b xx x x x x x

   
   − −   
   = =
   

− −   
   
   

 
 − − 
 = =
 

− 
 
 

3 2 1 4

0,2
2,00,0 12,0
3,03 4 15,0 5,0
1,07 6 5,0 8,0

0,20 0,1 0,11
2 (0,2 11)11 (1 11) 10 (0 11) 10 (0,1 11) 12 (0,1 11)

3 (1 3) 4 (0 3) 15 (0,1 3) 5 (0,1 3)
7 (1 7) 6 (0 7) 5 (0,1 7) 8 (0,1 7)

b

x bx x x

 
 
 
  =
 
− 
 
 

−
= − ⋅− ⋅ − ⋅ − ⋅ − − ⋅

− − ⋅ − − ⋅ − − ⋅ − − − ⋅ −
− ⋅ − ⋅ − ⋅ − − ⋅

3 2 1 4

3 (0,2 3)
1 (0,2 7)

0,20 0,1 0,11
0,2 .0 10 8,9 13,1
3,60 4 15,3 4,7
0,40 6 4,3 8,7

x bx x x

 
 
 
  =
 

− ⋅ − 
 − ⋅ 

 
 − 
 = −
 
 
 − 

3 2 1 4

1 1

0,2
0 0,1 0,11

0,2
; .0 10,0 8,9 13,1

3,6
0 4,0 15,3 4,7

0,4
0 6,0 4,3 8,7

x x x x 
  −    −  = =
  
   −  

 

A B

The main element of the new matrix max 1
33 33 15,3a a= = .

Similarly, the elements of matrix A2 and column B2 are calculated:

13

3 1 2 4

2 2

0,200
0,1 0,000 0,1001

0,240
; .0 1,0 0,260 0,310

2,292
0 0,0 7,677 10,368

1,411
0 0,0 4,878 7,380

x x x x 
  −   
  = =
 − 
   −  

 

A B

The main element of the new matrix max 2
34 34 10,368a a= = .

Similarly, the elements of matrix A3 and column B3 are calculated:

3 1 4 2

3 3

0,200
0,1 0,10 0,0001

0,240
; .0 1,0 0,310 0,260

0,23
0 0,0 1,000 0,740

0,220
0 0,0 0,000 0,598

x x x x 
  −   
  = =
 − 
  
  − 

A B

The A3 matrix has a triangular shape. The system has a unique solution. To
find it, the inverse of the Gaussian elimination is used:

3 4

2 4 44
3 3

4 3 34 2
3 3 3

1 2 24 2 23 4
3 3 3 3

3 1 14 2 13 4 12 1

/ 0,220 / 0,598 0,377;
0,23 0,74 0,377 0,058;

0,24 (0,26 0,377) (0,310 0,058) 0,316;

0,2 (0 0,377) (0,10 0,058) (0,1 0,

x b a
x b a x

x b a x a x

x b a x a x a x

= = − = −

= − ⋅ = − − ⋅ − =

= − ⋅ − ⋅ = − ⋅ − − ⋅ =

= − ⋅ − ⋅ − ⋅ =

= − ⋅ − − ⋅ − ⋅ 316) 0,174.=

Solution:

0,316
0,377
0,174
0,058

 
 − =
 
 
 

X .

The algorithm of the method is presented in Figure 1.1.

14

Figure 1.1 – Scheme of the Gaussian elimination algorithm

15

Mechanical interpretation of the Gaussian elimination

Consider an arbitrary elastic static system S fixed at the edges (for example,
a string, an elastic rod, a multi-span rod, a membrane, a plate, or a discrete
system), and take n points x1, x2, ..., xn on it.

We consider the displacement (deflections) y1, y2, ... , yn of points x1, x2, ..., xn,
xp of the system S under the action of forces F1, F2, ... , Fn applied at these points.
It is assumed that forces and displacements are parallel to one and the same
direction and are therefore determined by their algebraic values (Fig. 1.2).

Figure 1.2 – Calculation diagram of the deflection of an elastic beam

In addition, it is necessary to accept that the principle of linear imposition of

forces applies:
1) with the total superposition of two systems of forces, the corresponding

deflections add up;
2) when the values of all forces are multiplied by the same real number, all

deflections are multiplied by this number.
Let aij denote the coefficient of influence of point xj on point xi, that is, the

deflection at point xi under the action of a unit force applied at point xj (i, j=1, 2,
…, n) (Fig. 1.3). Then, with the joint action of forces F1, F2, ... , Fn deflections y1,
y2, ... , yn are determined by the formulas:

1

n

ij j i
j

a F y
=

=∑ (i=1, 2, …, n). (1.6)

Figure 1.3 – Calculation diagram of deflection under the action of a unit force

By comparing the system of equations (1.6) with the original system of

equations (1.1), we can interpret the problem of finding a solution to the system
of equations as determining the deflections y1, y2, ..., yn to the corresponding forces
F1, F2, ..., Fn.

16

Let us denote by Sp the static system obtained from S by introducing p fixed
hinged supports at points x1, x2, ..., xp (p n≤). The influence coefficients for the
remaining moving points xp+1, ..., xn of the system Sp will be denoted by p

ija (i,
j=p+1, …, n) (Fig. 1.4 for p=1).

Figure 1.4 – Calculation diagram of the effect of neighboring points on the

overall deflection of an elastic beam

Coefficient p
ija can be considered as the deflection at point xi of system S

under the action of a unit force at point xk and reaction forces R1, R2, ..., Rn at fixed
points x1, x2, ..., xn. Therefore:

 1 1
p

ij i p ip ija R a R a a= + + + . (1.7)

With the same forces, the deflections of system S at points x1, x2, ..., xn are
equal to zero:

1 11 1 1

1 1

0;

0.

p p j

p p pp pj

R a R a a

R a R a a

+ + + =


 + + + =







 (1.8)

If

1 2

0
1 2

p
A

p
 

≠ 
 





, (1.9)

then we can determine R1, R2, ..., Rp from (1.8) and substitute the obtained
expressions in (1.7). This exception R1, R2, ..., Rp can also be done. To the system
of equalities (1.8), we add equality (1.7), written in the form:

 1 1 0p
i p ip ij ijR a R a a a+ + + − = . (1.10)

Considering (1.8) and (1.10) as a system p+1 of homogeneous equations with
a nonzero solution R1, R2, ..., Rp+1=1, we obtain that the determinant of this system
is zero:

17

11 1 1

1

1

0.

p j

p pp pj
k

i ip ij ij

a a a

a a a
a a a a

=

−



   





 (1.11)

Where from

1 2
1 2

1 2
1 2

p
ij

p i
A

p j
a

p
A

p

 
 
 =
 
 
 









 (i, j=p+1, …, n). (1.9)

According to these formulas, the influence coefficients of the «support»
system Sp are expressed through the influence coefficients of the initial system S.

For any p≤n-1, the coefficients p
ija (i, j=p+1, …, n) in the Gaussian

elimination are the coefficients of the influence of the support system Sp.
To confirm this basic premise, it is possible to ensure this through purely

mechanical considerations. To do so, we will first consider the special case of one
support: p=1 (see Fig. 1.4). In this case, the influence coefficients of system S1 are
defined as:

 1 1
1

11

1
1

1
1

i
ij ij j

i
A

j aa a a
aA

 
 
 = = −
 
 
 

 (i, j=1, 2, …, n). (1.10)

Thus, if the coefficients aij (i, j=1, 2, …, n) in the system of equations (1.1)
represent the coefficients of influence of static system S, then the coefficients 1

ija
(i, j=2, …, n) in the Gaussian elimination are the coefficients of influence of
system S1. By applying the same considerations to system S1 and introducing the
second resistance at point x2, it can be concluded that the coefficients 2

ija (i, j=3,
…, n) in the system of equations (1.2) are the coefficients of influence of the
support system S2. In general, for any p≤n–1, the coefficients p

ija (i, j=p+1, …,
n) in the Gaussian elimination are the coefficients of influence of the support
system Sp.

From mechanical considerations, it is evident that the sequential introduction
of p supports is equivalent to the simultaneous introduction of these supports.

Consider the implementation of the Gaussian elimination in the С++
programming language:

int main()
{
 int i, j, n, m;
 // we create an array
 cout << "Number of equations: ";

18

 cin >> n;
 cout << "Number of variables: ";
 cin >> m;
 m += 1;
 float **matrix = new float *[n];
 for (i = 0; i<n; i++)
 matrix[i] = new float[m];
 for (i = 0; i<n; i++)
 for (j = 0; j<m; j++)
 {
 cout << " Element " << "[" << i + 1 << " , " << j + 1 << "]: ";
 cin >> matrix[i][j];
 }
 // we output the array
 cout << "matrix: " << endl;
 for (i = 0; i<n; i++)
 {
 for (j = 0; j<m; j++)
 cout << matrix[i][j] << " ";
 cout << endl;
 }
 cout << endl;
 // Gauss method, straight line
 float tmp;
 int k;
 float *xx = new float[m];
 for (i = 0; i<n; i++)
 {
 tmp = matrix[i][i];
 for (j = n; j >= i; j--)
 matrix[i][j] /= tmp;
 for (j = i + 1; j<n; j++)
 {
 tmp = matrix[j][i];
 for (k = n; k >= i; k--)
 matrix[j][k] -= tmp*matrix[i][k];
 }
 }
 // Gauss method, reverse course
 xx[n - 1] = matrix[n - 1][n];
 for (i = n - 2; i >= 0; i--)
 {
 xx[i] = matrix[i][n];
 for (j = i + 1; j<n; j++) xx[i] -= matrix[i][j] * xx[j];
 }
 // We make a decision
 for (i = 0; i<n; i++)
 cout << xx[i] << " ";
 cout << endl;
 delete[] matrix;
 system("pause");
 return 0;
}.

Modified Gaussian elimination

In many cases, it is necessary to solve the LAES with a matrix of variable
coefficients and constant values of the column of free members. Most often, the
modified Gaussian elimination is used to solve such problems. In this method, the
matrix of coefficients A from the matrix equation (1.1) is presented as a product
of left and right triangular matrices:

19

L⋅R = A.
Since the diagonal elements of one of the matrices are equal to one, they

cannot be memorized. This then allows both matrices to be stored in the memory
of the computer system in place of the matrix of coefficients.

In a variant of Crout matrix decomposition, the following sequence is used to
find elements of matrices L and R:

1

1

1

1

1, 2, , ; , 1, ,

1

();

1 ;

(),

.

;,

1

k

ik ik ip pk
p

kk
kk

k

kj kk kj kp p

k

j
p

k

l a k n i kl r

l
l

k n

j k n

r

r l a l r

−

=

−

=


= −




=

  
 = − 
 

= … = + …

= + …

=





∑

∑

The system AX=C is reduced to the system LRX = C, the solution of which
is replaced by the solution of two systems with triangular matrices:

;
.

=
 =

LY C
RX Y

The elements of the matrices Y and X are determined from the following
ratios:

1 11 1

1

1

1

;

(2, ,);

(, 1, ,1).

i

i ii i ip p
p

n

i i ip p
p i

y l c

y l c l y i n

x y r x i n n

−

=

= +


 =

  = − =  

 


= − = −

∑

∑





The number of arithmetic operations required to solve the LAES by this
method is 22nN = .

Example 1.2. Three pipelines with corresponding capacities of x1, x2, and x3

are connected to a measuring tank that can be filled with liquid. To determine the
capacities of the connected pipelines, three experiments are carried out on filling
and emptying this tank. Additionally, the pipelines operate for different periods
of time. In the first case, the liquid is drained from the filled container, as indicated
by the «minus» sign before the volume value. In the second case, the tank is filled,
as indicated by the «plus» sign before the volume value. In the third case, the

20

cavity remains empty when the three pipelines work together. It will determine
the values of the throughput of the connected pipelines x1, x2, and x3. Data on the
time and volume of filling the container are indicated in Table 1.1.

Table 1.1 – Filling tank data

Method of
filling

Pipeline operation time (min) / type of operation
(filling / draining)

Filling
volume

(m3) 1 2 3
1 1 (filling) 3 (draining) 2 (filling) –5
2 3 (draining) 1 (filling) 3 (draining) 3
3 3 (draining) 3 (draining) 1 (filling) 0

Solution:

According to the problem statement and based on the data provided in Table
1.1, we formulate a system of equations:

1 2 3

1 2 3

1 2 3

3 2 5;
2 3;

2 3 0.

x x x
x x x

x x x

− + = −
− + − =
− − + =

Solve the system of equations using the modified Gaussian elimination with
calculation of the forward and backward steps.

Straight stroke:
1) exclude x1 from the 2nd and 3rd equations:

–m2
(1) = –a21/a11 = 2/1 = 2; a21

(1) = a21+m2
(1)⋅a11 = –2+2⋅1 = 0;

a22
(1) = a22+m2

(1)⋅a12 = 1–2⋅3 = –5; a23
(1) = a23+m2

(1)⋅a13 = –1+2⋅2 = 3;
b2

(1) = b2+m2
(1)⋅b1 =3–2⋅5 = –7.

–m3
(1)

 = –a31/a11 = 1/1 = 1; a31
(1) = a31+m3

(1)⋅a11 = –1+1⋅1 = 0;
a32

(1) = a32+m3
(1)⋅a12 = –2–1⋅3 = –5; a33

(1) = a33+m3
(1)⋅a13 = 3+1⋅2 = 5;

b3
(1) = b3+m3

(1)⋅b1 = 0–1⋅5 = –5;

1 2 3

1 2 3

1 2 3

3 2 5;
0 5 3 7;
0 5 5 5.

x x x
x x x
x x x

− + = −
 ⋅ − + = −
 ⋅ − + = −

2) exclude x2 from the 3rd equation:
–m3

(2) = –a32
(1)/a22

(1) = –5/5 = –1; a32
(2)=a32

(1)+m3
(2)⋅a22

(1)= –5+1⋅5 = 0;
a33

(2) = a33
(1)+a33

(2) = a33
(1)+m3

(2)⋅a23
(1) = 5–1⋅3 = 2;

b3
(2) = b3

(1)+m3
(2)⋅b2

(1) = –5+1⋅7 = 2;

21

1 2 3

2 3

3

3 2 5;
5 3 7;

2 2.

x x x
x x

x

− + = −
 − + = −
 =

Reverse stroke:

x3 = b3
(2)/a33

(2) = 2/2 = 1,0 m3/min;
x2 = (b2

(2) –a23
(2)⋅x3)/ a22

(2) = (–7–3⋅1)/(–5) = 2,0 m3/min;
x1 = (b1

(2) ⋅a33
(1)+a13

(2)⋅x3 a33
(1)+a12

(2)⋅x2)/a11
(2)

 = (–5 –(2⋅1) – (–3⋅2))/1 =
 = –1,0 m3/min.

The «minus» sign, at the value of pipeline capacity x1, means that the first
pipeline was working all the time to drain the liquid.

Consider the implementation of the modified Gaussian elimination in the С++
programming language:

const int n = 3;
float A[n][n]= {2, 4, 1,
 1, 1, 2,
 4, 2, 1};
float B[n] = {8, 6, 8};
int main(int argc, char *argv[]) {
 // Derivation of the initial matrix
 for (int i=0; i<n; i++)
 {
 for (int j=0; j<n; j++)
 cout << A[i][j] << " ";
 cout << B[i] << endl;
 }
 cout << endl;
// Modified Gauss method
 for (int i=0; i<n; i++)
 {
 for (int j=0 ; j<n; j++)
 if (i!= j)
 {
 float d = A[j][i]/A[i][i];
 for (int k=0; k<n; k++)
 A[j][k]= A[i][k]*d - A[j][k];
 B[j] = B[i]*d - B[j]; }
// Derivation of intermediate results
 for (int i=0; i<n; i++)
 {
 for (int j=0; j<n; j++)
 cout << A[i][j] << " ";
 cout << B[i] << endl;
 }
 cout << endl; }
// Print х
 for (int j=0; j<n; j++)
 cout << "x[" << j << "] = " << B[j]/A[j][j] << endl;
 system("PAUSE");
 return 0;

}.

The algorithm of the modified Gaussian elimination is shown in Figure 1.5.

22

R
ev

er
sa

l o
f t

he
 G

au
ss

ia
n

m
et

ho
d

B
rin

gi
ng

 th
e

m
at

rix
 to

 u
pp

er

tri
an

gu
la

r f
or

m

Pe
rm

ut
at

io
n

of
 li

ne
s

Pe
rm

ut
at

io
n

of
 fr

ee

m
em

be
rs

Yes

Start

Input: bAn


,,

p = k

k = 1, n-1

B Stop

Print: x

1

m = k+1, n

|apk|<|amk|

j = k, n

2

3

4

5

p = m

6

No

r = akj

8

akj = apj

9

apj = r
10

r = bk

11

bk = bp

12

bp = r

13

7

C А

B C А

m = k+1, n

c = amk /akk

15

bm = bm - c⋅bk

16

ami = ami - c⋅aki
18

14

i = k, n

17

xn = bn / ann

19

k = n-1,1,(-1)

s = 0

21

 s = s + aki ⋅ xi

23

20

i = k+1, n

22

 xk = (bk – s)/akk

24

25

Fi
nd

in
g

th
e

m
ax

im
um

el

em
en

t

Figure 1.5 – Scheme of the modified Gaussian elimination algorithm

Application of the Gaussian straight line elimination for finding
determinants

Two approaches are used to calculate the determinants of matrices:
– recursive calculation using the expansion of the matrix of coefficients by

row or column;
– calculation based on the direct course of the Gaussian elimination.

23

The first method is based on the use of the property of determinants, where
the determinant of the matrix is equal to the sum of the products of the elements
of any row or column by their algebraic complement:

1
det() , 1,

n

ij ij
j

a i n
=

= ⋅ ∀ =∑A A .

Thus, the calculation of one determinant of the n-th order is reduced to the
calculation of n determinants of the n–1 order. This method is implemented using
recursion.

The recursive method is convenient for applying to rows or columns with a
large number of zero elements. If there are no or very few zero elements in the
matrix, then using this method is extremely inefficient. For a determinant of order
n, it will be necessary to calculate n!/2 determinants of the second order.

The second method is based on the Gaussian straight-line elimination, which
uses the property of the determinant of a triangular matrix. For such a matrix, the
determinant is equal to the product of the elements on the main diagonal.

To calculate the determinant, the algorithm for constructing the sequence of
matrices А→А1→А2→…→Аn of the Gaussian elimination is used, with the
difference that the sign of the determinant changes to the opposite during the
permutation of rows or columns. The value of the determinant is calculated
according to the formula:

1 1
11 22det() (1) ...m n

nna a a −= − ⋅ ⋅ ⋅ ⋅A ,
where m – number of permutations.

This method allows you to calculate the determinants of matrices of high order.

Methods of matrix inversion
If the problem of solving LAES is addressed in an application package that

implements the function of calculating the inverse matrix, then the formula can
be used to find a solution:

1−=X A B ,
where A-1 – inverse matrix.

Recall the definition of the inverse matrix.
The inverse of the square matrix A is the matrix A-1 for which the relation

holds:
1 1− −⋅ = ⋅ =A A A A E ,

where Е – unit matrix.

Cramer’s rule
This method consists of calculating the determinant det(A) of the coefficient

matrix A, as well as the determinants det(Ak) of the matrices Аk (1,k n=). The
matrices Ak are obtained from matrix A by replacing the k-th column of
coefficients with the column B of the free members of the system of linear
equations LAES.

24

In this case, the following variants of the determinants' values themselves are
possible:

1. If detA≠0, then the system has a unique solution 1(, ...,)nx x x= , which is
determined by the formula :

det() (1,)
det()

k
kx k n= =

A
A

.

2. If det(A)=0, as well as all det(Аk)=0 for 1,k n= , then the system has an
infinite set of solutions.

3. If det(A)=0 and at least one det(Аk) ≠0, then the system has no solutions.
Cramer’s rule (determinants) cannot be applied to most practical problems

due to the complexity of directly calculating the determinants themselves, even in
the case of a small increase in the system's order.

Example 1.3. The trading network consists of three different trading

enterprises with profitability x1, x2, and x3, respectively. Over the course of three
days, the trading network accumulates a total profit based on the sales results of
each enterprise. We need to determine the value of the profitability of the different
trading enterprises. Table 1.2 displays the data on the turnover of the enterprises
and the trading network as a whole on a daily basis.

Table 1.2 – Data on the total turnover of retail chain funds

Number of
working

days

Purchase of differential trade enterprises
(million USD)

Total network
revenue (million

USD) 1 2 3
1 3,0 –1,0 1,0 12,0
2 5,0 1,0 2,0 3,0
3 1,0 1,0 2,0 3,0

Solution:
Based on the data in Table 1.2, we compile the LAES:

1 2 3

1 2 3

1 2 3

3 12;
5 2 3;

2 3.

x x x
x x x
x x x

− + =
 + + =
 + + =

We solve LAES using the Gaussian elimination, the matrix method, and the
Cramer’s rule. Let’s solve the system using the matrix method. For this, we will

calculate the inverse matrix
11 12 13

1
21 22 23

31 32 33

1
A A A
A A A
A A A

−

 
 =  ∆  
 

A
A

, where Aij – algebraic

addition to the elements of the matrix of coefficients A (i, j=1, 2, 3).

25

Matrix of coefficients:
3 1 1
5 1 2
1 1 2

− 
 =  
 
 

A .

The matrix determinant value:
3 1 1
5 1 2 (3 1 2) (3 2 1)
1 1 2

−
∆ = = ⋅ ⋅ − ⋅ ⋅ −A

(1 5 2) (1 2 1) (1 5 1) (1 1 1) 12 0− − ⋅ ⋅ + − ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ = ≠ – the matrix is nondegenerate.
Algebraic matrix complements А:

(1) det()j i j j
i iA += − C ,

where j
iC – the matrix that is obtained from the coefficient matrix A by deleting

the row numbered i and the column numbered j.
Then:

– (i=1, j=1) 1 1
11

1 2
(1) (2 2) 0

1 2
A += − = − = , (i=1, j=2)

1 2
12

5 2
(1) (10 2) 8

1 2
A += − = − − = − , (i=1, j=3) 1 3

13

5 1
(1) 5 1 4

1 1
A += − = − = ;

– (i=2, j=1) 2 1
21

1 1
(1) (2 1) 3

1 2
A + −

= − = − − − = , (i=2, j=2)

2 2
22

3 1
(1) 6 1 5

1 2
A += − = − = , (i=2, j=3) 2 3

23

3 1
(1) (3 1) 4

1 1
A + −

= − = − + = − ;

– (i=3, j=1) 3 1
31

1 1
(1) 2 1 3

1 2
A + −

= − = − − = − , (i=3, j=2)

3 2
32

3 1
(1) (6 5) 1

5 2
A += − = − − = − , (i=3, j=3) 3 3

33

3 1
(1) 3 5 8

5 1
A + −

= − = + = .

The value of the inverse matrix:

11 12 13
1

21 22 23

31 32 33

0 3 3
1 1 8 5 1

12
4 4 8

A A A
A A A
A A A

−

−   
   = = − −   ∆    −  

A
A

.

The value of the matrix (vector) of unknown arguments X:

1

0 3 3 12 0 12 3 3 (3) 3 0
1 18 5 1 3 8 12 5 3 (1) 3 7

12 12
4 4 8 3 4 12 (4) 3 8 3 5

−

− ⋅ + ⋅ + − ⋅       
       = ⋅ = − − ⋅ = − ⋅ + ⋅ + − ⋅ = −       
       − ⋅ + − ⋅ + ⋅       

X A B .

The actual values of the profitability of different trading enterprises were
obtained, namely: x1 = 0 million USD; x2 = –7,0 million USD; x3 = 5 million USD.

26

That is, only one enterprise is profitable, namely the enterprise with a profitability
of x3 = 5,0 million USD.

Solving LAES by Cramer’s rule.

The main determinant of the coefficient matrix A:
3 1 1

det 5 1 2
1 1 2

−
∆ = =A .

The main determinant of the matrix of coefficients A can be decomposed into
the elements of the first row:

11 12 13

21 22 23 11 11 12 12 13 13

31 32 33

det
a a a
a a a a A a A a A
a a a

∆ = = = ⋅ + ⋅ + ⋅A ,

()1 1 1 2 1 3

3 1 1
1 2 5 2 5 1

5 1 2 3 1 (1) (1) 1 (1) 12 0
1 2 1 2 1 1

1 1 2

+ + +

−
∆ = = ⋅ − ⋅ + − ⋅ − + ⋅ − = ≠ .

Let’s write down and calculate the auxiliary determinants:

1 12 13

1 2 22 23

3 32 33

b a a
b a a
b a a

∆ = ;
11 1 13

2 21 2 23

31 3 33

a b a
a b a
a b a

∆ = ;
11 12 1

2 21 22 2

31 32 3

a a b
a a b
a a b

∆ = ;

() 0
13
13

11
23
23

11
21
21

112
213
213
1112

Δ 312111
1 =−⋅+−⋅−+⋅−⋅=

−
= +++)()()(x ;

()1 1 1 2 1 3
2

3 12 1
3 2 5 2 5 3

Δ 5 3 2 3 1 12 (1) 1 (1) 84
3 2 1 2 1 3

1 3 2
x + + += = ⋅ − ⋅ + ⋅ − + ⋅ − = − ;

()1 1 1 2 1 3
3

3 1 12
3 2 5 3 5 1

Δ 5 1 3 3 1 (1) (1) 12 (1) 60
3 2 1 3 1 1

1 1 3
x + + +

−
= = ⋅ − ⋅ + − ⋅ − + ⋅ − = .

Then: 1
1

0 0
12

xx ∆
= = =

∆
, 2

2
84 7
12

xx ∆
= = − = −

∆
, 3

3
60 5
12

xx ∆
= = =

∆
.

So, when solving the same LAES by all the above methods, the same answer
was obtained.

Consider the implementation of Cramer’s rule in the С++ programming
language:

void Print_Arr(double** arr, double* barr, const int& rows){
 for(int i = 0; i < rows; ++i){
 for(int j = 0; j < rows; ++j){
 cout << arr[i][j] << " ";
 }

27

 cout << barr[i] << endl;
 }
}
double Det(double** a, const int& rows, const int& columns){
 // the determinant search function
 // square matrix of size n*n
 double** B = new double* [rows];
 for(int i = 0; i < rows; ++i){
 B[i] = new double[columns];
 for(int j = 0; j < columns; ++j){
 B[i][j] = a[i][j];
 }
 }
 int n = rows;
 // bringing the matrix to the upper triangular form
 for(int step = 0; step < n - 1; step++)
 for(int row = step + 1; row < n; row++){
 double coeff = -1 * (B[row][step]) / B[step][step]; // Gauss

method
 for(int col = step; col < n; col++)
 B[row][col] += B[step][col] * coeff;
 }
 // Calculation of the determinant as a product of the elements of the

main diagonal
 double det = 1.;
 for(int i = 0; i < n; i++)
 det *= B[i][i];
 return det;
}
void MethodKramer(double** arr, double* barr, const int& n){ // function of

Cramer’s rule
 double det = Det(arr, n, n);
 int j = 0;
 while(j < n){
 for(int i = 0; i < n; ++i){
 swap(arr[i][j], barr[i]);
 }
 double detj = Det(arr, n, n);
 cout << "x" << j + 1 << " = " << detj/det << endl;
 for(int i = 0; i < n; ++i){
 swap(arr[i][j], barr[i]);
 }
 ++j; }}.

The Cramer’s rule algorithm is shown in Figure 1.6.

Tridiagonal matrix algorithm
The Tridiagonal matrix algorithm is used to decouple LAES from a

tridiagonal matrix. This system of equations is written in the form:
 1 1 (1, 2, ...,)i i i i i i ia x b x c x d i n− ++ + = = (1.11)
where a1=0, cn=0.

The tridiagonal matrix algorithm, which can be shortened to the Gaussian
elimination, consists of a direct and reverse calculation method. The direct
calculation path lies with the derived elements of the system matrix (1.11), which
lie below the main diagonal. Each step will involve no more than two unknowns,
and the formula for the reverse calculation can be written in this form:

28

Figure 1.6 – Scheme of the Cramer’s rule algorithm

29

 1 (, 1, , 1)i i i ix U x V i n n+= + = −  . (1.12)

If we express 111 −−− += iiii VxUx and substitute into the system (1.11), we will
have 1 1 1()i i i i i i i i ia U x V b x c x d− − ++ + + = , whence:

 1
1

1 1

i i i i
i i

i i i i i i

c d aVx x
aU b aU b

−
+

− −

−
= − +

+ + . (1.13)

Equating (1.12) and (1.13), we get:

 1

1 1

, (1, 2, ...,)i i i i
i i

i i i i i i

c d aVU V i n
aU b aU b

−

− −

−
= − = =

+ +
. (1.14)

As a1 = 0, then:
 1 1 1 1 1 1/ , /U c b V d b= − = . (1.15)

Now, according to formulas (1.14) and (1.15), the running coefficients Ui and
Vi (i=1, 2, …, n) can be calculated during the course of running. Knowing the
sweep coefficients, you can calculate all xi (reverse stroke of sweep) using formula
(1.7).

The Tridiagonal matrix algorithm can be easily algorithmized, making it
frequently used in the standard mathematical support of computer systems. The
implementation of the sweep method allows for a significant reduction in the
number of arithmetic operations compared to the Gaussian elimination N ≈ 3n.

Example 1.4. Solve LAES using the Tridiagonal matrix algorithm:

1 2

1 2 3

2 3 4

3 4

10 5;
2 9 1;

0,1 4 5;
8 40.

x x
x x x

x x x
x x

+ =
− + + = −
 + − = −
 − + =

Solution:
Coefficients for unknown variables are recorded in the form of Table 1.3.

Table 1.3 – Values of LAES coefficients
i ai bi ci di

1 0,0 10,0 1,0 5,0
2 – 2,0 9,0 1,0 – 1,0
3 0,1 4,0 – 1,0 – 5,0
4 – 1,0 8,0 0,0 40,0

Sweep forward run. Formulas (1.14) and (1.15) determine the driving

coefficients Ui and Vi:

30

1 1 1/ 1 /10 0,1;U c b= − = − = −

1 1 1/ 5 /10 0,5;V d b= = =

2 2 2 1 2/ () 1 / (2 0,1 9) 0,1087;U c a U b= − + = − ⋅ + = −

2 2 2 1 2 1 2() / () (1 2 0,5) / (2 0,1 9) 0;V d a V a U b= − + = − + ⋅ ⋅ + =

3 3 3 2 3/ () 1 / (0,1 0,1087 4) 0,2507;U c a U b= − + = − ⋅ + =

3 3 3 2 3 2 3() / () (5 0,1 0) / (0,1 0,1087 4) 1,2534;V d a V a U b= − + = − − ⋅ − ⋅ + = −

4 4 4 3 4/ () 0U c a U b= − + = , because c4=0;

4 4 4 3 4 3 4() / () (40 1 1,2534) / (1 0,2507 8) 5,0V d a V a U b= − + = − ⋅ − ⋅ + = .

The reverse course of the sweep. Formulas (1.13) calculate all unknown
values xi:

 x4 = V4 = 5,0 (U4 = 0);

3 3 4 3 0,2507 5 1,2534 0,0001 0;x U x V= + = ⋅ − = ≈

2 2 3 2 1,1087 0,0001 0 0,0001 0;x U x V= + = − ⋅ + = − ≈

1 1 2 1 0,1 0,0001 0,5 0,5001 0,5.x U x V= + = ⋅ + = ≈

We will present the implementation of the Tridiagonal matrix algorithm in
the С++ programming language:
// Straight course of the Tridiagonal matrix algorithm
int N1 = N - 1;
y = matA[0][0];

a[0] = -matA[0][1] / y;
B[0] = matB[0] / y ;

for (int i = 1; i < N1; i++) {
y = matA[i][i] + matA[i][i - 1] * a[i - 1];
a[i] = -matA[i][i + 1] / y;
B[i] = (matB[i] - matA[i][i - 1] * B[i - 1]) / y;
}

// On the return stroke, the roots of the equation system are calculated:
matRes[N1] = (matB[N1] - matA[N1][N1 - 1] * B[N1 - 1]) / (matA[N1][N1] +
matA[N1][N1 - 1] * a[N1 - 1]);
for (int i = N1 - 1; i >= 0; i--) {
matRes[i] = a[i] * matRes[i + 1] + B[i];
}

The algorithm of the Tridiagonal matrix algorithm is given in Figure 1.7.

1.3 Iterative method

In the case when the LAES has a large number of unknowns and also contains
a matrix of highly sparse coefficients (a large number of coefficients with zero
values), the use of the Gaussian elimination, which gives an exact solution,
becomes very difficult. In this case, it is convenient to use Iterative method to
determine the roots of the system. For this purpose, the LAES is reduced to this
form:

31

Figure 1.7 – Scheme of the algorithm for the tridiagonal matrix algorithm

32

1 1, 1, 1 1 1,1 1 1,0

2 2, 2, 1 1 2,1 1 2,0

, , 1 1 ,1 1 ,0

... ;
... ;

;
... .

n n n n

n n n n

n n n n n n n n n

x b x b x b x b
x b x b x b x b

x b x b x b x b

− −

− −

− −

= + + + +
 = + + + +


 = + + + +



 (1.16)

or in matrix form:

X = BX+B0,

where

11 12 1

21 22 2

1 2

n

n

n n nn

b b b
b b b

b b b

=





   



B ,

10

20
0

0n

b
b

b

=


B .

There are several main types of iterative methods, which include Jacobi
method (simple iteration), Gauss–Seidel method, and successive over-relaxation.
These methods are based on the systematic refinement of the values of the
variables specified at the beginning of the calculation.

Jacobi method (simple iteration)

In the Jacobi (simple iteration) method, the initial values of the variables are
used to calculate the new values x1, x2, …, xi-1 using the following equations. The
process stops when all the new values are close enough to the original values.
Otherwise, the new values are used instead of the original values. This procedure
is repeated until the convergence condition is satisfied or the process diverges. In
this method, the replacement of the values of all variables is performed
simultaneously (simultaneous displacement).

Let LAES be given in the following form:

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

... ;
... ;

...;
... .

n n

n n

n n nn n n

a x a x a x b
a x a x a x b

a x a x a x b

+ + + =
 + + + =


 + + + =

 (1.17)

To solve such a system using the Jacobi method (simple iteration), it is
necessary to reduce the system (1.17) to the following form:

33

12 13 1 1
1 2 3

11 11 11 11

21 23 2 2
2 1 3

22 22 22 22

1 2 1
1 2 1

... ;

... ;

..;

... .

n
n

n
n

n n nn n
n n

nn nn nn nn

a a a bx x x x
a a a a
a a a bx x x x
a a a a

a a a bx x x x
a a a a

−
−

 = − − − − +

 = − − − − +



 = − − − − +


 (1.18)

In the system (1.17), the i-th equation is the i-th equation of the system (1.18),
solved with respect to the i-th unknown (ni ,1=).

The method of solving LAES (1.17) by means of reduction to system (1.18),
followed by its solution using an iterative method, is called the Jacobi (simple
iteration) method for system (1.17).

Thus, the formulas for the Jacobi method (simple iteration) for solving system
(1.17) will have the following form:

11 12 13 1 1 1

1 2 3
211 11 11 11 11 11

21 21 23 2 2 2
2 1 3

1, 222 22 22 22 22 22

;

;

..

n jk k k k kn
n j

j

n jk k k k kn
n j

j j

aa a a b bx x x x x
a a a a a a

aa a a b bx x x x x
a a a a a a

+

=

+

= ≠

= − − − − + = − +

= − − − − + = − +

∑

∑





1
1 1 2 1

1 2 1
1

.......................................; (1.19)

(0,1, 2,).
n njk k k k kn n nn n n

n n j
jnn nn nn nn nn nn

aa a a b bx x x x x k
a a a a a a

−
+ −

−
=











= − − − − + = − + =


∑

Formulas (1.19) can be written in the following form:

 1

1,

n ijk k i
i j

j j i ii ii

a bx x
a a

+

= ≠
= − +∑ (i=1, 2, …, n; k=0, 1, 2, …).

Example 1.5. Solve the LAES (system with dominant diagonal coefficients)
using the numerical Jacobi method (simple iteration) with the specified accuracy
Δ = 0,065:

1 2

1 2 3

2 3 4

3 4

4,300 0,217 2,663;
0,100 3,400 0,207 2,778;
0,090 2,500 0,197 2,533;
0,080 1,600 1,928.

x x
x x x
x x x
x x

+ =
 − − =
 + + =
 − =

34

Solution:
Let’s write down the equivalent system of equations:

1 2 2

2 4 1 4 1

3 4 2 4 2

4 3 3

2,663 0,217 0,6193 0,050 ;
4,300 4,300

2,778 0,207 0,1 0,817 0,061 0,029 ;
3,4 3,4 3,4

2,533 0,197 0,09 1,013 0,079 0,036 ;
2,500 2,500 2,50

1,928 0,08 1,205 0,05 .
1,600 1,60

x x x

x x x x x

x x x x x

x x x

 = − = −

= − − + = − − +


= − − = − −

= − + = − +












Since the sum of the coefficients in each row on the right-hand side of the

system is obviously less than one, the «weak» convergence condition will be
satisfied. The following values can be considered as an initial approximation of
zero: ()0

1 0,619x = ; ()0
2 0,8170x = − ; ()0

3 1,013x = ; ()0
4 1,205x = − .

Based on the system, the calculation of the first iteration is performed:

() ()

() ()

1 0
1 2

1 0 (0)
2 4 1

(1) (0) (0)
3 4 2

0,6193 0,050 0,6193 0,050 (0,817) 0,6604;

0,817 0,061 0,029 0,817 0,061 (1,205)
0,029 0,619 0,8606;

1,013 0,079 0,036 1,013 0,079 (1,205)
0,036 (0,817) 1,1373;

x x

x x x

x x x

= − = − ⋅ − =

= − − + = − − ⋅ − +
+ ⋅ = −

= − − = − ⋅ − −

− ⋅ =
(1) (0)
4 31,205 0,05 1,205 0,05 1,013 1,155.x x









 = − + = − + ⋅ = −

After that, the calculation for the second iteration is performed:

()2 (1)
1 2
(2) (1) (1)
2 4 1

(2) (1) (1)
3 4 2

0,6193 0,050 0,6193 0,050 (0,8606) 0,6623;
0,817 0,061 0,029 0,817 0,061 (1,155)

0,029 0,6604 0,8678;
1,013 0,079 0,036 1,013 0,079 (1,155)

0,036 (0,860

x x
x x x

x x x

= − = − ⋅ − =

= − − + = − − ⋅ − +
+ ⋅ = −

= − − = − ⋅ − −

− ⋅ −
(2) (1)
4 3

6) 1,072;
1,205 0,05 1,205 0,05 1,1373 1,148.x x







 =
 = − + = − + ⋅ = −

The calculation of the third iteration is performed:

35

(3) (2)
1 2
(3) (2) (2)
2 4 1

(3) (2) (2)
3 4 2

0,6193 0,050 0,6193 0,050 (0,8678) 0,6623;
0,817 0,061 0,029 0,817 0,061 (1,148)

0,029 0,6623 0,862;
1,013 0,079 0,036 1,013 0,079 (1,148)

0,036 (0,86

x x
x x x

x x x

= − = − ⋅ − =

= − − + = − − ⋅ − +
+ ⋅ = −

= − − = − ⋅ − −

− ⋅ −
(3) (2)
4 3

78) 1,133;
1,205 0,05 1,205 0,05 1,072 1,1218.x x







 =

 = − + = − + ⋅ = −

We will evaluate the calculation error:
() ()

()

() ()

()

{ }

2 1
1 1

2 (1)
2 2

2 1
3 3

2 (1)
4 4

1

0,6623 0,6604 0,0019;

0,8678 (0,8606) 0,0072;

1,072 1,1373 0,0653;

(1,148) (1,155) 0,0070;

max 0,0019; 0,0072; 0,0653; 0,0070 0,0653 0,065;

x x

x x

x x

x x

 − = − =

 − = − − − =


− = − =

 − = − − − =
∆ = = > ∆ =

()2 (3) (2)
1 1 1

(2) (3) (2)
2 2 2

(2) (3) (2)
3 3 3

(2) (3) (2)
4 4 4

2

0,6623 0,6623 0,0000;

(0,8620) (0,8678) 0,0058;

1,133 1,072 0,0610;

(1,1218) (1,1480) 0,0262;

max 0,0000; 0,0058; 0,0610;

x x

x x

x x

x x

∆ = − = − =

∆ = − = − − − =

∆ = − = − =

∆ = − = − − − =
∆ = { }0,0262 0,0610 0,065.= < ∆ =

The fulfillment of the condition Δ2 < 0,065 indicates the achievement of the
specified accuracy of the calculation. Therefore, the solution of the system with
an error of Δ = 0,065:

() ()

() ()

3 3
1 2

3 3
3 4

0,6623; 0,8620;

1,1330; 1,1218.

x x

x x

 = = −


= = −

In the method of successive upper relaxation, the new values of each variable
are calculated as follows:

,

where – refined value using the Gauss-Seidel method, ω – relaxation
parameter (1,0 2,0ω≤ ≤).

When the value of the parameter ω = 1.0, this method is identical to the
Gauss-Seidel method. The rate of convergence depends on the value of the
relaxation parameter ω. The algorithm for the numerical implementation of the

)()()1()()1(m
i

m
i

m
i

m
i xxxx −ω+= ++

)1(+m
ix)(m

ix

36

Jacobi method (simple iteration) for solving the LAES is presented in Figure 1.8.

Figure 1.8 – Scheme of the algorithm of the
 Jacobi method (simple iteration) for LAES

Consider the implementation of the simple iteration method in the С++

programming language:

float G1 (float x1, float x2, float x3, float x4)
 { return -0.6 + 0.7*x1 - 0.5*x2 - 0.3*x3- 0.5*x4;}
float G2 (float x1, float x2, float x3, float x4)
 { return -0.3 - 0.3*x1 + 0.6*x2 -0.1*x3 -0.2*x4;}
float G3 (float x1, float x2, float x3, float x4)
 { return -0.8 - 0.6*x1 -0.2*x2 +0.2*x3 - 0.2*x4;}
float G4 (float x1, float x2, float x3, float x4)
 { return -0.8 - 0.3*x1 -0.5*x2 -0.3*x3 + 0.3*x4;}
int main(int argc, char *argv[]) {
 float delta = 0.01;
 float x1 = 1, x2 = 1, x3 = 1, x4 = 1;

Start

X0=(), (i=1, 2, …,

k=0

For all is calculated:

Print:
Xk or Xk+1

Stop

1

3

4

5

6 7

8

9

Input: A, B
2

37

 float x10, x20, x30, x40;
 do
 {
 x10 = x1;
 x20 = x2;
 x30 = x3;
 x40 = x4;
 x1 = G1(x10, x20, x30, x40);
 x2 = G2(x10, x20, x30, x40);
 x3 = G3(x10, x20, x30, x40);
 x4 = G4(x10, x20, x30, x40);
 }
 while ((fabs(x1-x10) >= delta) && (fabs(x2-x20)>= delta) && (fabs(x3-x30)

>= delta)&&(fabs(x4-x40) >= delta));
 //
 cout << "x1 = " << x1 << endl;
 cout << " x2 = " << x2 << endl;
 cout << " x3 = " << x3 << endl;
 cout << " x4 = " << x4 << endl << endl;
 system("PAUSE");

 return 0;}

Gauss-Seidel method

In the case of using the Gauss-Seidel method, when calculating the (k+1)-th
approximation of the unknown value xi (i > 1), the previously calculated (k+1)-th
approximations of the unknowns x1, x2, …, xi-1 are used.

Let’s consider this method using the example of solving LAES:

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

;
;
.

a x a x a x b
a x a x a x b
a x a x a x b

+ + =
 + + =
 + + =

Assume that the diagonal elements а11, а22, and а33 are different from zero.
Then, expressing the unknown values x1, x2 and x3, respectively, from the first,
second and third equations of the original system, we get:

1 1 12 2 13 3
11

2 2 21 1 23 3
22

3 3 31 1 32 2
33

1 ();

1 ();

1 ().

x b a x a x
a

x b a x a x
a

x b a x a x
a


= − −




= − −



= − −


 (1.20)

If we specify some initial (zero) approximations of the values of the
unknowns (0)

1 1x x= , (0)
2 2x x= , and x3, and substitute them into the right-hand side

of the system equations (1.20), we will obtain a new approximation (first iteration)
for x1, x2, and x3, respectively:

38

(1) (0) (0)
1 1 12 2 13 3

11

(1) (1) (0)
2 2 21 1 23 3

22

(1) (1) (1)
3 3 31 1 32 2

33

1 ();

1 ();

1 ().

x b a x a x
a

x b a x a x
a

x b a x a x
a


= − −




= − −



= − −


For the second iteration, the new values for x1, x2, and x3 will be used, namely:
)2(

33
)2(

22
)2(

11 ,, xxxxxx === etc.
Then the k-th approximation can be given in the form:

() (1) (1)
1 1 12 2 13 3

11

() () (1)
2 2 21 1 23 3

22

() () ()
3 3 31 1 32 2

33

1 ();

1 ();

1 ().

k k k

k k k

k k k

x b a x a x
a

x b a x a x
a

x b a x a x
a

− −

−


= − −




= − −



= − −


The iterative process continues until the ()
1

kx , ()
2
kx , ()

3
kx values become close to

the (1)
1

kx − , (1)
2
kx − , (1)

3
kx − values within a given error.

Now consider a system of n linear equations with n unknowns (i = 1, 2, ..., n).
Assume that all diagonal elements are nonzero. Let’s write the i-th equation:

1 1 , 1 1 , 1 1... ...i i i i ii i i i i in n ia x a x a x a x a x b− − + ++ + + + + + = .

Then, according to the Gauss-Seidel method, the k-th approximation of the
solution can be written in the form:

() () () (1) (1)
1 1 , 1 1 , 1 1

1 (... ...)k k k k k
i i i i i i i i i in n

ii

x b a x a x a x a x
a

− −
− − + += − − − − − − .

The iterative process will continue until all values of xi
(k) become close to

xi
(k-1). The proximity of these values is characterized by the maximum absolute

value of their difference δ. Then, with a given permissible error Δ>0, the condition
for the termination of the iterative process can be written in the form:

() (1)

1
max k k

i ii n
x xδ −

≤ ≤
= − < ∆ .

This condition is a criterion based on absolute deviation, which can be
replaced by a criterion based on relative differences. That is, the termination
condition of the iterative process can be written in the form (for |xi| >> 1):

() (1)

1
max

k k
i i

ki n
i

x x
x

ε
−

≤ ≤

−
< .

39

If one of these conditions is fulfilled, the iterative process of solving by the
Gauss-Seidel method is called convergent. In this case, the maximum differences
δ between the values of the variables in the next two iterations decrease, and these
values themselves will approach the solution of the system of equations.

One of the main conditions for the application of iterative methods is the
fulfillment of the convergence condition. The analysis of the convergence of
iterative methods for solving the LAES is connected with the use of the concept
of matrix norm. The norm of a matrix B is a characteristic number B , that has
the following properties: the norm is always greater than zero (B >0) and is equal
to zero only for the zero matrix; if the matrix B is multiplied by a real coefficient
λ, then the norm must be multiplied by the modulus of this coefficient – λ ⋅ B ;
the norm of the sum of two matrices A, B is not greater than the sum of the norms
(the condition of additivity of the norm – + ≤ +A B A B), and the norm of
the product of two matrices A, B is not greater than the product of the norms (the
condition of multiplicativity of the norm – ≤ ⋅AB A B).

The following matrix norms have become the most widespread:

1 1 1
max

n
ijj n i

b
≤ ≤ =

= ∑B – the first norm;
2 1 1

max
n

ijj n j
b

≤ ≤ =
= ∑B – the second norm;

2

1 1

n n

ij
i jE

b
= =

= ∑∑B – E-norm (Euclidean norm).

There are several approaches to determining convergence using norm
estimation. In the general case, it is enough that at least one of the norms of the
matrix B is less than one, namely: ||B||<1.

In mathematics, such a condition is called «ordinary» or «strong». In many
cases, convergence is ensured by the fulfillment of the so-called «weak» feature.
For example, a «weak» sign of convergence based on row sums is as follows: for

all row coefficient sums (i = 1, 2, ..., n), the relation – | | 1
n

ij
j i

b
=

≤∑ holds, but there

is one row p for which .1||∑ <
=

n

ij
pjb

Similarly, the «weak» sign of the sums for the columns of the matrix is
determined.

The «weak» sign is used in those cases when the coefficient matrix A of the
LAES is not decomposable. In other words, it is a square matrix A that cannot be
reduced to the form of a decomposable matrix:

1 2

3

,
0

 
 
 

A A
A

where A1, A2, A3 – square matrices.
For decomposable matrices, LAES decomposes into two systems of equations

that are solved sequentially. The primary sources listed at the end of this textbook

40

contain many more detailed proofs and analyses of properties and features for
evaluating convergence. However, for a general engineering approach to solving
many practical problems, the above data is sufficient.

In practice, for the convergence of the iterative process, it is sufficient that the
magnitudes of the diagonal coefficients of each equation in the system are not less
than the sum of the magnitudes of all other coefficients:

∑
≠

≥
ji

ijij aa ,

This condition is sufficient for the convergence of the method, but it is not
necessary because for some systems, the iterations converge even if these
conditions are violated.

Example 1.6. A manufacturing enterprise produces four types of products

using four types of technological equipment. Each type of equipment has its own
coefficient of useful action (CUE), namely: x1, x2, x3, and x4. Table 1.4 presents
the energy consumption required for each type of equipment to produce the
different products. To calculate the CUE of the technological equipment, refer to
Table 1.4.

Table 1.4 – Energy consumption data for manufacturing products

Product
type

Energy consumption by technological equipment,
MJ

Total energy
consumption,

MJ 1 2 3 4
I 0,401 0,301 0,000 0,000 0,122
II 0,029 0,500 0,018 0,000 0,253
III 0,000 0,050 1,400 0,039 0,988
IV 0,000 0,000 0,007 2,300 2,082

Solution:

Based on the data in Table 1.4, we will compile the characteristic equation for
energy consumption by technological equipment in the manufacturing of various
types of products.

1 2

1 2 3

2 3 4

3 4

0,401 0,301 0,122;
0,029 0,5 0,018 0,253;
0,050 1,4 0,039 0,988;
0,007 2,3 2,082.

x x
x x x
x x x
x x

+ =
 + + =
 + + =
 + =

The obtained LAES must be solved using the Gauss-Seidel method with the
given accuracy Δ=0,001.

Let’s reduce the system to an equivalent form:

41

1 2 2

2 3 1 3 1

3 2 4 2 4

4 3 3

1 (0,122 0,301) 0,304 0,751 ;
0,401
1 (0,253 0,018 0,029) 0,506 0,036 0,058 ;

0,5
1 (0,988 0,050 0,039) 0,706 0,036 0,028 ;

1,4
1 (2,082 0,007) 0,905 0,003 .

2,3

x x x

x x x x x

x x x x x

x х х

 = − = −

 = − − = − −

 = − − = − −


 = − = −


Since the sum of the coefficients in the rows on the right side of the system is
obviously less than unity, the «weak» convergence condition will be fulfilled.

All xi values equal to zero in the right part of the system are taken as initial
approximations, namely: x1

(0)=x2
(0)=x3

(0)=x4
(0)=0.

Then the values of the unknown arguments at the first iteration:
() ()

() () ()

() () ()

() ()

1 0
1 2

1 0 1
2 3 1

1 1 0
3 2 4

1 1
4 3

0,304 0,751 0,304 0,751 0 0,304;

0,506 0,036 0,058 0,506 0,036 0 0,058 0,304 0,488;

0,706 0,036 0,028 0,706 0,036 0,488 0,028 0 0,688;

0,905 0,003 0,905 0,003 0,688 0,90

x x

x x x

x x x

x х

= − = − ⋅ =

= − − = − ⋅ − ⋅ =

= − − = − ⋅ − ⋅ =

= − = − ⋅ = 3.









Based on the results of the first iteration, the second calculation iteration is
performed:

() ()

() () ()

() () ()

() ()

2 1
1 2

2 1 2
2 3 1

2 2 1
3 2 4

2 2
4 3

0,304 0,751 0,304 0,751 0,488 0,062;

0,506 0,036 0,058 0,506 0,036 0,688
0,058 (0,062) 0,485;

0,706 0,036 0,028 0,706 0,036 0,485 0,028 0,903 0,663;

0,905 0,003 0,905

x x

x x x

x x x

x х

= − = − ⋅ = −

= − − = − ⋅ −

− ⋅ − =

= − − = − ⋅ − ⋅ =

= − = 0,003 0,663 0,903.








 − ⋅ =

Based on the results of two iterations, the accuracy of the current calculation
is checked:

() ()

() ()

() ()

() ()

{ }

2 1
1 1

2 1
2 2

2 1
3 3

2 1
4 4

1

-0,062-0,304 0,366;

0,488 0,485 0,003;

0,663-0,688 0,025;

0,903-0,903 0;

max 0,366; 0,003; 0,025; 0 0,366 0,001.

x x

x x

x x

x x

 − = =

 − = − =


− = =

 − = =
∆ = = > ∆ =

42

The value Δ1 > 0,001 means that the specified calculation accuracy has not
yet been achieved, indicating the need to perform the third calculation iteration:

() ()

() () ()

() () ()

() ()

3 2
1 2

3 2 3
2 3 1

3 3 2
3 2 4

3 3
4 3

0,304 0,751 0,304 0,751 0,485 0,060;

0,506 0,036 0,058 0,506 0,036 0,663 0,058 (0,060) 0,486;

0,706 0,036 0,028 0,706 0,036 0,486 0,028 (0,903) 0,663;

0,905 0,003 0,90

x x

x x x

x x x

x х

= − = − ⋅ = −

= − − = − ⋅ − ⋅ − =

= − − = − ⋅ − ⋅ =

= − = 5 0,003 0,663 0,903.








− ⋅ =

Checking the accuracy of the current calculation is performed:
() ()

() ()

() ()

() ()

{ }

3 2
1 1

3 2
2 2

3 2
3 3

3 2
4 4

2

0,060 0,062 0,002;

0,486 0,485 0,001;

0,663 0,663 0;

0,903 0,903 0;

max 0,002; 0,001; 0; 0 0,002 0,001.

x x

x x

x x

x x

 − = − − =

 − = − =


− = − =

 − = − =
∆ = = > ∆ =

Since Δ2 > 0,001, the specified accuracy of the calculation was also not
achieved, which indicates the need to perform the fourth iteration:

() ()

() () ()

() () ()

() ()

4 3
1 2

4 3 4
2 3 1

4 4 3
3 2 4

4 4
4 3

0,304 0,751 0,304 0,751 0,486 0,060;

0,506 0,036 0,058 0,506 0,036 0,663
0,058 (0,060) 0,486;

0,706 0,036 0,028 0,706 0,036 0,486
0,028 (0,903) 0,663;

0,905 0,003 0,

x x

x x x

x x x

x х

= − = − ⋅ = −

= − − = − ⋅ −

− ⋅ − =

= − − = − ⋅ −

− ⋅ =

= − = 905 0,003 0,663 0,903.










 − ⋅ =

Checking the accuracy of the current calculation is performed:
() ()

() ()

() ()

() ()

{ }

4 3
1 1

4 3
2 2

4 3
3 3

4 3
4 4

3

0,060 0,060 0;

0,486 0,486 0;

0,663 0,663 0;

0,903 0,903 0;

max 0; 0; 0; 0 0 0,001.

x x

x x

x x

x x

 − = − − =

 − = − =


− = − =

 − = − =
∆ = = < ∆ =

Now Δ3 < 0,001, which indicates that the specified calculation accuracy has
been achieved. Therefore, the solution of the system with an error of Δ=0,001:

43

()

()

()

()

4
1

4
2

4
3

4
4

0,060;

0,486;

0,663;

0,903.

x

x

x

x

 = −


=


=


=

The «minus» sign in the obtained CUE value shows that an exothermic
chemical reaction with heat release is taking place on the first technological
equipment. This type of technological equipment with CUE x1 refers to chemical
devices.

The algorithm for the numerical implementation of the Gauss-Seidel method
for solving the LAES is presented in Figure 1.9.

Figure 1.9 – Scheme of the Gauss-Seidel method algorithm

44

Consider the implementation of the Gauss-Seidel method in the С++
programming language:

public class GauseZeydel {
public static void GauseZeydelMethod()
{
Scanner scanner = new Scanner(System.in);
PrintWriter printWriter = new PrintWriter(System.out);
 int size;
System.out.println("Enter the number of unknowns"); size = scanner.nextInt();
double[][] matrix = new double[size][size + 1]; System.out.println("Enter the

matrix ");
for (int i = 0; i < size; i++)
{
for (int j = 0; j < size + 1; j++)
{
matrix[i][j] = scanner.nextDouble();
}
}
double eps;
System.out.println("Input the precision"); eps = scanner.nextDouble();
double[] previousVariableValues = new double[size]; for (int i = 0; i < size;

i++)
{
previousVariableValues[i] = 0.0;
}
while (true)
{
double[] currentVariableValues = new double[size]; for (int i = 0; i < size;

i++)
{
currentVariableValues[i] = matrix[i][size]; for (int j = 0; j < size; j++)
{
if (j < i)
{
currentVariableValues[i] -= matrix[i][j] * currentVariableValues[j];
}
if (j > i)
{
currentVariableValues[i] -= matrix[i][j] * previousVariableValues[j];
}
}
currentVariableValues[i] /= matrix[i][i];
}
double error = 0;
for (int i = 0; i < size; i++)
{
error += Math.abs(currentVariableValues[i] - previousVariableValues[i]);
}
if (error < eps)
{
break;
}
previousVariableValues = currentVariableValues;
}
for (int i = 0, j=1; i < size; i++, j++)
{
printWriter.print("X" + j + "=" + previousVariableValues[i] + " ");
}
scanner.close(); printWriter.close();
}
}.

45

Conclusions regarding the application of LAES solution methods

In cases of small orders of the system (up to 6–7), you can use Cramer’s rule,
which allows you to obtain an exact solution and which, for such orders, does not
require too many computational operations. Such problems often arise during
calculations of small electrical networks or subsystems of automatic control.
However, with the increase in the number of equations in the system, the number
of operations to calculate determinants of matrices begins to increase very
quickly, which leads to a decrease in the efficiency of the method.

Starting with the 9th-10th order of LAES, the use of Gaussian methods and
their modifications has advantages and is the most reliable method. However, if
the coefficient matrices are very sparse, meaning they contain many zeros,
implementing the Gaussian elimination starts to require a large computational cost
to change the order of the rows of the matrices in order to ensure a nonzero value
of the main element at a certain step.

Sparse matrix problems often arise in data processing and mathematical
physics problems, in which a sufficiently dense discretization with a small step is
performed to ensure accuracy. In general, for problems of solving LAES of large
order (tens, hundreds, thousands, etc.), iterative methods have no competitors,
provided that convergence is ensured. It should be noted that in many practical
problems, the condition of convergence is ensured by the very formulation of the
problem (for example, in the process of solving the Laplace’s equation in
problems of mathematical physics).

Control questions and tasks
1. What is the difference between direct and indirect methods of solving

LAES? Provide a comparative assessment.
2. To reveal the essence of the Cramer’s rule, Gaussian elimination (and its

variants), and Tridiagonal matrix algorithm.
3. In what form is the LAES presented and which iterative methods are used

for its solution?
4. Solve the following system of equations using Cramer’s rule. Write an

algorithm and a solution program.

5.














=+−+
=++−

−=−+−
=+−

=++++

.5010
;2032

;10432
;267

;15

5431

5321

4321

431

54321

xxxx
xxxx
xxxx

xxx
xxxxx

5. Solve the LAES from example 4 using the Gaussian elimination. Compose
a computational algorithm and program.

6. Solve the LAES from example 4 using the modified Gaussian elimination.
Compose a computational algorithm and program.

46

7. Solve the following LAES using the Jacobi method (simple iterations).
Compose a computational algorithm and program. Check the convergence
condition.

2 3 4
1

1 2 3 4
2

1 2 3 4
3

3 4
4

;
2 3 4

;
10 10 10 2

;
5 5 3 10

2.
3 4

x x xx

x x x xx

x x x xx

x xx

 = + −

 = + − +


 = + + +


 = + +


8. Solve the LAES from example 4 using the Gauss-Seidel method. Develop a
computational algorithm and program. Verify the convergence condition.

9. How to check the convergence condition of iterative algorithms for
calculating LAES?

10. What is the difference between the Jacobi and Gauss-Seidel iterative
algorithms?

11. Solve LAES using Cramer’s rule:

1 2 3 4

1 2 3 4

1 2 3 4

1 2 4

2 3 1;
4 6;

3 4;
3 3 5.

x x x x
x x x x
x x x x

x x x

− + + = −
 + − − =
 − + + =
 − + = −

12. Solve LAES using the Gaussian elimination:

а)
0,542 2,43 3,75 0,208 0;
2,31 3,68 4,51 4,08 0;
13,4 2,36 9,75 36,4 0.

x y z
x y z
x y z

+ − − =
 − − + =
 + − − =

b)
0,542 2,43 3,75 0,208 0;
2,31 3,68 4,51 4,08 0;
13,4 2,36 9,75 36,4 0.

x y z
x y z
x y z

+ − − =
 − − + =
 + − − =

c)

1 2 4

1 2 3 4

1 2 3

1 2 3

4 6;
2 3 1;

3 5 4 0;
17 4 0.

x x x
x x x x
x x x

x x x

− − =
 + + + = −
 − + =
 + + =

47

13. Solve the system of equations using the method of iterations:

а)
0,12 0,06 0,09 0,32;
0,17 0,11 0,07 0,21;
0,14 0,15 0,08 0,18.

x x y z
y x y z
z x y z

= − + +
 = + − −
 = − − +

b)
0,12 0,06 0,09 0,32;
0,17 0,11 0,07 0,21;
0,14 0,15 0,08 0,18.

x x y z
y x y z
z x y z

= − + +
 = + − −
 = − − +

c)
60 2 6 30;
10 80 4 20;
12 6 90 45.

x y z
x y z
x y z

− + =
 − − =
 + − =

14. Solve LAES by Gauss-Seidel iterative method with calculation error
Δ=0,0001:

а)

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

0,63 1,00 0,71 0,34 2,08;
1,17 0,18 0,65 0,71 0,17;
2,71 0,75 1,17 2,35 1,28;
3,58 0,28 3,45 1,18 0,05.

x x x x
x x x x
x x x x
x x x x

+ + + =
 + − + =
 − + − =
 + − − =

b)
1 2 3

1 2 3

1 2 3

7,6 0,5 2,4 1,9;
2,2 9,1 4,4 9,7;

1,3 0,2 5,8 1,4.

x x x
x x x
x x x

+ + =
 + + =
− + + = −

15. Solve LAES using the method of iterations with a calculation error of
Δ=0,001:

а)

1 2 3

1 2 3

1 2 3

8 26;
5 7;

5 7.

x x x
x x x
x x x

+ + =
 + − =
 − + =

b)
1 2 3

1 2 3

1 2 3

7,6 0,5 2,4 1,9;
2,2 9,1 4,4 9,7;

1,3 0,2 5,8 1,4.

x x x
x x x
x x x

+ + =
 + + =
− + + = −

16. Solve LAES using the Gaussian elimination with a calculation error of

Δ=0,001:

48

а)
1 2 3

1 2 3

1 2 3

1,14 2,15 5,11 2,05;
0,42 1,13 7,05 0,80;

0,71 0,83 0,02 1,07.

x x x
x x x
x x x

− − =
 − + =
− + − = −

b)
1 2 3

1 2 3

1 2 3

1,14 2,15 5,11 2,05;
0,42 1,13 7,05 0,80;

0,71 0,83 0,02 1,07.

x x x
x x x
x x x

− − =
 − + =
− + − = −

17. Solve the LAES given in the matrix form X=CX+d (Table 1.5) using the
method of simple iteration with calculation error Δ=0,001.

Table 1.5 – Output data for the task

№ С d № С d
1 2 3 1 2 3
1 0 0,3 0,1 0,2

0,2 0 0,21 0,2
0,3 0,1 0 0,3
0,3 0,1 0,2 0

− 
 − 
 −
 − − 

1
4

2
0,1

− 
 − 
 
 
 

 2 0 0,13 0,4 0,2
0,25 0 0,14 0,2
0,3 0,1 0 0,3
0,3 0,4 0,2 0

− 
 − 
 −
 − − 

1
4

2
0,1

− 
 − 
 
 
 

3 0 0,27 0,1 0,2
0,2 0 0,26 0,2
0,3 0,1 0 0,5
0,2 0,1 0,2 0

− 
 − 
 −
 − − 

1
4

2
0,1

− 
 − 
 
 
 

4 0 0,23 0,2 0,2

0,1 0 0,24 0,1
0,2 0,1 0 0,2
0,23 0,4 0,2 0

− 
 − − 
 −
 − − 

1
2

2
0,1

− 
 − 
 
 
 

5 0 0,3 0,1 0,2
0,2 0 0,1 0,2
0,3 0,1 0 0,3
0,3 0,1 0,2 0

− 
 − 
 −
 − 

1
4

2
0,1

− 
 − 
 
 
 

6 0 0,3 0,4 0,2

0,1 0 0,14 0,14
0,1 0,1 0 0,3
0,3 0,4 0,2 0

 
 − 
 
 − − 

1
1

2
0,1

− 
 − 
 
 
 

7 0 0,3 0,4 0,2
0,1 0 0,14 0,1
0,1 0,1 0 0,3
0,3 0,4 0,2 0

− 
 − − 
 −
 − − 

1
1

2
0,1

− 
 − 
 
 
 

8 0 0,1 0,1 0,2

0,2 0 0,2 0,1
0,13 0,2 0 0,3
0,1 0,1 0,2 0

− 
 − 
 −
 − − 

1
1

2
0,1

− 
 − 
 
 
 

9 0 0,1 0,4 0,2
0,15 0 0,1 0,2
0,3 0,1 0 0,3
0,1 0,14 0,2 0

− 
 
 
 −
 − − 

1
2

2
0,1

− 
 − 
 
 
 

10 0 0,3 0,1 0,2

0,2 0 0,1 0,2
0,1 0,2 0 0,1
0,1 0,2 0,2 0

− 
 − 
 −
 − 

1

0,5
2

0,1

− 
 − 
 
 
 

11 0 0,3 0,1 0,2
0,2 0 0,1 0,2
0,1 0,2 0 0,1

0,1 0,2 0,2 0

− 
 − − 
 − −
 − 

1

0,5
2

0,1

− 
 
 
 −
 
 

12 0 0,3 0,14 0,2

0,11 0 0,41 0,1
0,1 0,1 0 0,13

0,13 0,4 0,2 0

 
 − − 
 
 − − 

1
1

2
0,1

− 
 − 
 
 
 

49

18. Solve the LAES AX=B (Table 1.6) using the Gauss-Seidel method with a

calculation error of Δ=0,001:

Table 1.6 – Output data for the task

№ А B № A B
1 2 3 1 2 3
1 0,9 0,3 0,1 0,2

0,2 2 0 0,2
0,1 0,2 1 0,1
0,1 0,2 0,2 1

− 
 − − 
 − −
 − − 

1
5
2

0,1

 
 
 
 
 
 

2 9 3 1 2

2 7 1 1
1 2 6 2
1 1 2 9

− 
 − − 
 − −
 − − 

1
5
2
1

 
 
 
 
 
 

3 1 0,1 0 0,2
0,2 1 0 0,2
0,1 0,2 1 0,1
0,1 0,2 0,2 1

 
 − − 
 − −
 − − 

1
5
2

0,1

 
 
 
 
 
 

4

7 3 0 2
1 4 0 1
1 1 6 2
1 2 2 9

 
 − 
 − −
 − − 

1
6
2

11

 
 
 
 
 
 

5 1 0,23 0,1 0,2
0,2 1 0 0,2
0,1 0,2 1 0

0,14 0,2 0,2 1

− 
 − 
 −
 − − 

1
2
2
1

 
 
 
 
 
 

6 12 3 2 2

1 7 1 1
1 2 11 2

11 2 2 19

− 
 − − 
 − −
 − − 

1
6
2

11

 
 
 
 
 
 

7 2 0,3 0,1 0,2
0,2 3 0,1 0,2
0,1 0,52 2 0,1
0,1 0,2 0,2 2

− 
 − − 
 − −
 − − 

1
5
2

0,1

 
 
 
 
 
 

8 7 3 1 2

1 7 1 0
1 0 6 2
1 2 2 9

− 
 − 
 −
 − − 

1
6
2

11

 
 
 
 
 
 

9 4 0,2 0,1 0,3
0,1 3 0,2 0,3

0,1 0,5 2 0,1
0,3 0,2 0,2 2

− 
 − − 
 − −
 − − 

1
2
5

0,1

 
 
 
 
 
 

10 6 1 1 2

3 5 1 0
2 1 6 1
1 4 3 8

− 
 
 
 −
 − 

1
3
2
5

 
 
 
 
 
 

11 1 0,13 0,15 0,24
0,2 1 0,11 0,42
0,11 0,2 1 0,11
0,1 0,12 0,42 1

− 
 − − 
 − −
 − 

1
5
2

0,1

 
 
 
 
 
 

12 7 3 1 0

1 7 0 1
1 1 6 2
1 2 0 9

− 
 − − 
 − −
 − 

1
6
2

11

 
 
 
 −
 
 

19. The movement of the crankshaft mechanism (Fig. 10) is described by the

equation:
2

1 2 3cos() sin()i i i iK s K K sϕ ϕ+ − = (i=1, 2, 3),

where 1
1 2

Ka = , 2 2
2 1 3 2a a a K= + − , 3

3
12

Ka
a

= .

50

The crankshaft mechanism must satisfy the following conditions presented in
Table 1.7.

Table 1.7 – Mechanism design data
i Si φi

1 1,0 20o

2 1,2 45o

3 2,0 60o

Design a device that meets all three conditions above. To do this, you need to

write down an equation describing the operation of the mechanism and find the
values of Ki. What values of a1, a2, a3 correspond to the desired solution?

Figure 1.10 – The principal diagram of the crank mechanism

20. Two direct current sources with parameters E1=11,5 V, R1=2,5 Ohm,

E2=16,5 V, R2=6,0 Ohm are connected in parallel to each other, along with a load
resistor with resistance RH=30,0 Ohm (Fig. 1.11). Determine the value and
direction of the currents through the direct current sources and the load resistor.
To create a system of equations, it is necessary to use Kirchhoff's law and the
conditions for equality of currents and voltages for parallel and series connections
of electrical elements.

Figure 1.11 – Circuit diagram

51

Chapter. 2 TASKS OF NON-LINEAR MATHEMATICS

At the current stage, the development of many fundamental and applied
sciences is closely related to the use of methods and means of mathematical and
computer modeling. The ideology of mathematical modeling involves the
formalization of the original object using a mathematical and/or algorithmic
description (model), and the study of the object's behavior based on software-
implemented computing experiments. This has made it possible to move from
simple calculations and evaluations of various structures or processes to a new stage
of work – detailed mathematical modeling (computational experiment), which
significantly reduces the need for natural experiments and, in some cases, can
replace them altogether. The computational experiment is based on the solution of
a mathematical model by numerical methods. Often, a mathematical model is
reduced to nonlinear equations, algebraic or transcendental, and the presence of any
non-linear function other than a power polynomial turns the equations into
transcendental ones. In practice, the task is reduced to finding one root on a given
interval or all existing roots. Such a problem arises, for example, when assessing
the stability of automatic control systems. There are many examples of such
problems arising in the process of designing and researching objects of various
nature.

In particular, in the field of science known as ballistics, the task of
determining the flight parameters of an artillery projectile is important. The
mathematical model of projectile flight is defined by the equations of body
motion, assuming that the force of air resistance acting on the projectile is
proportional to its speed (R = – kmν):

– in parametric form (with parameter t representing projectile flight time)
in the projection on the vertical axis of the ordinate y:

 ()()02
1 sin 1 kt gy g k e t
k k

υ α −= + − − ; (2.1)

– in projections on the horizontal and vertical axes xy:

 0
2

0 0

1 sin ln 1
cos cos

g k g ky x x
k k

υ α
υ α υ α

   +
= + −   

   
, (2.2)

where m is the mass of the projectile, α is the angle to the horizon at which the
projectile flew out of the artillery barrel with the initial speed υ0, k is the
proportionality factor, t is the projectile flight time, g=9,82 m/sec2 is the
acceleration of free fall.

Using equation (2.1), you can determine the total flight time of the projectile,
t, by equating the left side to zero and solving the corresponding transcendental
equation. From equation (2.2), by also equating the left side to zero and solving
the corresponding transcendental equation, one can find either the initial velocity,
υ0, of the projectile or the range of the projectile flight x = S.

52

The problem of modeling in the field of economics, particularly in finance, is
especially relevant today. A typical task involves determining the interest rate and
yield of bonds. The mathematical model of profitability is represented by the
following transcendental equation:

 1() (1) (1) (1) () 0n n
n nI P i P i A i A I− − ++ ⋅ + + ⋅ + + ⋅ + − + = , (2.3)

where An is the current value of the bond (in monetary units), P is the nominal
value (in monetary units); N is the term that has passed since the bond was issued
(in years); T is the maturity (in years); n=T–N is the term remaining until the
bond’s maturity (in years); k is the coupon interest rate (in fractions of a unit);
I = P·k is the amount of coupon payments (the product of the nominal value P by
the coupon interest rate k) (in monetary units).

A well-known problem in the construction industry is to determine the critical
force (loss of vertical balance of the rod) applied along a rod. One end of the rod
is fixed while the other end can move in the vertical direction. This problem can
be defined by the equation:

 0PL PLtg
EI EI

 
− = 

 
, (2.4)

where P is the critical force (N), EI is the bending stiffness of the rod (N·m2), L
is the length of the rod (m).

Metrologists often solve the problem of finding the zero point of a nonlinear
measuring or grading characteristic, which boils down to solving the same set of
nonlinear equations.

The presented and mentioned mathematical models (2.1) – (2.4) cannot be
investigated by the methods of exact solution of equations, since the variable
arguments are under the sign of a transcendental function or a nonlinear function
of high order (and it is known that exact analytical formulas for calculating the
roots exist only for algebraic equations not higher than the third order). However,
the exact solution of the equation in technical problems is not absolutely
necessary. The task of finding the roots of the equation can be considered
practically solved if it is possible to determine the roots with guaranteed accuracy
and indicate the limits of possible error. If there are exact analytical formulas for
power functions, then for transcendental equations and any systems of equations,
such methods do not exist at all, and only approximate iterative methods and
algorithms need to be used, the most common of which will be discussed below.

This section deals with solving computational problems in nonlinear
mathematics: solving transcendental equations and systems of nonlinear
equations, as well as finding complex roots of algebraic equations (polynomial
equations).

53

2.1 Generalized formulation of the problem and the procedure for
localizing the roots of the equation

The study of mathematical models (2.1) – (2.4) involves the task of
calculating the real roots of equations of the type f(x) = 0 on a given interval
[a; b], where f:R1 R2 is an algebraic or transcendental function. It is assumed
that the function f(x) is a piecewise continuous function of a real argument, which
is continuous on the interval [a; b] and has a piecewise continuous derivative.

The number x = ξ is called the root of the function f(x) if f(ξ) ≡ 0.
The number ξ is called the root of the k-th multiplicity if, for x = ξ, all its

derivatives up to and including the order k-1, together with the function, are equal
to zero:

 1() () () 0kf f fξ ξ ξ−′= = = = , but () () 0kf ξ ≠ . (2.5)

When determining the approximate values of the roots of the equation
f(x) = 0, two problems must be solved:

1) separation of roots, i.e. determination of sufficiently small intervals, in
each of which there is one and only one root of the equation (simple or multiple):

2) refinement of roots with a predetermined number of correct signs.
In the case of a graphical separation of the roots of the equation f(x) = 0, it is

necessary to convert this equation into the form:

 1 2() ()x xϕ ϕ= , (2.6)

and plot graphs of functions: y1 = φ1(x), y2 = φ2(x).
Indeed, the roots of the equation f(x) = φ1(x) – φ2(x) = 0 are the abscissas of

the points of intersection of these graphs.
Of all the ways in which the equation f(x) = 0 can be transformed into the

form (2.6), the one that provides the simplest construction of graphs y1 = φ1(x) and
y2 = φ2(x) is chosen. In particular, we can take φ2(x) = 0, and then we will plot the
graph of the function y = f(x), where it intersects (or is tangent to) the line
y2 = φ2(x), which represents the x-axis. These points of intersection or tangency
are the roots of the equation f(x) = 0 that we are seeking.

In general, when plotting graphs:
 y1 = φ1(x); y2 = φ2(x), (2.7)
first of all, it is necessary to determine the behavior of each of the functions φ1(x)
and φ2(x) under the conditions x→−∞ and x→+∞ . Find the values of x for which
φj(x) = ∞ (j=1, 2). Determine the points of intersection of these functions with
the x and y axes and calculate a number of intermediate, most characteristic
values, starting with the values of φj(x) for x = ± 1, for which it is usually easier
to calculate the values of any function.

Example 2.1. Separate the real roots of the equation:

 1 sin 0
1

x x
x
+

− =
−

. (2.8)

54

Solution:

Having written equation (2.8) in the form 1sin
1

xx
x
+

=
−

, we construct graphs

y1 = sin(x), 2
1
1

xy
x
+

=
−

. The abscissas of the intersection points determine all the

real roots of the original equation (Fig. 2.1). In this case, all roots are negative,

since the right-hand side of the hyperbola 2
1
1

xy
x
+

=
−

 does not intersect the

sinusoid y1 = sin(x) anywhere. Although the number of roots is infinite, they are
all isolated because only one root occurs in each of the intervals (0; -π/2), (-π/2; -
3π/2), …, ((1-2k)π/2; (-1-2k)π/2), where k = 1, 2, 3, ….

Among the analytical methods of separating roots, the two most common

general methods are used, which are equally suitable for both algebraic and
transcendental equations. One of them is to find a simpler equation that has roots
that are approximately equal to the unknown roots of this equation. This can often
be achieved by neglecting the small terms in the given equation. The second
method uses theorems that directly follow from known properties of continuous
functions.

Theorem 2.1 (theorem about the root of a continuous function). If the
function f(x) is continuous on the segment [a, b] and its values at the endpoints of
the segment, f(a) and f(b), have opposite signs, then there is at least one real root
of the equation f(x) = 0 between the points a and b.

Theorem 2.2. If the function f(x) is strictly monotonic on the segment [a; b],
that is, it strictly increases or decreases on [a; b], then on this segment the equation
f(x) = 0 cannot have more than one root.

Figure 2.1 – Diagram illustrating the graphical determination of the

equation’s roots

55

Example 2.2. For the function f(x) = x3-4x+2 it is necessary to find the
intervals. Solving the inequality f’(x) = 3x2-4 > 0, we get:

2 2; ;
3 3

x    ∈ −∞ − ∪ +∞   
   

. The function increases on these two intervals. It is

clear that the function decreases on the interval
2 2;
3 3

x  ∈ − 
 

.

The value of the function at the extremum points:

means that the root ξ** is separated on the descent segment
2 2;
3 3

 −  
. Since it

is obvious that ()f x →−∞ for x →−∞ and ()f x →+∞ for x →+∞ , there are

two more roots: * 2;
3

ξ  ∈ −∞ − 
 

 and *** 2 ;
3

ξ  ∈ + ∞ 
 

.

To separate these roots, the values at points -3 and 3 are additionally
calculated. For example, we have : f(-3)=-13<0 and f(3) = 17 > 0. Consequently,
the following segments are obtained on which the roots are separated:

* ***2 2[3;]; [; 3]
3 3

ξ ξ∈ − − ∈ .

The function f(x) changes sign when passing through the root ξ*, i.e. if
*() 0f ξ′ ≠ .
In the general case, if the specified procedures are complicated for analysis,

the entire definition area or a certain part of it, which for some reasons is of
interest, is divided into segments by points xi located at a conditionally
insignificant distance h. Having determined the values at all these points, the
fulfillment of the condition f(xi-1)·f(xi)≤ 0 is checked. If the number of roots in the
studied area is previously known, then by narrowing down the step h of the search,
one can either localize all of them or assert that the presence of pairs of roots not
determined with accuracy h = ε is possible.

2.2 Numerical methods of solving nonlinear algebraic equations

After the study of the equation f(x) = 0 is finished and for each real root ξ the
interval in which this root is located is established, we proceed to the solution of
the second problem – refinement of the found roots.

Separation of the root ξ, i.e. the establishment of the double inequality
a < ξ < b, by itself makes it possible to obtain its rough approximate value. For
example, you can take the center of the interval [a; b]. In this case, the absolute

error will be less than
2

a b
ε

−
< .

2 16 2 16 8(3 2)2 0, 2 0
3 3 3 3 3 3 3 3

f f −   − = + > = − = <   
   

56

After substituting the value of ξ1 into the equation f(x)=0 and ensuring that it
does not yield the desired accuracy, either f(ξ1) = a1 or f(ξ1) = b1 is chosen. As a
result, a more precise inequality is satisfied: a1<ξ<b or a<ξ<b1.

Method of dividing in half (dichotomy)

Suppose that the root ξ of the equation f(x)=0 is determined in the interval
[a; b], and in this case, the signs of the functions f(a) and f(b) are different (the
function f(x) changes its sign when crossing the value of the root ξ).

Let’s assume that a0 = a and b0 = b, and calculate the value of the function at

the left end of the segment f(a0), as well as at its middle f(c0), where 0 0
0 2

a bс +
= .

We compare the signs of the values of f(a0) and f(c0). If these signs are different,
then the value of the root ξ lies in the interval [a0; c0]. If they are the same, then
the signs of the values of f f(c0) and f(b0) are different, and the root lies in the
interval [c0; b0]. There is a possible case when f(c0) = 0, then the value of the root
ξ = с0 will already be considered found. In both cases of sign change, the value of
the root will be in the segment [a0; c0] or [c0; b0], the length of which will be two
times smaller than the length of the original segment a0; b0] = [a; b]. This segment
is denoted as half the length by [a1; b1] (that is, a1 = a0, b1 = c0 is assumed in the
case when the values of f(a0) and f(c0) have different signs; a1 = с0, b1 = b0 in the
case when f(a0) and f(c0) have the same sign).

Afterwards, the standard process is
repeated for the segment [a1; b1].
Specifically, the middle of c1 is
searched for, as well as the value of the
function f(c1), while simultaneously
comparing the sign of this number
with the sign of the value of the
function f(a1). If these signs differ,
then the value of the root lies within
the segment [a2; b2] = [a1; b1]; if they
are the same, then it lies within
[a2; b2] = [c1; b1] (if f(c1) = 0, then the
value of the root is considered found).
Additionally, the length of the segment
on which the root is located is reduced

by another two times.
Repeating the typical process, we find that after k divisions, the length of the

segment on which the root is located is reduced by 2k times, and is equal to

2k k
b aδ −

= . If the value of the root ξ was not precisely determined at some previous

stage, that is, if it does not coincide with the value of ci for some i.
The algorithm of dividing in half (dichotomy) is shown in figure 2.3.

Figure 2.2 – Diagram of halving the
segment and approximation to the

value of the root ξ

57

Figure 2.3 – Scheme of the algorithm for the method of dividing in half

(dichotomy)

Example 2.3. Solve equations by the numerical method of dividing in half

(dichotomy) with an accuracy of ε = 0,001:
x3+2x2+3x+5 = 0.

Solution:
The solution begins with the use of the method of halving on the segment

[–2; –1], on which the root ξ is separated by the method of graphically
constructing the graph of the function φ(x) = x3+2x2+3x+5 (Fig. 2.4).

58

The values of the function in the middle
of the obtained segments are determined
sequentially: f(–1,5) = 1,625; f(–1,75) =
= 0,515625; f(–1,875) = –0,185547; …;
 f(–1.841797) = 0.011269, after which the
calculation stops at the ninth step because
the next segment has a length

9
1 1 12
2 512 500

ε= < = . In this case, the

middle of the last segment is a point –
1,842773. It was found that the approximate
value of the x root ξ with an accuracy of
0.001 is 1,843x ≈ − .

Please note that the method of dividing
a segment in half, as well as the method of
simple sorting, does not require the
smoothness of the function (i.e., the
existence of its derivative). It is sufficient
for the function to be continuous.

Consider the implementation of the
method of half division (dichotomy) in the PYTHON programming language:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import *
from sympy import *
x = np.arange(-5, 3, 0.1)
we define a function
func_x=(x**3)+(2*x**2)+(3*x)+5
we construct a graph and localize the roots of the equation
plt.figure(figsize=(7, 7))
plt.xlabel('x',fontsize=15, color='blue')
plt.ylabel('y',fontsize=15, color='blue')
plt.plot(x, func_x)
plt.legend(['f(x)=X^3+2x^2+3x+5'], loc=1)
plt.grid(True)
plt.xlim([-4, 1])
plt.ylim([-5, 5])
plt.show()
we set the initial limits of localization of the root of the equation
a=-2; b=-1; e=0.001
we set the function itself
def f(x):
 return (x**3)+(2*x**2)+(3*x)+5
from timeit import default_timer as timer
we determine the root of the equation
i=0
start= timer()
while abs(b-a)>=e:
 i=i+1
 z = (a+b)/2

Figure 2.4 – Graphical

determination of the interval of
the roots’ ownership of the

equation

59

 if f(a)*f(z)<=0:
 b=z
 else:
 a=z
end = timer()
print("x =", z, "Time taken:", end-start, 'Number of iterations:', i).

Newton’s method (tangents)

Newton’s method, or the method of tangents, is one of the most widely used
methods for refining roots, equally suitable for both algebraic and transcendental
equations.

Let the arc PAQ be the arc of the
curve y = f(x) (Fig. 2.5), which intersects
the axis Ox at point A, such that the
abscissa x =ξ of point A is the root of the
equation f(x) = 0.

Suppose that the arc AP is inverted by
convexity to the axis Ox. Let's draw a
tangent to the curve y = f(x) through the
point P with coordinates (x0, y0 = f(x0)).
The slope of the tangent is equal to the
value of the derivative of the function
f(x). The slope of the tangent is equal to
the value of the derivative of the function
f(x) at the point of contact; k = fʹ(x0),
respectively, the equation of the tangent

passing through the point P(x0, y0):
 0 0 0()()y y f x x x′− = − . (2.9)

Putting y = 0 and y0 = f(x0) into equation (2.9), we can determine the point of
intersection with the x-axis (y = 0), which we denote as x1.

 0
1 0

0

()
()

f xx x
f x

= −
′

. (2.10)

Through the point P1 (x1, y1=f(x1)), it is necessary to draw a tangent line. By
continuing this process, we arrive at Newton's formula:

 1
() (0,1, 2,)
()

n
n n

n

f xx x n
f x+ = − =
′



, (2.11)

which makes it possible to calculate increasingly accurate root values step by step.
In other words, the values x0, x1, x2, … calculated by formula (2.11) form a
sequence that approaches the value of the root f(x) = 0.

If we start the process from the point Q, where the curve is concave to the
Ox-axis, then the first step will lead to the other side of the Ox-axis, where the
curve is convex to it. In the future, we will approach the value of the root in the
same way as earlier.

Figure 2.5 – Scheme for

determining the roots of the
equation using Newton’s method

60

In those cases when the calculation of the second derivative for the function
f(x) is inverted by convexity on the Ox axis at those points for which the relation
holds:

 () () 0f x f x′′⋅ > , (2.12)

then this condition must be satisfied by the selected initial value x0.
In the process of calculating the root according to Newton’s method, the error

of each new approximation decreases in proportion to the square of the error of
the previous approximation.

The algorithm of Newton’s (tangent) method is shown in Figure 2.6.

Figure 2.6 – Scheme of the Newton’s method algorithm (tangents)

61

Example 2.4. Calculate the smallest positive root of the equation:

 3 0xe x− = (2.13)
with precision ε=0,0001.

Solution:
In order to separate the roots, equation

(2.13) is reduced to the form ex = 3x, and
graphs of the functions are constructed:
y1 = ex and y2 = 3x (Fig. 2.7). The scales along
the Ox and Oy axes may be different.

According to Figure 2.7, the smallest
positive root lies in the interval [0; 1]. Moving
on to clarification in this example, it is
necessary to define:

() 3 ; () 3; ()x x xf x e x f x e f x e′ ′′= − = − = ,

then formula (2.11) takes the form:

 1n n nx x α+ = − , (2.14)

where ()
()

n
n

n

f x
f x

α =
′

.

because according to the criterion (2.12):

0 0
() () (3) 1 0x x

x x
f x f x e x e

= =
′′⋅ = − = > ,

whereas

1 1
() () (3) (3) 0x x

x x
f x f x e x e e e

= =
′′⋅ = − = − < .

All further approximations calculated by formula (2.14) are listed in
Table 2.1. Thus, the unknown root with the required precision ε = 0,0001 is
x3 = 0,6191.

Table 2.1 – Results of solving the equation

n x=xn ex 3x f(xn) f'(xn) αn

0 0,10000 1,0000 0,0000 1,0000 – 2,00 – 0,500000
1 0,50000 1,6500 1,5000 0,1500 – 1,35 – 0,110000
2 0,61000 1,8404 1,8300 0,0104 – 1,16 – 0,009000
3 0,61900 1,8571 1,8570 0,0001 – 1,14 – 0,000088
4 0,61909 1,8573 1,8573 0,0000 – –

Figure 2.7 – Graphical
depiction of the range of values

for which the roots of the
equation belong

62

After performing one more calculation step, we get a more accurate value of
this root: x4 = 0,61906129.

When calculating the roots of the equation f(x) = 0 using Newton's method,
the process of successive approximations always coincides if the initial
approximation x0 is taken so close to the root x = ξ that on the interval [ξ; x0]:

1) the slope of the curve y = f(x) is not equal to zero, i.e. () 0f x′ ≠ ;
2) the curve y = f(x) has no inflection points, i.e. () 0f x′′ ≠ .
Practically, this means that according to formula (2.11), the root of the

equation f(x) = 0 can be calculated with any arbitrarily high degree of accuracy, if
only the root x = ξ is not a multiple (() 0f x′ ≠) and if the zero approximation x0
is taken sufficiently close to the sought root ξ.

Multiple roots can also be defined by Newton’s formula as corresponding to
the roots of the equation () 0f x′ = , or, more generally, () () 0kf x =
(k = 1, 2, 3, ...).

Consider the implementation of Newton’s (tangent) method in the PYTHON

programming language:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import *
from sympy import *
x = np.arange(-5, 5, 0.1)
we define a function
value_funcm=[]
for i in x:
 value_funcm.append(math.exp(i)-(3*i))
M = np.array(value_funcm)
we construct a graph and localize the roots of the equation
plt.figure(figsize=(7, 7))
plt.xlabel('x',fontsize=15, color='blue')
plt.ylabel('y',fontsize=15, color='blue')
plt.plot(x, M)
plt.legend(['f(x)=exp(x)-3*x'], loc=1)
plt.grid(True)
plt.xlim([0, 2])
plt.ylim([-2, 2])
plt.show()
we set the function itself
def f(x):
 return math.exp(x)-(3*x)
from sympy import *
we define the first derivative of the function
x_arg = Symbol('x_arg')
func_m=exp(x_arg)-(3*x_arg)
m_first=func_m.diff(x_arg)
func_m = lambdify(x_arg, m_first)
we define the second derivative of the function
m_second=m_first.diff(x_arg)
func_mm = lambdify(x_arg, m_second)
we define the first derivative of the function
print("The first derivative of a function f'(x)=",m_first,". The second

derivative of a function f''(x)=",m_second)

63

we set the initial iteration point and the accuracy for determining the
#root of the equation.
x_n=0; e=0.001
if f(x_n)*func_mm(x_n)<0:
 print("Invalid starting point value. Choose another point value!")
from timeit import default_timer as timer
definition of Newton's iterative formula
def x_nn(x):
 return x_n-(f(x_n)/func_m(x_n))
k=0
we determine the root of the equation
start= timer()
while abs(x_nn(x_n)-x_n)>=e:
 k=k+1
 x_n=x_nn(x_n)

end = timer()
print("x =", x_n, "Time taken:", end-start, "Number of iterations:", k).

Secant method (linear interpolation)

The idea of the method is that, from two points Mi-1(xi-1, f(xi-1)) and
Mi(xi, f(xi)), it is necessary to construct a straight line Mi-1Mi (a chord connecting
two points on the function y=f(x) on the Cartesian coordinate axis) and take as the
next approximation xi+1 the abscissa of the point of intersection of this line with
the Ox axis. That is, at this step, the function f(x) is replaced by its linear
interpolation determined by two values of x: xi-1 and xi. It will be considered that
the linear interpolation of the function f(x) is such a linear function l(x), the values
of which coincide with the values of f(x) at two fixed points, in this case – at the
points xi-1 and xi.

Depending on whether the points xi-1 and xi lie on different sides of the root ξ
or on the same side, the following principle schemes for determining the roots of
the equation in the Cartesian coordinate system, which are shown in Figure 2.8,
will be obtained.

Figure 2.8 – Schemes for determining the roots of the equation using the secant
method

64

The next successive approximation will depend on the previous two values,

xi+1 = φ(xi-1, xi). The interpolated linear function l(x) will be defined as a function
with a slope equal to the difference ratio:

 1

1

() ()i i
i

i i

f x f xk
x x

−

−

−
=

−
, (2.15)

constructed for the segment between xi-1 and xi, the graph passes through the point
Мі:

 1
1

1

() ()() () ()i i
i i i

i i

f x f xl x f x x x
x x

−
−

−

−
= + −

−
. (2.16)

Solving equation (2.16) under the condition that l(x) = 0, we determine:

 1 1
1

11

1

() () ()
() ()() ()

i i i i i
i i

i ii i

i i

x f x x f x f xx x f x f xf x f x
x x

− −
+

−−

−

−
= = −

−−
−

 (2.17)

or

 1
()i

i i
i

f xx x
k+ = − . (2.18)

The value ki can be considered as a difference approximation for the
derivative f'(x) at the point xi. That is, the obtained formula (2.17) is a difference
analogue of Newton’s method’s iterative formula.

The calculation according to formula (2.18) is much more acceptable than the
calculation according to formula (2.17), even though both are mathematically
identical. This is because using formula (2.18) in calculations with rounding
results in less loss of significant figures.

There are two ways to apply formula (2.18). The first method involves
carrying out the calculation directly according to formula (2.18) for i = 1, 2, 3, ...,
starting from two approximations x0 and x1 that are as close as possible to the root
ξ. It is important to note that it is not assumed that ξ lies between x0 and x1 (the
values of the function f(x) at the points x0 and x1 may have different signs), and
there is also no guarantee that the root will fall between xi-1 and xi at any
subsequent step (although it is not impossible). In such a case, it is difficult to give
an estimate of the error with which xi+1 approximates the true value of the root ξ,
and therefore we settle for the following empirical rule: calculations stop when
the inequality 1i ix x ε+ + < is fulfilled, where ε is the established accuracy of
finding the root of the equation. In this case, the approximate value of the root is
chosen, which is equal to 1ixξ += .

Note that the sufficient conditions that ensure the calculation of the root of
the equation f(x) = 0 by the chord method with an arbitrary given degree of
accuracy will be the same as those for Newton’s method. However, Newton’s

65

method generally offers better convergence than the chord method in most cases.
In cases where the calculation of f(x) and its derivative f’(x) is time-

consuming, the secant method provides greater cost savings. In this case, the main
factor affecting the acceleration of process convergence is the size of the segment
[x1; ξ] under consideration, where ξ is the true value of the root. Therefore, all
other conditions being equal, it is necessary to give preference to the segment
[xn-1; xn], which is smaller in absolute value.

The secant method (linear interpolation) algorithm is shown in Figure 2.9.

Figure 2.9 – Scheme of the secant method algorithm (linear interpolation)

66

Example 2.5. Determine the value of the real root of the equation:

 3 2 5 0x x− − = (2.19)
with precision ε=0,00001.

Solution:

To begin with, it is advisable to present
equation (2.19) in the form y1=x3, y2=5+2x. Then
the graph in Figure 2.10 allows you to choose two
initial values necessary for the chord method:
x1=2,2 and x2=2,0. Using the formula (2.17), we
determine the root step by step with the required
accuracy. At the same time, x1=2.200000 has a
fixed value, and x2 is refined in each subsequent
step. The numbers x1 and f(x1)=1.248, which are
used in all subsequent steps, can be considered
exact and selected with as many decimal places as
necessary in this step. All the necessary
calculations are given in table 2.2, according to
which the root of the equation x = 2,09455 is
determined with the specified accuracy.

Table 2.2 – Results of solving the equation
n x=xn 3

nx f(xn) f(xi) – f(xi-1)

0 2,200000 10,648000 1,248000 –
1 2,000000 8,000000 – 1,000000 2,248000
2 2,090000 9,129000 – 0,051000 1,299000
3 2,094300 9,185790 – 0,002810 1,250810
4 2,094530 9,188820 – 0,000240 1,248240
5 2,094550 9,189084 – 0,000016 –

Consider the implementation of secant method (linear interpolation) in the

PYTHON programming language:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import *
from sympy import *

Figure 2.10 – Diagram
illustrating the graphic
determination of the

interval of ownership of
the roots of the equation

67

x = np.arange(-5, 4, 0.1)
we define a function
func_x=(x**3)-(2*x)-5
we construct a graph and localize the roots of the equation
plt.figure(figsize=(7, 7))
plt.xlabel('x',fontsize=15, color='blue')
plt.ylabel('y',fontsize=15, color='blue')
plt.plot(x, func_x)
plt.legend(['f(x)=X^3-2x-5'], loc=1)
plt.grid(True)
plt.xlim([-2, 4])
plt.ylim([-7, 4])
plt.show()
we set the function itself
def f(x):
 return (x**3)-(2*x)-5
from timeit import default_timer as timer
we set the initial limits of localization of the root of the equation
x_n=1; x_nm=2; e=0.000001
definition of the iterative formula of the chord method
def x_np(x_n, x_nm):
 k=(f(x_n)-f(x_nm))/(x_n-x_nm)
 return x_n-(f(x_n)/k)
k=0
we determine the root of the equation
start= timer()
while abs(x_np(x_n, x_nm)-x_n)>=e:
 k=k+1
 x_n=x_np(x_n, x_nm)
 if f(x_n)*f(x_np(x_n, x_nm))>0:
 x_nm=x_np(x_n, x_nm)
 else:
 x_n=x_np(x_n, x_nm)
end = timer()
print("x =", (x_n+x_np(x_n, x_nm))/2,"Time taken:", end-start, "Number of

iterations:", k).

Fixed-point iteration

The algebraic or transcendental equation f(x)=0 can be reduced to this form:
 x = φ(x),

which can be done in different ways and obtain different expressions for the
function φ(x).

For the approximate value of the root x0, a more accurate result is determined
using the formula x1 = φ(x0) or in a more general form:
 1 () (0,1, 2,)n nx x nϕ+ = =  . (2.20)

Repeating this process, that is, integrating several times, it is possible to
obtain the value of the root with any degree of accuracy, if a sufficient condition
is met:

 () 1xϕ′ < on the segment [ξ; x0], (2.21)

where x = ξ – the exact value of the root.
If condition (2.21) is not fulfilled, then the equation f(x) = 0 can always be

68

written as x = x–c·f(x), and the constant c can be chosen in such a way that
condition (2.21) holds for the function φ(x) = x–c·f(x). Then, using formula (2.20),
we obtain:
 1 ()n nx x cf x+ = − . (2.22)

The fixed-point iteration makes it possible to «guess» new values of xn during
any step n, which is equivalent to starting iterations with a new, more successful
value of x0. Accordingly, in cases where the process converges slowly,
appropriate adjustments can be made, taking into account the results of the
previous steps.

The mentioned properties of the method of iterations, its simplicity, and
unlimited possibilities laid down in formula (2.22), made it possible to use it
effectively when solving differential, integral, and integro-differential equations.

The geometric content of the solution to the equation x = φ(x) using the fixed-
point iteration is shown in Figure 2.11.

а) b)

Figure 2.11 – Scheme for determining the roots of the equation using the method
of simple iterations:

 а) 0 < φʹ(x) <1; b) –1 <φʹ(x) <0

Figure 2.11, a) plots the functions y = φ(x) and y = x. The root of the equation

is the x-coordinate of the point of intersection of the curve y = φ(x) with the
bisector of the coordinate angle. If x0 is an initial approximation of the root, then
x1 = φ(x0) is equal to the y-coordinate of the corresponding point M on the curve
or the x-coordinate of the point M1. The following approximations are determined
in a similar manner (see Fig. 2.11, a). The role of the () 1xϕ′ < condition can also
be established.

69

Figure 2.11, a) depicts the case when 0<φʹ(x)<1, so that the curve intersects

the bisector from left to right and the right side lies under the bisector. In this case,
the iterative process converges, and the approximations decrease monotonically
if 0x x> or increase monotonically for 0x x< . Figure 2.11, b) shows the case
when the derivative ()xϕ′ is negative (–1 < φʹ(x) < 0). If at the same time

() 1xϕ′ < , then the iterative process converges, but the approximations fluctuate
around the true value of the root.

To determine the loss of accuracy in the fixed-point iteration, it is necessary
to analyze the effect of rounding errors on the final results of intermediate
calculations.

In particular, when solving the equation using the fixed-point iteration for
two successive approximations, the following relationship can be established:
 1 ()()n nx xξ ϕ ξ ξ+ ′− ≈ − , (2.23)

where ξ – the exact value of the sought root.
Thus, the accuracy of the result in the process of determining the root by the

fixed-point iteration increases approximately like a geometric progression with
the denominator φ’(ξ).

The algorithm for the fixed-point iteration is shown in Figure 2.12.

Example 2.6. Determine the value of the roots of the equation:

 4 5ln 5x x− = (2.24)
with precision ε=0,00001.

Solution:

Having written the equation in the form
4 5ln

5
xx −

= , the zero approximation

is determined graphically (Fig. 2.13), finding the intersection of the logarithmic

curve y2 with the straight line 1
4 1
5

y x= − . From Figure 2.13, two approximate

root values are determined: x0 = 2,28 and x0 = 0.57, which will be taken as the
initial approximation.

For a more accurate search for the correct root, equation (2.24) is written in
the form x = 1,25(1+lnx), where φ(x) = 1,25(1+lnx). The iterative process is

convergent, as the value of the derivative function
1,25()x

x
ϕ′ = in the vicinity of

the correct root is positive and less than unity under condition (2.21). The
calculation is presented in Table 2.3.

70

Figure 2.12 – Scheme of the algorithm for the Fixed-point iteration

71

Figure 2.13 – Diagram illustrating the graphical determination of the interval

properties of the roots of the equation

Table 2.3 – Results of solving the equation
n xn ln(xn)+1 1,25(ln(xn)+1)
0 2,28000 1,82418 2,28022
1 2,28022 1,82427 2,28034
2 2,28034 1,82432 2,28040
3 2,28040 1,82435 2,28044
4 2,28044 1,82437 2,28046
5 2,28046 1,82438 2,28048
6 2,28048 1,82439 2,28049
7 2,28049 1,82439 2,28049

Eight steps were taken to find the root of the equation to five digits. The fast

convergence is due to the small value of the derivative around the root of 0.55, as
well as the successful choice of the initial approximation.

In the process of finding the left root, the iterative process is divergent because
φʹ(x) = 1,25/x in the region x = 0,57 has a value of about 2.2. Therefore, the initial
equation (2.24) must be rewritten in the form:

 0,8 1xx e −= , (2.25)

then 0,8 1() xx eϕ −= and 0,8 1() 0,8 xx eϕ −′ = .
For x0 = 0.57, the value of the function φʹ(x) ≈ 0,46 <1 and the iterative

process converges. As shown in Table 2.4, it takes eleven steps to find the root

72

with an accuracy of five decimal places. In this case, the process converges more
slowly compared to the previous case, despite the smaller value of the derivative.
The reason for this slowdown is a less accurate choice of the initial approximation
compared to the previous case. In the first case, the initial approximation differed
from the true root by a value on the order of 10-4, while in the second case, it
differed by a value on the order of 10-2.

Table 2.4 – Results of solving the equation
n xn 0,8xn 0,8xn-1 0,8 1nxe −
0 0,57000 0,45600 – 0,55500 0,58042
1 0,58042 0,46434 – 0,53566 0,58528
2 0,58528 0,46822 – 0,53178 0,58756
3 0,58756 0,47005 – 0,52995 0,58863
4 0,58863 0,47090 – 0,52910 0,58913
5 0,58913 0,47130 – 0,52870 0,58937
6 0,58937 0,47150 – 0,52850 0,58949
7 0,58949 0,47159 – 0,52841 0,58954
8 0,58954 0,47163 – 0,52837 0,58957
9 0,58957 0,47166 – 0,52834 0,58958

10 0,58958 0,47166 – 0,52834 0,58958

Consider the implementation of the fixed-point iteration in the PYTHON
programming language:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import *
from sympy import *
x = np.arange(-5, 4, 0.1)
from numpy import log as ln
we define a function
func_x=(4*x)-(5*ln(x))-5
we construct a graph and localize the roots of the equation
plt.figure(figsize=(7, 7))
plt.xlabel('x',fontsize=15, color='blue')
plt.ylabel('y',fontsize=15, color='blue')
plt.plot(x, func_x)
plt.legend(['f(x)=(4*x)-(5*ln(x))-5'], loc=1)
plt.grid(True)
plt.xlim([-2, 4])
plt.ylim([-2, 4])
plt.show()
the first form of expressing a function in terms of x
def f_first(x):
 return 1.25*(1+ln(x))
the second form of expressing the function in terms of x
def f_second(x):
 return math.exp((0.8*x)-1)
from sympy import *
we determine the derivatives of the functions through which the desired #
argument x can be expressed

73

x_arg = Symbol('x_arg')
func_first=1.25*(1+ln(x_arg))
func_second=exp((0.8*x_arg)-1)
d_first=func_first.diff(x_arg)
d_second=func_second.diff(x_arg)
print("Derivative of the 1st function f1'(x)=",d_first,". Derivative of the

2nd function f2'(x)=",d_second)
from timeit import default_timer as timer
#we set the point of zero approximation to determine the root of the equation
x[0]=2.2; x[1]=0.55; e=0.00001; k_1=0; k_2=0
func_first = lambdify(x_arg, d_first)
func_second = lambdify(x_arg, d_second)
for i in range(0,2):
 if abs(func_first(x[i]))<1:
 # we determine the root of the equation
 start= timer()
 x_first=x[i]
 while abs(f_first(x_first)-x_first)>e:
 k_1=k_1+1
 x_first=f_first(x_first)
 end = timer()
 time_1=end-start
 if abs(func_second(x[i]))<1:
 x_second=x[i]
 # we determine the root of the equation
 start= timer()
 while abs(f_second(x_second)-x_second)>e:
 k_2=k_2+1
 x_second=f_second(x_second)
 end = timer()
 time_2=end-start
print("x1 =", x_first, "Time taken for x1:",time_1, "Number of iterations

for x1:",k_1)
print("x2 =", x_second, "Time taken for x2=:",time_2, "Number of iterations
for x2:",k_2).

2.3 Method of determining complex roots

To determine complex roots, the same methods as for real roots can be used,
but the arithmetic of complex numbers is used. Convergence and error control are
carried out by the modulus of the complex number, which may not always be
convenient for the user.

There are a number of special methods that allow you to evaluate complex
roots by performing calculations with real numbers. One of the well-known
approaches is Lin’s method, which is based on the transformation of the initial
algebraic equation Pn(x) = anxn+an-1xn-1+…+a1x+a0 = 0 into a product of quadratic
coefficients of the type x2+px+q, namely:
 Pn(x) = (x2+px+q)Qn-2(x) + R(x), (2.26)
where Qn-2(x) = bn-2xn-2+bn-3xn-3+…+bn-2-jxn-2-j+…+b1x+b0 (j = 0, 1, 2, …, n–2),
and the residual term R(x) is zero.

If the polynomial Pn(x) contains complex roots, then they can be expressed in
terms of coefficients p and q, namely:

x1,2 = α± iβ (α = –0,5p; 20,25)q pβ = −).
To separate the real and complex roots of a polynomial equation:

74

 Pn(x) ≡ xn+an-1xn-1+…+a1x+a0 = 0, (2.27)
the presence and number of roots are determined in advance using such theorems.

Theorem 2.3 (on the number of roots of an algebraic equation). The algebraic
equation (2.27) of the n-th degree has n roots (real or complex), provided that each
root is counted as many times as its multiplicity.

Theorem 2.4 (on the even conjugation property of complex roots of equation
(2.43)). If x*i=α+iβ is a root of the algebraic equation (2.27) with multiplicity k,
then the number *ix iα β= − is also a root of the same multiplicity. A
consequence of this theorem is that an algebraic equation of odd degree has at
least one real root.

Theorem 2.5 (Descartes’ rule of signs on the number of real roots of algebraic
equations).

The number S1, which represents the number of positive roots (accounting for
multiplicity) of the algebraic equation Pn(x)=0, is equal to the number of sign
changes in the sequence of coefficients an, an-1, …, a0 (excluding coefficients that
are equal to zero) of the polynomial Pn(x)=0. Alternatively, it can be less than this
number by an even number. The number S2, on the other hand, denotes the number
of negative roots (taking into account their multiplicity) of the algebraic equation
Pn(x)=0. It is also determined by the number of sign changes in the sequence of
coefficients an, an-1, …, a0 (excluding coefficients that are equal to zero) of the
polynomial Pn(–x)=0. Similarly, it could be less than this number by an even
number.

Theorem 2.6 (De Gua’s theorem on the necessary condition for the validity
of all roots of an algebraic equation). If the algebraic equation (2.27) has all real
roots, then the square of each nonextreme coefficient is greater than the product
of its two adjacent coefficients. A consequence of this theorem is that if the
inequality 2

1 1k k ka a a− +≤ holds for any k, then equation (2.27) has at least one pair
of complex roots.

Opening the brackets in equation (2.26) and equating the coefficients with the
same powers of x, we obtain:

2

3 1 2

2 1

1 0 1

0 0

,
,

,
,

,
2, 3, , 2.

n n

n n n

j j j j

b a
b a pb
b a pb qb
qb b p a
qb a
j n n

−

− − −

− −

=
 = −
 = − −


+ =
 =


= − − 

 (2.28)

Solving the system of linear equations (2.28), determine the values of the
quadratic equation p and q, as well as the coefficients of the polynomial b, which
now has an order two lower than the original (b1 = b0 = 0). The search for the roots
of the quadratic equation x2+px+q = 0 is also carried out according to the classical
scheme.

75

Lin’s method uses the running method or simple iteration method to find a
solution to the system of equations (2.28).

Given the initial values of p0 and q0, the 0 0 0
1 2 2, , ,n nb b b− − 

 values, as well as the
values of p1 and q1, are determined sequentially. Choosing the values of p and q
as the next approximation, repeat the procedure of finding b, p, and q until
convergence. Figure 2.14 shows the scheme of the algorithm for finding complex
roots of an algebraic equation of the n-th order using Lin’s method.

It should also be noted that the method of simple iterations is conditionally
convergent, but there are no practically acceptable criteria for the convergence of
this method. During the practical implementation of Lin’s method, it is necessary
to monitor the number of iterations. If it goes beyond a reasonable limit, it should
be considered that the method is divergent for the selected algebraic equation.

Example 2.7. Determine the value of the complex roots of the algebraic

equation:
 4 3 22 18 3 5 0x x x x− + + − = , (2.29)
with precision ε = 0,0001.

Solution:
To begin with, it is necessary to determine the presence of real and complex

roots of the algebraic equation (2.29). According to Theorem 2.3, the algebraic
equation (2.29) has four roots, since the degree of the polynomial is n=4. Given
that 2

1 1k k ka a a− +≤ , where k = 2, a1 = 1, a2 = –2 and a3 = 18, according to Theorem
2.6, the algebraic equation (2.29) has one pair of complex roots.

We write the algebraic equation (2.29) in the form (2.26):
 ()()4 3 2 2 2

0
2

12 18 3 5 0x x x x x p xx bq x b− + + − + + += + = . (2.30)

Opening the brackets in equation (2.30) and equating the coefficients with the
same powers of x, we obtain:

1 3

0 2 1

1 0 1

0 0

;
;

;
,

b a p
b a pb q
qb b p a
qb a

= −
 = − −
 + =
 =

(2.31)

where a0= –5, a1=3, a2=18 and a3= –2.
For the initial approximation values p = 1 and q = 1, the iterative solution of

the system of equations (2.31) is performed. The results of solving the system of
equations (2.31) by iterations are presented in Table 2.5.

76

Figure 2.14 – Scheme of the Lin’s method algorithm

77

Table 2.5 – Results of the iterative solution of the system of equations
n p q b0 b1 b2
0 1,00000 1,00000 24,0000 – 4,00000 1,0
1 0,45833 – 0,20833 19,33507 – 2,45833 1,0
2 0,12867 – 0,25860 18,52349 – 2,12867 1,0
3 0,13217 – 0,26980 18,55161 – 2,13070 1,0
4 0,13070 – 0,26957 18,54801 – 2,13070 1,0
5 0,13078 – 0,26957 18,54800 – 2,13070 1,0
6 0,13077 – 0,26956 18,54824 – 2,13078 1,0

Based on the results of the iterative solution of the system of equations (2.31),

the decomposition of the polynomial (2.29) into the following quadratic factors
was obtained:

()()

()()

4 3 2 2 2
1 0

2

2

2 2

2 18 3 5

0,13077 0,26956 2,13078 18,54824 0.

x b xx x x x x px q

x x

b

x x

− + + − = + + =

+= + − − =

+ +
 (2.32)

The result of solving the quadratic equation (2.32) is the real and complex
roots of equation (2.29):

x1= 0,45791; x2= –0,58868; x3= 1,06539±i⋅4,17291.
Consider the implementation of Lin’s method in the PYTHON programming

language:

n=4 # the value of the power of the polynomial
a=[-5, 3, 18, -2, 1] # the value of the coefficients of the polynomial
general form of the polynomial
print(' It is necessary to determine the complex roots of an algebraic

equation of the form:')
print('({0}*x^{1})'.format(a[n],n),end='')
for j in range(n-1,0,-1):
 print('+({0}*x^{1})'.format(a[j],j),end='')
print('+({0})=0'.format(a[0]))
we determine the conditions for the presence of complex roots of the
#equation
for k in range(1,n):
 if (a[k]^2)<=a[k-1]*a[k+1]:
 print('An algebraic equation has at least one pair of complex

 roots ')
 break
p=1; q=1 # Initial approximation values for numbers p and q
e=0.00001 # The value of the degree of accuracy of the calculation of the #
complex roots of the equation
b=[0]*(n+1)
p_new=p+1; q_new=q+1
reg=0
while (abs(p_new-p)>=e) and (abs(q_new-q)>=e):
 p=p_new; q=q_new
 for i in range(n-2,-1,-1):
 b[i]=a[i+2]-(p*b[i+1])-(q*b[i+2])
 reg=reg+1

78

 print(' The value of the coefficients of the polynomial factor (x^2+px+q)
on', reg, 'iterations-', b)

 q_new=a[0]/b[0]
 p_new=(a[1]/b[0])-((b[1]/b[0])*q)
 print(' The value of the coefficients of the multiplier p_new=', p_new,

'q_new=', q_new)
 print('--

-----------------------')
Checking for complex roots of the quadratic factor of the polynomial #
equation (x^2+px+q)
import math
discr=(p_new*p_new)-(4*q_new)
if discr<0:
 alfa=-0.5*p_new
 bet=math.sqrt(abs(discr))
 print(' The value of the complex roots of the equation:')
 print('x1={0}+i*{1}'.format(alfa,bet))
 print('x2=({0})-i*({1})'.format(alfa,bet))
else:
 print(' The value of the real roots of the equation:')
 print('x1=',(-0.5*p_new)+(0.5*math.sqrt(discr)))
 print('x2=',(-0.5*p_new)-(0.5*math.sqrt(discr)))
determination of complex roots of the equation from the residual factor of
the polynomial (x^2+px+q)
c=[]
for cell in b:
 if cell!=0: c.append(cell)
print (c)
discr_2=(c[1]*c[1])-(4*c[0]*c[2])
if discr_2<0:
 alfa=(-0.5*c[1])/c[2]
 bet=0.5*math.sqrt(abs(discr_2))/c[2]
 print(' The value of the complex roots of the equation:')
 print('x3={0}+i*{1}'.format(alfa,bet))
 print('x4=({0})-i*({1})'.format(alfa,bet))
else:
 print(' The value of the real roots of the equation:')
 print('x3=',(alfa)+(0.5*math.sqrt(discr_2)/c[2]))
 print('x4=',(alfa)-(0.5*math.sqrt(discr_2)/c[2])).

2.4 Numerical methods for solving systems of nonlinear algebraic
equations

In the general case, a system of n nonlinear equations with n unknowns is
given in the form:

()
()

()

1 1 2

2 1 2

1 2

, , ..., 0;

, , ..., 0;

, , ..., 0.

n

n

n n

f x x x

f x x x

f x x x

 =


=


 =



 (2.33)

Since the nonlinear functions included in the system (2.33) cannot be
described by any specific general form, no analytical direct method can be
proposed for solving such a system. Of the approximate iterative methods, the
simplest is the simple iteration method, which is based on reducing the system
(2.33) to a system of nonlinear equations in the form:

79

()
()

()

1 1 1 2

2 2 1 2

1 2

, , ..., ,

, , ..., ,
..............................

, , ..., .

n

n

n n n

x g x x x

x g x x x

x g x x x

 =


=


 =

 (2.34)

Or in matrix form:
 X=G(X), (2.35)

where ()

()
()

()

1 1 2

2 1 2

1 2

, , ..., ,

, ,..., ,
.

..........................
, , ...,

n

n

n n

g x x x

g x x x

g x x x

 
 
 =  
 
  

G X

Next, an algorithm similar to the Gauss-Seidel method for systems of linear
equations can be applied. It is based on iterative equations connecting (m+1) and
m iterations:

() () () ()()
() () () ()()

() () () ()()

1
1 1 1 2

1 1
2 2 1 2

1 1 1
1 2

, , ..., ,

, , ..., ,

, , ..., .

m m m m
n

m m m m
n

m m m m
n n n

x g x x x

x g x x x

x g x x x

+

+ +

+ + +

 =

 =




=



 (2.36)

For this method, it is very difficult to ensure convergence, and the
convergence interval can be so narrow that the selection of initial approximations
becomes much more challenging.

In the general case, this method will match if () 1′ <G X , where ()′G X is
the norm of the matrix of partial derivative functions with respect to the variables
x1, x2, …, xn:

 ()

1 1 1

1 2

1 2

n

n n n

n

g g g
x x x

g g g
x x x

∂ ∂ ∂ 
 ∂ ∂ ∂ 
 

′ =  ∂ ∂ ∂ 
∂ ∂ ∂ 

 
 



   



G X . (2.37)

A more stable method – Newton’s method – has become widely used for
solving systems of nonlinear equations. It is an analogue of Newton’s method for
one equation and is based on the expansion of all equations into a Taylor series:

80

() ()

() ()

1 1
1 1 1 1 1 1

1

1 1 1 1
1

, ..., , ..., ... ;

;

, ..., , ..., ... ,

n n n n n
n

n n
n n n n n n n

n

f ff x x x x f x x x x R
x x

f ff x x x x f x x x x R
x x

∂ ∂ + ∆ + ∆ = + ∆ + + ∆ + ∂ ∂

 ∂ ∂ + ∆ + ∆ = + ∆ + + ∆ +

∂ ∂



where Rn – members of the second and higher orders, who are subsequently
rejected.

The problem boils down to solving a system of linear equations:

1 1
1

1 1
2

1

n

n n n
n

n

f f
f

x x x
f

f f x
fx x

∂ ∂  −  ∂ ∂ ∆     −   =        ∂ ∂ ∆     − ∂ ∂  



   





. (2.38)

In this system, the matrix of partial derivatives is called the Jacobian matrix
and denoted by W(X).

The values of Δxi found for a certain (m+1) iteration step are used as
corrections to the previous approximations:

() ()

() ()

1
1 1 1

1

;
;

.

m m

m m
n n n

x x x

x x x

+

+

 = + ∆


 = + ∆



 (2.39)

The general iterative formula in matrix representation looks like this:

 () () () ()1 1m m m m+ −    = −    X X W X F X , (2.40)

where ()m  F X – column vector of function values f1, f2, …, fn for

approximations X(m), 1 ()m−   W X – inverse Jacobi matrix.
Certain difficulties arise in the process of implementing Newton’s method

algorithm, particularly during the inversion of the Jacobi matrix. To address this,
matrix inversion methods known from linear algebra are employed.

There are also many options for applying Newton’s method. For example, a
modified Newton method:

 () () () ()1 01m m m+ −    = −    X X W X F X . (2.41)

In this method, it is not necessary to calculate the inverse Jacobi matrix at
each step of the calculation, which simplifies the algorithm but slows down the
convergence and makes the method more sensitive to the choice of initial
approximation.

81

There is also Newton’s method with the parameter τ:

 () () () ()1 1m m m mτ+ −    = −    X X W X F X . (2.42)

This method is somewhat similar to the method of successive over-relaxation
for systems of linear equations. A variety of hybrid methods are also used, in
which Newton’s method is combined with the method of simple iteration.

The convergence of Newton’s method is evaluated by calculating the
exponent:

2

1
2

M LPq = < , (2.43)

where 1()M −≥ W X , ()L ≥ W X , ()P ≥ F X , moreover 2 1

0
lim 0

ml

l m
MP q −

→∞ =
→∑

.
The error at the mth iteration is determined by the inequality:

2 1

21

m

m

qMP
q

−

∆ ≤
−

. (2.44)

The algorithm of the method is shown in the Figure 2.15.

Figure 2.15 – Scheme of the Newton’s solution method algorithm for systems of
nonlinear equations

82

Example 2.8. Determine the values of the roots of the system of nonlinear
equations:

2 2 2

2 2 2

2 2

1;
2 4 0;
3 4 0.

x y z
x y z
x y z

 + + =


+ − =
 − + =

 (2.45)

with precision ε = 0,001.

Solution:
Enter the notation:

x
y
z

=X ;

2 2 2
1

2 2 2
2

2 2
3

1
() 2 4

3 4

x y zf
f x y z
f x y z

+ + −

= = + −

− +

F X ;

1 1 1

2 2 2

3 3 3

2 2 2
() 4 2 4

6 4 2

f f f
x y z x y z
f f f x y
x y z

x z
f f f
x y z

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

= = −
∂ ∂ ∂

−
∂ ∂ ∂
∂ ∂ ∂

W X .

An initial approximation is selected:

0
0

0

0

0,5
0,5
0,5

x
y
z

= =X ;

()

()

()

0 2 2 2
1 0 0

0(0) 2 2 2
2 0 0 0

2 20
0 0 03

1 0,25
() 2 4 0,25

1,003 4

f x y z

f x y z

x y zf

+ + − −
= = + − = −

−− +

F X ;

0 0 0

0 0 0

0 0

2 2 2 1 1 1
() 4 2 4 2 1 4

3 4 16 4 2

x y z
x y
x z

= − = −
−−

W X .

The value of the inverse Jacobian matrix of the function F(X) is determined:

1
0

0,375 0,125 0,125
() 0,350 0,050 0,150

0,275 0,175 0,025

− = −
−

W X .

Using Newton’s modified method, we perform iterative calculations based on
the iterative formula (2.41):

83

() () () ()1 0 0 01−    = − =   X X W X F X

0,5 0,375 0,125 0,125 0,25 0,750
0,5 0,350 0,050 0,150 0,25 0,450 ,
0,5 0,275 0,175 0,025 1,00 0,550

−
= − − − =

− −
()

()

()

1
1

1(1)
2

1
3

0,0675
() 0,1175

0,1900

f

f

f

= =F X ;

() () () ()2 1 0 11

0,750 0,375 0,125 0,125 0,0675 0,68625
0,450 0,350 0,050 0,150 0,1175 0,44900 ,
0,550 0,275 0,175 0,025 0,1900 0,54725

−    = − =   

= − − =
−

X X W X F X

; …; ()7

0,70641
0,44896
0,54748

=X ;

()

()

()

3
1

3(7)
2

3
3

0,000786
() 0,001571

0,002357

f

f

f

−
= = −

−
F X .

At this step of the calculations, the measurement error was obtained:

()(7) (6)

0,70641 0,70563
0,44896 0,44896 max 0,00078; 0; 0 0,00078
0,54748 0,54748

xE ε= − = − = = ≤X X .

Consider the implementation of Newton’s method for solving a system of
nonlinear equations in the PYTHON programming language:

import numpy as np
from scipy import *
from sympy import *
we determine the column vector of the values of the functions of the system
of nonlinear equations
def F_X(x_num,y_num,z_num):
 F_x=np.array([(x_num**2)+(y_num**2)+(z_num**2)-1,
 (2*(x_num**2))+(y_num**2)-(4*(z_num**2)),
 (3*(x_num**2))-(4*y_num)+(z_num**2)])
 return F_x
def Yak_Xrev(x_num,y_num,z_num):
 x,y,z=symbols('x y z')
 f_1=(x**2)+(y**2)+(z**2)-1
 f_2=(2*(x**2))+(y**2)-(4*(z**2))
 f_3=(3*(x**2))-(4*y)+(z**2)
 g_1=[diff(f_1,var) for var in [x,y,z]]
 g_2=[diff(f_2,var) for var in [x,y,z]]

()

()

()

2
1

2(2)
2

2
3

0,0279
() 0,0545

0,0837

f

f

f

−
= = −

−
F X

84

 g_3=[diff(f_3,var) for var in [x,y,z]]
 g_1num = lambdify([x,y,z], g_1)
 g_2num = lambdify([x,y,z], g_2)
 g_3num = lambdify([x,y,z], g_3)
 Yak = np.array([g_1num(x_num,y_num,z_num),
 g_2num(x_num,y_num,z_num),g_3num(x_num,y_num,z_num)])
 return np.linalg.inv(Yak)
solution of the iterative equation
X=np.array([0.4,0.4,0.4])
X_1=np.array([0.5,0.5,0.5])
e=0.001
k=0
while np.linalg.norm(X-X_1,np.inf)>=e:
 X=X_1
 X_1=X-(Yak_Xrev(0.5,0.5,0.5).dot(F_X(X[0],X[1],X[2])))
 k=k+1
 print('k=',k)
 print('X',X)
 print('F_X(X[0],X[1],X[2])=',F_X(X[0],X[1],X[2]))
 print('X_1=',X_1)
 print('Current error value',np.linalg.norm(X-X_1,np.inf))
 print('----------------------------').

Conclusions on the application of methods for solving transcendental

equations, systems of nonlinear equations, as well as finding complex roots
of polynomial equations

To solve finite nonlinear equations, it is advisable to use the following
methods: dividing in half (dichotomy), Newton (tangents), secant (linear
interpolation), fixed-point iteration. Before applying these methods, the roots are
separated using analytical methods such as finding a simpler equation that has
roots approximately equal to the unknown roots of this equation (neglecting the
small terms of the equation) and using theorems based on known properties of
continuous functions. It should be noted that the method of dividing the segment
in half does not require any smoothness conditions for the function; it is only
necessary that the function is continuous. This makes it very popular in simple
problems involving finding a single root within a given interval (for example, in
the field of metrology). When calculating the roots of an equation using Newton’s
method, the process of successive approximations always converges if the initial
approximation is taken to be very close to the root on a certain interval. Therefore,
it is particularly useful for problems where the root is only roughly known. The
calculation of the equation’s root using the secant method with any desired level
of accuracy will yield the same result as Newton’s method. However, Newton’s
method generally exhibits better convergence than the secant method in most
cases. In situations where computing the function and its derivative is time-
consuming, the secant method offers greater efficiency. Along with the above-
mentioned methods, the fixed-point iteration makes it possible to «guess» new
values during the implementation of each step. The properties mentioned of the
iteration method, its simplicity and limitless possibilities expressed in the formula,
allow for its effective use in solving differential, integral, and integro-differential
equations. Such tasks often arise in the process of ballistic calculations, space
travel, or determining credit conditions in the financial sector.

85

Problems with finding complex roots of polynomial equations are relevant in
the field of automatic control of complex objects. When determining complex
roots, the control of convergence and error is carried out by the modulus of the
complex number. In these types of problems, it is effective to use Lin's method,
which allows you to estimate complex roots by calculating with real numbers.
Before applying this method, the real and complex roots of the polynomial
equation are also separated using the De Gua’s theorem and Descartes’ rule. Lin’s
method uses the running method or the simple iteration method to find the solution
to the system of iterative equations. It should be noted that the method of simple
iterations is conditionally convergent, but there are no practically acceptable
criteria for the convergence of this method. In the process of practical
implementation of Lin’s method, it is necessary to monitor the number of
iterations. If it exceeds a reasonable limit, it is necessary to consider that the
method is divergent for the selected algebraic polynomial equation.

It is also common to solve problems in the dynamics of complex systems and
solid state physics using a mathematical model in the form of a system of
nonlinear equations. The most effective and stable method for solving systems of
nonlinear equations is Newton’s method, which is based on expanding all
component equations into a Taylor series. Generally, the problem of solving a
system of nonlinear equations is reduced to solving a system of linear equations,
which is accomplished by using the inverse Jacobi matrix. To simplify the overall
algorithm, a modified Newton method can be employed, which eliminates the
need to calculate the value of the inverse Jacobi matrix at each step. However, a
disadvantage of this approach is that it slows down convergence and becomes
more sensitive to the choice of the initial approximation. Various hybrid methods,
combining Newton’s method with a simple iteration method, are also used.

Control questions and tasks

1. What number is called the root of a function?
2. What are the known methods for separating the roots of a function?
3. What is the condition for the existence of the roots of the equation in a

certain domain of the function’s definition?
4. To reveal the essence of numerical methods dividing in half (dichotomy),

Newton (tangents), secant (linear interpolation), as well as simple iterations for
solving nonlinear algebraic equations?

5. How to check the convergence of iterative algorithms for solving nonlinear
algebraic equations?

6. What are the differences between algorithms dividing in half (dichotomy),
Newton (tangents), secant (linear interpolation), fixed-point iteration?

7. Using the half-division method, determine the flight time of the projectile
with an accuracy of ε=0.00001, provided that the force of air resistance to the
movement of the projectile is proportional to its speed (R= –kmν). The equation

86

of motion of the projectile is given by a function in a parametric form (parameter
t is the flight time of the projectile) in the projection on the vertical axis of the
ordinate y:

 ()()02
1 sin 1 kt gy g k e t
k k

υ α −= + − − ,

where g=9,82 m/sec2 – acceleration of gravity. The initial data for the options are
presented in Table 2.6.

Table 2.6 – Output data for the task

Version

Air
resistance
coefficient
(k, sec-1)

Initial
velocity

(υ0, m/sec)

The angle between the
initial velocity vector

and the horizontal
surface

(α, grad)
1 0,25 1200,0 30o

2 0,33 1300,0 45o
3 0,15 1450,0 50o
4 0,42 1560,0 60o

8. Using Newton’s method (tangents) determine the flight range of the
projectile with an accuracy of ε=0.00001, provided that the force of air resistance
to the movement of the projectile is proportional to its speed (R= –kmν). The
equation of motion of the projectile is given by a function in projections on the
horizontal and vertical xy axes

0
2

0 0

1 sin ln 1
cos cos

g k g ky x x
k k

υ α
υ α υ α

   +
= + −   

   
,

where g=9,82 m/sec2 – acceleration of gravity. The initial data for the options is
presented in Table 2.7.

Table 2.7 – Output data for the task

Version
Air resistance

coefficient
(k, sec-1)

Initial
velocity

(υ0, m/sec)

The angle between the initial
velocity vector and the

horizontal surface
(α, grad)

5 0,25 1200,0 30o

6 0,33 1300,0 45o
7 0,15 1450,0 50o
8 0,42 1560,0 60o

9. Using the method of chords (linear interpolation) determine the interest rate

and yield of bonds with an accuracy of ε = 0,0001. The yield function is given by
the following transcendental equation:

87

1() (1) (1) (1) () 0n n
n nI P i P i A i A I− − ++ ⋅ + + ⋅ + + ⋅ + − + = ,

where n = T–N – the term remaining until the bond’s maturity (in years);
I = P·k – amount of coupon payments (in monetary units). The initial data for the
options is presented in Table 2.8.

Table 2.8 – Output data for the task

Version

Current
value of the

bond
(An, in

monetary
units)

Nominal
value
(P, in

monetary
units)

Amount of
years

(N, amount
of years)

Repayment
term

(T, amount
of years)

Coupon
interest

rate
(k, fraction
from one)

9 1150,0 1000,0 1,0 10,0 0,12
10 1300,0 1200,0 2,0 15,0 0,14
11 1420,0 1300,0 3,0 16,0 0,16
12 1500,0 1500,0 4,0 20,0 0,18

10. Using Newton’s method (tangent) determine the interest rate i with an

accuracy of ε=0.0001, based on the compound interest formula:

1 1
(/12) 12

NQ iS
i

  = + −  
   

.

The initial data for the options is presented in Table 2.9.

Table 2.9 – Output data for the task

Version

Amount of
security deposit
(S, in monetary

units)

The period during
which equal payments

will be made
 (N, number of

months)

The amount of the
monthly contribution

is equal
(Q, in monetary units)

13 1,0·106 9,0 1,0·105
14 2,0·106 10,0 1,5·105
15 2,5·106 11,0 2,0·105
16 3,0·106 12,0 3,2·105

11. In the Landau-Ginsburg-Devonshire equation determine the value of the

polarization due to the action of the external field of crystals with first-order phase
transitions using the method of simple iterations, with an accuracy of ε=0,0001:

3 5 0mP P P Eα β γ+ − + = .

The initial data for the options are presented in Table 2.10.

88

Table 2.10 – Output data for the task

Version
Normalized thermodynamic

parameters
The intensity of the

electromagnetic field
(Em, V/m) α β γ

17 1,0 1,00 0,01 0,0
18 1,0 0,01 0,00 1,0
19 1,0 1,50 0,10 1,2
20 1,2 1,10 0,08 1,4

12. Using the secant method (linear interpolation) with an accuracy of

ε=0.00001 determine the critical force (loss of vertical balance of the rod) applied
along the rod, one end of which is rigidly fixed and the other is hinged and can
only move in the vertical direction. This critical force is determined from the
equation:

0PL PLtg
EI EI

 
− = 

 
.

The initial data for the options are presented in Table 2.11.

Table 2.11 – Output data for the task

Version
Bending stiffness of

the rod
(EI, N·m2)

The length of the
rod

(L, m)
21 450,0 3,0
22 500,0 5,0
23 560,0 7,0
24 630,0 9,0

13. Using the example of a well-known problem in cosmonautics and the

fixed-point iteration determine the optimal ratio of the elements of the rocket’s
mass so that the maximum value CUE of the equation is reached:

2 ln(1) 0

1
z z
z
− + =

+
,

where z – the ratio of the mass of fuel for a jet engine to the mass of the payload.
14. Determining the roots of the characteristic equation allows us to find out

how an increase in the gain affects the relative stability of the control system.
Since the positive real parts of the roots of the system’s characteristic equation
correspond to the exponential development of transient processes, they should
be avoided at all costs. For the regulation topic shown in Figure 2.16, it looks
like:

3 212 7 0D D D K+ + + = .

89

Find and plot the roots Di in the plane of a complex variable depending on
increasing values of K. At what value of the gain K does the system lose stability?

Figure 2.16 – Scheme of the system regulation system

15. What is the difference between real and complex roots of an equation?
16. Formulate theorems that determine the presence of complex roots in an

equation?
17. Reveal the essence of Lin’s method for determining the complex roots of

a polynomial equation.
18. Describe the convergence criteria used when applying Lin’s method for

factoring a polynomial?
19. Calculate the real roots of a polynomial equation to ε=0,0001 precision:

5 4 3 25 3 16 5 9 0x x x x x+ − + + + = .
20. In the chemical reaction:

2 2
1
2

CO O CO+ 

the percentage of X dissociated mole CO2 is determined by the equation:

3
2 3 2 0

1
P X X

K
  + − = − 

,

where P – pressure expressed in atmospheres, and K – equilibrium constant
depends on temperature. Find X at K=1,648 (which corresponds to 2800,0 K) and
P=1,0 atm.

21. Reveal the essence of Newton’s method for solving systems of nonlinear
equations.

22. Describe the principle of expanding a function into a Taylor series.
23. How the Jacobian matrix is determined?
24. How to check the convergence of the iterative algorithm for solving

systems of nonlinear algebraic equations using Newton's method?
25. What are the variants of Newton’s method for solving systems of

nonlinear algebraic equations?
26. How is the error determined during iterative calculation using Newton’s

method for solving systems of nonlinear algebraic equations?
27. Define the concept of «norm» and characterize all its types in matrix

calculation.

90

28. Calculate the roots of a system of nonlinear equations with accuracy
ε=0,001:

2 2 2

2 2 2

2 2

2 9 1;
6 0;
2 3 4.

x y z
x y z
x y z

 − + =


+ − =
 + − =

29. Calculate the roots of the system of nonlinear equations with an accuracy
of ε=0,001 and an initial approximation:

2
1 1 (0)

2
1 1 2 1

3ln 0; 3,4
.

2,22 5 1,
x x x

x
x x x x

 + − = =
− − =

30. Perform five iterations using Newton’s method to find the root values for
a system of nonlinear equations, given an initial approximation vector:

4
2 1

2
2 1 1

2 1;
5 3 ,

x x
x x x

 = −


= − +

(0)
1
(0)
2

1
.

1
x
x

   
=   

    

91

Chapter 3. DIFFERENTIAL CALCULUS PROBLEMS

Modern computer systems are widely used in all spheres of human activity.
One of the main areas of application for computer systems is solving problems
that arise in science and technology, specifically the construction of solutions for
mathematical models that describe various physical phenomena. This field of
application is known as scientific programming. Nowadays, it is almost
impossible to find any field of science and technology where high-performance
computing systems are not used, such as calculating the trajectories of Earth’s
satellites, modeling the airflow around aircraft to design more effective designs,
analyzing the strength characteristics of building structures, and forecasting
climatic conditions. Mathematical models for all the aforementioned problems, as
well as most other scientific and engineering problems, involve systems of
differential equations. Depending on the number of independent variables and,
accordingly, the type of derivatives included in them, the equations are divided
into ordinary differential equations, which contain one independent variable and
its derivatives, and partial differential equations, which have several independent
variables and their (partial) derivatives.

Ordinary differential equations (ODE) can be used to describe problems
related to the motion of a system of interacting material points, kinetics, electric
circuits, resistance of materials, etc. A number of important problems for partial
differential equations are also reduced to problems involving ODE. For example,
if a multidimensional problem allows for the separation of variables (e.g.,
problems involving finding the natural oscillations of elastic beams and
membranes in a simpler form or determining the spectrum of eigenvalues of the
energy of a particle in a spherically symmetric field), or if its solution depends
only on some combination of variables (automodal decision). Thus, the solution
of ODE holds a significant place among the applied problems in physics,
chemistry, and engineering. Therefore, this section reveals the main methods of
numerical research for ODE.

An ordinary differential equation is an equation containing unknown
functions, an independent variable, and derivatives of the unknown functions (or
their differentials).

General view of the ODE:

 ()(), , , , , 0nF x y y y y′ ′′ =
 або

2

2, , , , , 0
n

n
dy d y d yF x y
dx dx dx

 
= 

 


, (3.1)

where y=y(x) – the function that is defined; ()
n

n
n

d yy
dx

= – derivative (differential)

of the n-th order of the function y(x) with respect to the variable x; F – a valid
function from its own arguments, which are also considered valid.

Differential equations can be linear or non-linear. A linear equation is an
equation in which the unknown function and its derivatives appear to the first

92

degree. The order of a differential equation is determined by the highest derivative
(or differential) present in equation (3.1). In general, the solution to (3.1) is found
through n successive integrations, resulting in the general solution of n-th order
that contains n arbitrary constants:

 ()1 2, , , , ny y x C C C=  . (3.2)
If the general solution of equation (3.1) is obtained implicitly:

 ()1 2, , , , , 0nФ x y C C C = , (3.3)

then it is called the general integral of this equation. In other words, in those cases
when equality (3.3) can be solved with respect to the desired function y, it is called
a general solution of the differential equation (3.1), and if it remains unsolved
with respect to y, it is called a general integral. By assigning specific numerical
values to arbitrary constants C1, C2, …, Cn, a particural integral will be obtained
from (3.3).

In order to extract a partial solution from the general solution, it is necessary
to add some additional conditions to the differential equation. Typically, initial
conditions are used. These conditions serve as a mathematical record of the initial
state of the process, especially when studying a time-evolving process.

For a system of n ordinary differential equations of the first order:

 () (,)dU x F x U
dx

= , (3.4)

where 1 2(, , ,)T
nU y y y=  , ()1 2(,) (,), (,), , (,) T

nF x U f x U f x U f x U=  – In
vectors, the general solution contains n derivative constants ()1, , , nU Ф x C C=  ,
and in order to select its partial solutions, it is also necessary to set n additional
conditions, that is, as many equations as the system contains.

ODE are increasingly being used in mathematical models developed to
simulate processes and phenomena that occur in various fields of technology,
science, and production.

In the field of microbiology, the problem of determining the dependence of
the growth of the number of bacteria over time is well-known. This is provided
that there is a certain number of N0 bacteria at the beginning, under favorable
conditions for reproduction. It is also experimentally known that the rate of
reproduction of bacteria is proportional to their number.

To solve this problem, it is advisable to use N(t) to denote the number of
multiplying bacteria at time t, where N(0) = N0. Bearing in mind that the number
can only be measured in whole numbers, we will assume that N(t) changes
continuously and differently over time. Therefore, the rate of reproduction is the
derivative of the function N(t). Thus, the biological experimental law specified in
the problem allows us to formulate the differential equation of bacterial
reproduction:

93

 () ()dN t kN t
dt

= , k > 0. (3.5)

The experimental coefficient k depends on the type of bacteria and the
conditions in which they are found. The problem was reduced to a purely
mathematical problem of finding the solution N = N(t) of equation (3.5), for which
N(0) = N0. Since N(t)> 0, dividing both parts of equation (3.5) by N(t), we obtain

(ln ())d N t k
dt

= , from which:

 1ln ()N t kt C= + , (3.6)

where C1 – arbitrary constant.
Denoting C1 = lnC (C > 0), we find from equation (3.6).

 () ktN t Ce= . (3.7)

To select the function (3.7) that describes the process of bacterial
reproduction, you can use the condition N(0) = N0. Then, from equation (3.7), we
have N0 = C. Finally:

 0() ktN t N e= , (3.8)

shows that the number of bacteria grows exponentially.
In ballistics, it is important to determine the relationship between the velocity

of the vertical fall of a body with mass m and time. It is given that the initial height
of the fall is h, and the force of viscous friction acting on the body is proportional
to the velocity: Ffr = –αυ, where α > 0 is the coefficient of friction.

When solving this problem, we consider that υ(t) is the velocity of the body
at time t. Two oppositely directed forces act on the body: gravity Fg=mg and
viscous friction Ffr = –αυ.

In this case, the differential equation describes Newton’s second law.:

 g fr
dma F F F m mg
dt
υ αυ= = + ⇒ = − . (3.9)

Dividing both sides of equation (3.9) by m, we obtain a differential equation.

 d g
dt m
υ α υ= − + . (3.10)

The solution to the differential equation (3.10) will be the following
expression:

 ()
t

mmgt Ce
α

υ
α

−
= + . (3.11)

If the body starts moving with zero speed (υ(0) = 0), then mgС
α

= − :

94

 () 1
t

mmgt e
α

υ
α

− 
= − 

 
. (3.12)

During free fall without friction d g
dt
υ = 

 
, the velocity increases linearly:

υ(t) = gt. In the presence of viscous friction, the increasing speed tends to a

constant value mgυ
α

= .

Many real processes are modeled by differential equations that contain the
second derivative of an unknown function. These differential equations are
referred to as second-order equations. An example of a problem from the field of
ballistics is the task of determining the law of motion for a point mass m falling
vertically downwards, while disregarding air resistance.

To solve such a problem, a reference point O is chosen on the vertical axis
along which the point falls, and the positive direction is determined – from point
O downwards. The position of the point is determined by the coordinate y(t),
which changes with time t. The point falls under the force of gravity Fg = mg,

therefore, according to Newton’s second law, ma = F. Then
2

2
d ym mg
dt

= or:

2

2
d y g
dt

= . (3.13)

Integrating the ratio (3.13) twice, we can determine:

 1
dy gt C
dt

= + ,
2

1 2()
2

gty t C t C= + + . (3.14)

Formula (3.14) defines the law of motion of a material point, but it contains
constants of integration, in this case – two. Knowing the initial position of the
falling point relative to point O – y(0) = y0 and its initial speed υ(t) = υ0, one
chooses from the set of functions (3.14) that describes the motion of the point.

Since the speed of movement of the point () dyt
dt

υ = , then under the indicated

initial conditions C1 = υ0 and C2 = y0, the function that describes the law of
movement of the point is sought:

2

0 02
gty t yυ= + + . (3.15)

Thus, the well-known formula for the path traveled by a point during uniform
accelerated motion was obtained.

This section deals with solving computational problems of differential
calculus, specifically the solution of ordinary differential equations and their
systems. Moreover, it is assumed that the user is already familiar with the main
information presented in the sections of mathematical analysis.

95

3.1 Generalized problem statement for ordinary differential equations

There are three main types of tasks for ODE: Cauchy problems, boundary
value problems and eigenvalue problems.

The statement of the Cauchy problem for the first-order system of n ODE is
formulated as follows in the general case. Find the solution of the differential
equation:

() (,)dU x F x U

dx
= at x>x0, U(x0)=U0, (3.16)

where x0 – initial value x; U0 – the initial value of the vector U
(U = (y1, y2, …, yn)T); ()1 2(,) (,), (,), , (,) T

nF x U f x U f x U f x U=  , or in
expanded form:

()1 2
() , , , ,i

i n
dy x f x y y y

dx
=  ; x > x0; yi(x0) = (0)

iy (i = 1, 2, …, n).

For equations of the first to n-th orders, the Cauchy problem is formulated as
follows find a solution to differential equations:

а) (,)dy f x y
dx

= for x > x0 by y(x0) = C0;

b)
2

2 (, ,)d y f x y y
dx

′= for x > x0 by y(x0) = C0, 0 1()y x C′ = ;

c) ()(, , , ,)
n

n
n

d y f x y y y
dx

′= 

 for x > x0 by y(x0) = C0, 0 1()y x C′ = , …,
(1)

0 1()n
ny x C−
−= ,

where С1, C2, …, Cn – some constants; (), , , ny y y′ ′′
 – derived functions y.

3.2 Numerical methods for solving ordinary differential equations for
Cauchy-type problems

In general, the methods of solving ODE are conditionally divided into exact,
approximate, and numerical methods. Analytical methods, which allow you to
express the solution of a differential equation in terms of elementary functions or
present it using quadratures of elementary functions, belong to the exact methods.
Finding an exact, and moreover, general solution to problem (3.16) facilitates
qualitative research of this solution and further actions with it. However, the
classes of equations for which methods of obtaining exact solutions have been
developed are relatively narrow and cover only a small part of the problems that
arise in practice.

96

Methods in which the solution is obtained as the limit of y(x) from some
sequence yn(x) are called approximate methods, and yn(x) is expressed through
elementary functions or using quadratures. By restricting to a finite number n, an
approximate expression for y(x) can be obtained. Approximate methods include
the expansion of the solution into a generalized power series, the Chaplygin
method, the Picard, Kantorovich method, and others. However, these methods are
convenient in cases where most of the intermediate operations can be performed
accurately (for example, finding an explicit expression for the coefficients of a
series). This can only be done for relatively simple problems (linear), which
greatly narrows the scope of application of approximate methods.

Numerical methods are algorithms for calculating approximate (and
sometimes exact) values of the desired solution y(x) on a chosen grid of values of
the argument xn. The solution will be obtained in the form of a table. Numerical
methods do not allow finding the general solution of system (3.16); they can only
provide a partial solution, such as the solution of the Cauchy problem (3.16).
However, these methods can be applied to a wide class of equations and all types
of problems associated with them.

Numerical methods can only be applied to correctly posed (or well-posed)
problems. However, it should be noted that the formal fulfillment of correctness
conditions may not be sufficient for the successful application of numerical
methods. It is necessary for the problem to be well-conditioned, meaning that
small changes in the initial conditions would result in sufficiently small changes
in the integral curves. If this condition is not met, meaning the problem is ill-
conditioned (weakly stable), then small changes in the initial conditions or small
errors in the numerical method can introduce significant distortions.

Available numerical methods for solving Cauchy problems are classified into
two types:

1) one-step methods, in which information about only one previous step is
needed to find the next point on the curve. Well-known one-step methods are the
Euler and Runge-Kutta methods.

2) methods of «prediction and correction» (multi-step methods), in which
information about more than one of the previous data points is needed to
determine the next point on the curve, are used. Iterations are often employed to
obtain a reasonably accurate numerical value. Examples of such methods include
the Adams, Milne, and Moulton methods.

Euler’s method

Euler’s method is the simplest method for solving the Cauchy problem (3.16)
for x⋲[a; b] and i = 1. In order to obtain calculation formulas, the interval of
continuous change of the variable x can be replaced by a set of points xj = a+jh,
which will be called grid nodes:

97

b ah
n
−

= ; x0 = a; x n = b,

where h – grid step.
The numerical solution of problem (3.16) is a table of values:

xj; yj (j = 0, 1, …, n),
where yj – difference or numerical value of the solution at the node xj.

Equation (3.16) for x = xj and n = 1, by definition of the derivative:

0

() ()
lim

j

j j

h
x x

y x h y xdy
dx h→

=

+ −
= . (3.17)

Discarding the limit in (3.17), the derivative
jx x

dy
dx =

 is replaced with a finite-

difference relation:

() ()

j

j j

x x

y x h y xdy
dx h=

+ −
≈ . (3.18)

If we substitute equation (3.18) into equation (3.16), we get:

 ()() ()
, () (0,1, , 1)j j

j j

y x h y x
f x y x j N

h
+ −

≈ = −

, (3.19)

where y(xj) – the value of the solution y(x) to the Cauchy problem at node xj.
Denoting by yj the numerical solution that satisfies the difference equation, we
can write:

 ()1 , (0, 1)j j
j j

y y
f x y j n

h
+ −

= = − (3.20)

or

 ()1 , (0, 1)j j j jy y hf x y j n+ = + = − . (3.21)

Given the initial condition (3.16) and using the difference equation (3.21), it
is possible to consistently determine a series of iterative equations:

()1 0 0 0, (1);y y hf x y j= + =

()2 1 1 1, (2)y y hf x y j= + = ;

 ………………………………;

()1 1 1, (1)n n n ny y hf x y j n− − −= + = − .

The graphical interpretation of the approximate solution obtained by Euler’s
method is a broken curve (Fig. 3.1, a) that connects points M0, M1, …, Mn in a
series and is called Euler broken curve.

98

For the geometric interpretation of the error that occurs when applying the
Euler’s method, it is necessary to consider the point xn at which the numerical
solution of the problem yn is obtained. Putting yn=y(xn), a hypothetical integral
curve y(x) is drawn through this point (yn, xn) and f(xn, y(xn)) is tangent to it
(Fig. 3.1, b). Under the given assumptions, it is equal to f(xn, yn).

а) b)

Figure 3.1 – Scheme of the geometric interpretation of Euler’s method
numerical solution of the Cauchy problem:

a) – approximation scheme; b) – error determination scheme

The point of intersection of this tangent with the perpendicular to the x-axis,
which passes through the point xn+1, gives the approximate value of the function
yn+1 at the point xn+1. At the same time, the solution error is equal to ε=yn+1–y(xn+1).
Accordingly, Euler method is a linear extrapolation of the function yn to the point
xn+1 using the values of the function and its derivative at the point xn:

()1 1, ()n n n n n ny y f x y x x+ += + − .
Based on the expansion in the Taylor series of equation (3.21), it is determined

that the Euler’s method has a large error, namely, an error of the first order O(h)
and often turns out to be unstable, since a small error in the initial data or due to
rounding in the calculation process increases with the growth of x.

In order to improve the accuracy of the solution to the Cauchy problem, a
refined Euler’s method is employed for the ODE. This method is based on
calculating the function y(xn+1) at the next point xn+1 using the average value of
the slopes of the tangent lines to the integral curve y(x) at points xn and xn+1. In
this scenario, the solution to the problem yn at point xn is assumed to be already
known.

The method consists of two steps:

99

1) according to the Euler’s method (3.21), the approximate value of 1ny + at
the point x=xn+h is preliminarily determined by the formula
 1 (,)n n n ny y hf x y+ = + , (3.22)
and the function 1 1(,)n nf x y+ + is calculated in it;

2) the tangents of the tangent angles at the points (xn, yn) and ()1 1,n nx y+ + are
added and the average arithmetic value Ф(xn, yn, h) is determined:

 () ()1 1
1(, ,) , ,
2n n n n n nФ x y h f x y f x y+ + = +  , (3.23)

where () ()()1 1, , ,n n n n n nf x y f x h y hf x y+ + = + + .
After that, the final (refined) value of the function yn+1 at the point xn+1 is

determined by the formula yn+1=yn+hФ(xn, yn, h) or in expanded form:

 () ()()1 , , ,
2n n n n n n n n
hy y f x y f x h y hf x y+  = + + + +  . (3.24)

Thus, when calculating yn+1, the function f(x, y) has to be calculated twice at
the points (xn, yn) and (xn+h, yn+h ny′).

With the help of the refined Euler’s method, it is possible to perform accuracy
control by comparing the value of 1ny + from formula (3.22) and 1ny + from formula
(3.24), which will allow choosing the appropriate value of the step h in each
calculation node based on this. That is, if the value of 1 1n ny y+ +− is comparable
to the calculation errors, then the step must be increased; otherwise, if this
difference is large enough (for example, 1 1 10,01n n ny y y+ + +− >), the value of h
must be reduced. Using these estimates, it is possible to build an algorithm of the
Euler method with automatic step selection (Fig. 3.2).

For the purpose of geometric interpretation of the refined Euler’s method, at
the point (xn, yn) (Fig. 3.3), the tangent line L1 to the hypothetical integral curve
y(x) is constructed, and the initial value of 1ny + is determined at the point of
intersection of this tangent with the perpendicular to the x-axis passing through
point xn+1. After that, at the point (xn+h, yn+h ny′), the tangent line L2 to the curve
y(x) is constructed again.

Next, the arithmetic mean of the tangents of the angles of inclination of these
tangents (curve L3) is determined, and the line L0, parallel to line L3, is drawn
through this point (xn, yn). The point of intersection of this line with the ordinate
passing through the point xn+1 gives the refined value of the function yn+1 at point
xn+1.

100

Figure 3.2 – Scheme of the Euler’s method algorithm

101

Figure 3.3 – Scheme of the geometric interpretation of the

refined Euler’s method

Estimating the approximation error of formula (3.24) based on the Taylor

series expansion of the functions y(xn) and ()(), ,n n n nf x h y hf x y+ + shows that
this method has a second order of approximation O(h2).

Euler method is successfully applied to systems of ODE. For a system of first-
order n ODE, the Euler’s method takes the following form:

 ()1

0

, (0,1, ..., 1);

(0) ; [0;1],

j j
j j

y y
f x y j n

h
y y x

+
 −
 = = −

 = ∈

 (3.25)

where ()1 2 ,, , ,
T

j j j n jy y y y= 
.

Then Euler’s method is rewritten for each component of the vector jy :

1, 1 1,
1,

2, 1 2,
2,

, 1 ,
,

1 10 2 2 0

;

;

;

(0, 1);

(0) , (0) , , (0) .

j j
j

j j
j

n j n j
n j

n n

y y
f

h
y y

f
h

y y
f j N

h
y y y y y y

+

+

+

−
=


− =





− = = −
= = =




To estimate the total error of the numerical solution to the Cauchy problem

for ODE systems, Runge’s method (other name Richardson’s extrapolation) can
be used. This method relies on comparing the results of calculating the values of

ny and ny at the point xn with different steps h та h , respectively, in order to
determine the error of the approximation:

102

 () ()/ 1 2h p
n n nR y y −= − − , (3.26)

where p – the order of approximation of the difference scheme used, particularly
p=1 – the Euler method.

Algorithms for Euler’s method in ODE systems with automatic step selection
are shown in Figure 3.4.

Example 3.1. To solve the Cauchy problem for the first-order ODE using
Euler numerical methods:

dy y x
dx

= + ; x⋲[0; 1,0],

which satisfies the initial condition for x0 = 0, y0 = 1.0, and the relative error of the
calculation ε = 10,0 %.

Solution:
To solve this problem, the segment [0; 1,0] can be divided into ten parts by

the points x0 = 0; 0.1; 0.2; ..., 1.0. Accordingly, h = 0,1. The values of y1, y2, …,
yn will be determined by the Euler’s method according to formula (3.21), then:

()1 0 0 0, 1 0,1 (0 1) 1,1y y hf x y= + = + ⋅ + = 0;

()2 1 1 1, 1,1 0,1 (1,1 0,1) 1,21y y hf x y= + = + ⋅ + = ;

………….……………….…………………… .
Also, the values of y1, y2, …, yn can be determined using the refined Euler’s

method according to formula (3.24). Then:

() ()()

[]

1 0 0 0 0 0 0 0, , ,
2

0,11,0 (0 1,0) (0 0,1 1,0 0,1 (0 1,0)) 1,11000;
2

hy y f x y f x h y hf x y = + + + + = 

= + + + + + + ⋅ + =

() ()()

[]

2 1 1 1 1 1 1 1, , ,
2

0,11,11 (0,1 1,11) (0,1 0,1 1,11 0,1 (0,1 1,11)) 1,24205;
2

hy y f x y f x h y hf x y = + + + + = 

= + + + + + + ⋅ + =

………………………………………….……………………………… .
Also, for a comparative analysis of the accuracy of the solution using the usual

and refined Euler’s method, an analytical solution of the ODE was obtained,
namely:

 2 1xy e x= − − . (3.27)

In the process of solving, Table 3.1 of the calculation results was compiled:

103

Figure 3.4 – Scheme of the Euler’s method algorithm for ODE systems

104

Table 3.1 – Calculation results for the solution of the differential equation
n xn yn(xn) ()n ny x ()n ny x

0 0,0 1,0000 1,00000 1,00000
1 0,1 1,1000 1,11000 1,11034
2 0,2 1,2200 1,24205 1,24281
3 0,3 1,3620 1,39847 1,39972
4 0,4 1,5240 1,58180 1,58365
5 0,5 1,7164 1,79489 1,79744
6 0,6 1,9380 2,04086 2,04424
7 0,7 2,1918 2,32315 2,32751
8 0,8 2,4730 2,64558 2,65108
9 0,9 2,8003 3,01236 3,01921
10 1,0 3,1703 3,42816 3,43656

From the obtained results, shown in Table 3.1, it can be seen that the errors

made during the determination of the solution grow towards the end of the table.
In particular, there is a relative error at the points x5 = 0,5 and x10 = 1,0:

– by comparing the values of the analytical solution and the usual Euler’s
method

5 5

5

5

1,79744 1,71640100% 100% 4,51%
1,79744

x x
x

x

y y

y
ε

− −
= ⋅ = ⋅ =




,

10 10

10

10

3,43656 3,17030100% 100% 7,75%
3,43656

x x
x

x

y y

y
ε

− −
= ⋅ = ⋅ =




;

– by comparing the values of the analytical solution and the refined Euler’s
method

5 5

5

5

1,79744 1,79489100% 100% 0,14%
1,79744

x x
x

x

y y
y

ε
− −

= ⋅ = ⋅ =




,

10 10

10

10

3,43656 3,42816100% 100% 0,24%
3,43656

x x
x

x

y y

y
ε

− −
= ⋅ = ⋅ =




.

The numerical results of the calculation of the solution of the differential
equation, which are summarized in Table 3.1, are conveniently presented on a
graph (Fig. 3.5).

105

y(x) – Euler's method;
y()x – refined Euler's method;
()y x – is the exact solution

Figure 3.5 – Diagram of numerical solution results problems of Cauchy ODE

It is also possible to note the rather high accuracy of the refined Euler’s
method in the process of solving the Cauchy ODE problem, which, compared to
the usual Euler’s method, is approximately ten times higher.

Consider the implementation of Euler’s method in the PYTHON
programming language:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import *
from sympy import *
introducing an integration step
h_0=float(input())
entering the initial value of the integration argument (total integration

#interval)
a=int(input()); x_mtr=np.array(a)
entering the initial value of the diff function argument. equation
y_0=int(input()); y_mtr=np.array(y_0)
entering the final value of the total integration interval
b=int(input())
entering the value of the relative error of the calculation
e=float(input())/100
setting the function of the differential equation
def f(x,y):
 return x+y

calculation of iterative formulas
def eyler(a,b,y_0,h):

 x=a; y=y_0; y_plus=y_0
 x_mas=[x]; y_mas=[y]; y_masplus=[y]
 x_mtr=np.array(a)
 y_mtr=np.array(y_0)
 while x<=b:

 # iterative formula of the Euler’s method

106

 y=y+(h*f(x,y))
 x=x+h
 # iterative formula of the refined Euler’s method
 y_plus=y_plus+((h/2)*(f(x-h,y_plus)+f(x,y_plus+(h*f(x,y_plus)))))
 x_mas.append(x)
 y_mas.append(y)
 x_mtr=np.append(x_mtr, x)
 y_masplus.append(y_plus)
 return x_mas, y_mas, y_masplus, x_mtr
control of calculation accuracy and adjustment of the calculation step in

#the node
h=h_0; x=a
while x<=b:
 for k in range(0,len(eyler(a,b,y_0,h)[0])):
 x=x+h
 if abs(eyler(a,b,y_0,h)[1][k]-

eyler(a,b,y_0,h)[2][k])>0.01*abs(eyler(a,b,y_0,h)[1][k]):
 h=h/2; x=a; break
we construct graphs of the solutions of the differential equation
plt.figure(figsize=(7, 7))
plt.xlabel('x',fontsize=15, color='blue')
plt.ylabel('y',fontsize=15, color='blue')
plt.plot(eyler(a,b,y_0,h)[0], eyler(a,b,y_0,h)[1])
plt.plot(eyler(a,b,y_0,h)[3], (2*(np.exp(eyler(a,b,y_0,h)[3])))-

eyler(a,b,y_0,h)[3]-1)
plt.plot(eyler(a,b,y_0,h)[0], eyler(a,b,y_0,h)[2])
plt.legend(['Euler's method','f(x)=2*exp(x)-x-1','Refined Euler's method'],

loc=1)
plt.grid(True)
plt.xlim([0, 1])
plt.ylim([1, 4])
plt.show().

Example 3.2. It is known that when finding solutions to Laplace and
Helmholtz differential equations in cylindrical and spherical coordinates, as well
as when solving problems of wave propagation, static potentials, etc., Bessel
differential equation arises:

1 0y y y
x

′′ ′+ + = ; x⋲[0; 1,0], (3.28)

find a solution with initial conditions x0 = 1,0; y0 = 0,765; 0 0,440y′ = − and error
of cut Rh = 0,005.

Solution:
To solve this problem, the segment [1,0; 2.0] can be divided into ten parts by

the points x0=1,0; 1,1; 1,2; …, 2,0. Accordingly, h=0,1.
To apply Euler numerical methods, it is necessary to reduce the second-order

differential equation (3.28) to a system of two first-order equations with two
unknown functions. This can be achieved by substituting y z′ = . Since y z′′ ′= ,
equation (3.28) can be written in the form of a system:

107

0 00

;

;

0,1,0; 0 440.,765;

y

x y z

z
zz y
x

= =

′ =
 ′ = − −


= −

(3.29)

The values of y1, y2, …, yn and z1, z2, …, zn will be determined by the
Euler's method according to formula (3.22), namely:

1 0
1 0 00

0
1 0 0 1 0 0

0 0
0

;;

;;

y y y y hzz
h

zz z z z z h yy xh x

− = +=  ⇒   − = + − −  = − −  

2 1
2 1 11

1
2 1 1 2

0

1 1
1 1

1

1
1

1

00

1

1,0;

;;

;;

;

;;

;;

00,765; ,440.

n n
n n nn

n
n n n n n n

n n
n

y y y y hzz
h

zz z z z z h yy xh x

y y y y hzz
h

zz z z z z h yy xh x
x y z

+
+

+ +

− = += ⇒   − = + − −  = − −  

− = +=  ⇒   − = + − −  = − −  

= =


= −



(3.30)

Also, for a comparative analysis of the accuracy of the solution by the usual
and refined Euler’s methods, an analytical solution of the Bessel differential
equation (3.28) was obtained in the form of a Taylor series expansion.
Specifically, it was expressed as a Bessel function of the first kind with zero
order:

2

0
0

(1)() ()
!(1)! 2

kk

k

xy x J x
k k

∞

=

−  = =  +  
∑ , (3.31)

where k – integer.
Also, the derivative of the Bessel function of the first order zero is equal to

the negative Bessel function of the first order:

0 1() () ()y x J x J x′ ′ ′= = − . (3.32)

The values of the Bessel functions (3.31) and (3.32) are determined using
ready tabular data, which are given in Table 3.2 for x⋲[1,0; 2.0]. To determine
the calculation error using the Runge method (3.26), the values of ()n ny x were
determined with a step of h/2=0,05. In the process of solving, Table 3.2 of the
calculation results was compiled

108

Table 3.2 – Calculation results of the solution to the differential equation
n xn yn(x) ()n ny x ()n ny x′ ny ()n ny x′

0 1,0 0,76500 0,76500 -0,44000 0,7652 -0,4400
1 1,1 0,72100 0,72019 -0,47250 0,7196 -0,4709
2 1,2 0,67375 0,67229 -0,50165 0,6711 -0,4983
3 1,3 0,62359 0,62166 -0,52722 0,6201 -0,5220
4 1,4 0,57086 0,56866 -0,54902 0,5669 -0,5419
5 1,5 0,51596 0,51367 -0,56689 0,5118 -0,5579
6 1,6 0,45927 0,45709 -0,58069 0,4554 -0,5699
7 1,7 0,40120 0,39933 -0,59033 0,3980 -0,5778
8 1,8 0,34217 0,34080 -0,59572 0,3400 -0,5815
9 1,9 0,28260 0,28192 -0,59684 0,2818 -0,5812

10 2,0 0,22291 0,22311 -0,59369 0,2239 -0,5767

From the obtained results, given in Table 3.2, it can be seen that the errors
made during the determination of the solution grow towards the end of the table
for the values of the first derivative, namely ()n ny x′ and ()n ny x′ . In particular, at
the points x5 = 1,5 and x10 = 2,0:

– relative error can be determined by comparing the values of the analytical
solution and Euler method

5 5

5

5

0,51596 0,51180100% 100% 0,81%
0,51596

x x
x

x

y y

y
ε

− −
= ⋅ = ⋅ =




,

10 10

10

10

0,22390 0,22291100% 100% 0,44%
0,22390

x x
x

x

y y

y
ε

− −
= ⋅ = ⋅ =




;

– error of cut by the Runge method (see 3.26)

() () () ()
5 5 5

1/ 1 2 0,51596 0,51367 / 1 2 0,0046h p
x x xR y y − −= − − = − − = ;

 () () () ()
10 10 10

1/ 1 2 0,22291 0,22311 / 1 2 0,0004h p
x x xR y y − −= − − = − − = − .

The numerical results of the calculation of the solution of the differential
equation (3.28), presented in Table 3.2, are conveniently displayed in a graph
(Fig. 3.6).

From the obtained results, presented in Table 3.2 and Figure 3.6, it is clear
that the absolute and relative errors allowed during the determination of the
solution increase in the middle of the considered interval x⋲[1,0; 2.0].

109

y(x) – Euler’s method;

 ()y x – is the exact solution
Figure 3.6 – Diagram of the results of the numerical solution of the higher-order

Cauchy ODE problem

Consider the implementation of Euler’s method in the PYTHON
programming language:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import *
from sympy import *
introducing an integration step
h_0=float(input())
entering the initial value of the integration argument (total integration

interval)x0
a=int(input()); x_mtr=np.array(a)
entering the initial value of the argument of the differential equation

function y0
y_0=float(input()); y_mtr=np.array(y_0)
entering the initial value of the argument of the differential equation

function z0
z_0=float(input()); z_mtr=np.array(z_0)
entering the final value of the total integration interval
b=int(input())
entering the permissible calculation error
e_0=float(input())
setting the functions of the differential equation system
def f1(z):
 return z
def f2(x,y,z):
 return (-z/x)-y
calculation of iterative formulas
def eyler(a,b,y_0,z_0,h):
 x=a; y=y_0; z=z_0
 x_mas=[x]; y_mas=[y]; z_mas=[z]
 x_mtr=np.array(a)
 y_mtr=np.array(y_0)
 z_mtr=np.array(z_0)
 while x<b:
 # iterative formula of the Euler method
 y_buf=y

110

 z_buf=z
 y=y+(h*f1(z_buf))
 z=z+(h*f2(x,y_buf,z_buf))
 x=x+h
 x_mas.append(x)
 y_mas.append(y)
 z_mas.append(z)
 return x_mas, y_mas, z_mas
y_Bessel=[0.7652, 0.7196, 0.6711, 0.6201, 0.5669,
 0.5118, 0.4554, 0.3980, 0.34, 0.2818, 0.2239]
determination of the calculation error by the Runge method and adjustment

of the integration step
p=1; x=a; h=h_0
while x<=b:
 n=0
 for k in range(0,len(eyler(a,b,y_0,z_0,h/2)[1]),2):
 Rh_y=(eyler(a,b,y_0,z_0,h)[1][n]-eyler(a,b,y_0,z_0,h/2)[1][k])/(1-

(1/2**p))
 Rh_z=(eyler(a,b,y_0,z_0,h)[2][n]-eyler(a,b,y_0,z_0,h/2)[2][k])/(1-

(1/2**p))
 #print(abs(Rh_y))
 #print(abs(Rh_z))
 n=n+1
 x=x+h
 if abs(Rh_y)>e_0 or abs(Rh_z)>e_0:
 h=h/2; x=a
 break
we construct graphs of the solutions of the differential equation
plt.figure(figsize=(7, 7))
plt.xlabel('x',fontsize=15, color='blue')
plt.ylabel('y',fontsize=15, color='blue')
plt.plot(eyler(a,b,y_0,z_0,h)[0], eyler(a,b,y_0,z_0,h)[1])
plt.plot(eyler(a,b,y_0,z_0,h_0)[0], y_Bessel)
plt.legend(['Euler’s method',' Exact solution based on calculation

tables'], loc=1)
plt.grid(True)
plt.xlim([1, 2])
plt.ylim([0.2, 0.8])

plt.show().

Runge-Kuttа method

To construct a difference integration scheme for the numerical solution of the
Cauchy problem of the ODE, it is necessary to use the expansion of equation
(3.16) for i=1 in the Taylor series:

2

()
1() () () () ()

2! !

n
n

k k k k k
h hy x y x y x h y x y x

n+ ′ ′′= + + + +

. (3.33)

For the expression (3.33), K. Runge proposed (later V. Kutta developed this
idea of the method) for the difference 1() () ()k ky h y x y x+∆ = − to search for linear
approximation combinations of the following form:
 1 1 1 2 2() () () () () ()k k r r rm ry h y x y x p K h p K h p K h+∆ = − = + + +

, (3.34)

where prm (m=1, 2, …, r) – some constant coefficients; r – the order of accuracy
of the numerical solution of the differential equation, and Kr(h) are functions that
are calculated according to the formulas:

111

1

2 1

3 2

4 3

() (,);

() (,);
2 2

() (,);
2 2

() (,).

k k

k k

k k

k k

K h f x y
h hK h f x y K

h hK h f x y K

K h f x h y hK

=

 = + +


 = + +

 = + +

 (3.35)

The equation (3.34) based on functions (3.35) is then rewritten in the
following form:

 ()1 1 2 3 42 2
6k k
hy y K K K K+ = + + + + . (3.36)

The iterative equation (3.36) is the Runge-Kutta formula for the numerical
solution of the ODE with a calculation error of the fourth order O(h4), which has
also become the most widely used in practical calculations.

Increasing the order of
accuracy of the numerical
one-step Runge-Kutta
methods leads to a rapid
increase in the complexity of
calculations, since in one step
it is necessary to calculate the
value of the function f(x, y(x))
for different values of the
arguments. Therefore, in
practice, the calculation
scheme of the fourth-order
Runge-Kutta method (3.36) is
mainly used.

Components K1, K2, K3,
K4 of the calculation scheme
(3.36) of the Runge-Kutta

method of the fourth order have a simple geometric interpretation (Fig. 3.7). Let
the curve М0СМ1 represent the solution of the Cauchy problem (3.16) ODE. Point
C of this curve lies on a line perpendicular to the Ox axis and bisects segment
N0N1, B and G are points of intersection of the tangent drawn to the curve at point
M0 with ordinates AC and N1M1. Then the number K1 with accuracy up to the
factor h is the angular coefficient (α1) of the tangent at the point M0 to the integral
curve М0СМ1, i.e. 1 (,)k kK f x y= .

Point B has coordinates x = xi+h/2 and y = yi+K1/2, respectively. The number
K2, with accuracy up to the factor h, represents the angle coefficient (α2) of the
tangent drawn to the integral curve at point B (BF – tangent segment).

Figure 3.7 – Scheme depicting the geometric

interpretation of the Runge-Kutta method

112

A line parallel to line BF is drawn through point M0. Point D has coordinates
x = xi+h/2, y = yi+K1/2, and the value K3, accurate up to the factor h, represents
the angle coefficient (α3) of the tangent drawn to the integral curve at point D
(DR1 is the segment of this tangent). Then, a straight line DR1 is drawn through
point M0, intersecting the extension of M1N1 at point R2(xi+h, yi+K3). As a result,
the angular coefficient (α4) of the tangent drawn to the integral curve at point R2
is represented by the value K4, accurate up to the factor h.

The Runge-Kutta algorithm with automatic step selection is shown in Figure
3.8.

To estimate the total error of the numerical solution of the Cauchy problem
for the ODE by the Runge-Kutta method, and to choose the integration step at
each iterative step of the calculation, the Collatz method was proposed. Namely,

if in the process of calculations the value of 2 3

1 2

K KR
K K

−
=

−
 exceeds a few

hundredths, then the step must be reduced (see Fig. 3.8).
Example 3.3. To solve the fourth-order Cauchy problem for the first-order

ODE using the fourth-order Runge-Kutta numerical method:

dy y x
dx

= + ; x⋲[0; 1,0], (3.37)

which satisfies the initial conditions for x0 = 0 and y0 = 1,0.

Solution:

To solve this problem, the segment [0; 1,0] can be divided into ten parts by
the points x0 = 0; 0,1; 0,2; …, 1,0. Accordingly, h = 0,1. The values of y1, y2, …,
yn will be determined by the fourth-order Runge-Kutta method using formula
(3.36). Then:

()

(0) (0)
1 0 0 1

(0) (0) (0)
2 0 1 0 2

(0) (0) (0)
3 0 0 2 3

(0) (0)
4 0 0 3

(0) (0) (0) (0)
1 0 1 2 3 4

; 1 0 1,0;
0,1 0,1; 1,0 1,0 0 1,10000;

2 2 2 2
0,1 0,1; 0 1,0 1,1 1

2 2 2 2
;

2 2 ;
6

K y x K
h hK y K x K

h hK x y K K

K x h y hK
hy y K K K K

 = + = + =

 = + + + = + + + =

 = + + + ⇒ = + + + =

 = + + +

 = + + + +


(0)
4

1

,10500;

0 0,1 1,0 0,1 1,105 1,21050;
1 2 1,10,11 1,11034;

2 1,105 1,21056

K

y









 = + + + ⋅ =


+ ⋅ +  = + =  + ⋅ + 

113

Figure 3.8 – Scheme of the algorithm for the fourth-order Runge-Kutta method

114

()

(1)
1 1 1

(1) (1)
2 1 1 1

(1) (1)
3 1 1 2

(1) (1)
4 1 1 3

(1) (1) (1) (1)
2 1 1 2 3 4

;

;
2 2

;
2 2

;

2 2 ;
6

K y x
h hK y K x

h hK x y K

K x h y hK
hy y K K K K

 = +

 = + + +

 = + + +

 = + + +

 = + + + +


(1)
1

(1)
2

(1)
3

(1)
4

2

1,11034 0,1 1,2100;
0,1 0,11,11034 1,210 0,1 1,3210;
2 2

0,1 0,10,1 1,11034 1,321 1,3270;
2 2

0,1 0,1 1,11034 0,1 1,327 1,4430;
1,210 2 1,3210,11,11034 1,2428

2 1,327 1,4436

K

K

K

K

y

= + =

= + + + =

= + + + =

= + + + ⋅ =

+ ⋅ + 
= + = + ⋅ + 

;













 …………………………………………………… .

Also, for a comparative analysis of the accuracy of the fourth-order Runge-
Kutta solution, an analytical solution of the ODE was obtained, namely:

2 1xy e x= − − . (3.38)

In the process of solving, Table 3.3 of the calculation results was compiled.
From the obtained results, given in Table 3.3, a high degree of accuracy in

determining the solution can be seen, particularly at the points x5 = 0,5 and
x10 = 1,0:

– relative error by comparing the values of the analytical solution and the
Runge-Kutta method of the fourth order

 5 5

5

5

41,79744 1,79743100% 100% 5,56 10 %
1,79744

x x
x

x

y y

y
−

− −
∆ = ⋅ = ⋅ = ⋅





,

 10 10

10

10

43,43656 3,43655100% 100% 2,90 10 %
3,43656

x x
x

x

y y

y
−

− −
∆ = ⋅ = ⋅ = ⋅





;

– the value of the error indicator according to the Collatz's method does
not exceed a few hundredths

115

5 5

5 5 5

2 3

1 2

2,1328240 2,140283
1,98

0
36422 2,1

,0
2

05
3 824

x x

x x x
K KR
K K

− −
= = =

− −
;

10 10

10 10 10

2 3

1 2

4,1651520 4,177450
3,9191925

0,005
4,165152

x x

x x x
K KR
K K

− −
= = =

− −
.

It is also possible to note the relatively high accuracy of the fourth-order
Runge-Kutta method compared to the conventional and refined Euler’s methods
when solving the Cauchy ODE problem.

Table 3.3 – Calculation results for the solution of the differential equation

n xn ()
1

nK ()
2

nK ()
3

nK ()
4

nK yn(xn) ()n ny x

0 0,0 0,0000000 0,000000 0,000000 0,000000 1,00000 1,00000
1 0,1 1,0000000 1,100000 1,105000 1,210500 1,11034 1,11034
2 0,2 1,2100000 1,321000 1,327000 1,443000 1,24280 1,24281
3 0,3 1,4428000 1,564940 1,571047 1,699905 1,39971 1,39972
4 0,4 1,6997113 1,834697 1,841446 1,983856 1,58364 1,58365
5 0,5 1,9836422 2,132824 2,140283 2,297671 1,79743 1,79744
6 0,6 2,2974343 2,462306 2,470550 2,644489 2,04423 2,04424
7 0,7 2,6442283 2,826440 2,835550 3,027783 2,32750 2,32751
8 0,8 3,0274948 3,228870 3,238938 3,451389 2,65107 2,65108
9 0,9 3,4510698 3,673623 3,684751 3,919545 3,01919 3,01921
10 1,0 3,9191925 4,165152 4,177450 4,436937 3,43655 3,43656

Consider the implementation of the Runge-Kutta method in the PYTHON

programming language:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import *
from sympy import *
entering the integration step
h=float(input())
entering the initial value of the integration argument (total integration

interval)
a=int(input()); x_mtr=np.array(a)
inputting the initial value of the argument of the function of the

differential equation
y_0=int(input()); y_mtr=np.array(y_0)
entering the final value of the total integration interval
b=int(input())

116

Introduction to the permissible error of calculation according to the Kolatz
method

e_0=float(input())
setting the function of the differential equation
def f(x,y):
 return x+y

calculation of iterative formulas
x_mas=[a]; y_mas=[y_0]
x_mtr=np.array(a)
x=a; y=y_0
while x<b:

 # iterative formula of the Runge-Kutta method
 K1=f(x,y); K2=f(x+(h/2),y+(h/2*K1))
 K3=f(x+(h/2),y+(h/2*K2))
 K4=f(x+(h/2),y+(h*K3))
 y=y+(h/6*(K1+(2*K2)+(2*K3)+K4))
 x=x+h
 x_mas.append(x)
 y_mas.append(y)
 x_mtr=np.append(x_mtr, x)

determination of the calculation error by the Collatz method and adjustment
of the integration step
 if abs(K2-K3)/abs(K1-K2)>=e_0:

 h=h/2; x=a; del x_mas; del x_mtr; del y_mas
 x_mas=[a]; x_mtr=np.array(a); y_mas=[y_0]; y=y_0

we construct graphs of the solutions of the differential equation
plt.figure(figsize=(7, 7))
plt.xlabel('x',fontsize=15, color='blue')
plt.ylabel('y',fontsize=15, color='blue')
plt.plot(x_mas, y_mas)
plt.plot(x_mtr, (2*(e**x_mtr))-x_mtr-1)
plt.legend(['Runge-Kutta method','f(x)=2*exp(x)-x-1'],loc=1)
plt.grid(True)
plt.xlim([0, 1])
plt.ylim([1, 4])
plt.show().

All Runge-Kutta methods are generalized to ODE systems. Let a system of
differential equations be given:

(,)dy f x y
dx

= ; [;]x a b∈ , (3.39)

with initial conditions – 0()y a y= , де ()1 2, , , T
ny y y y=  ; ()1 2, , , T

nf f f f=  ;

()0 10 20 0, , , T
ny y y y=  .

The value h > 0 is chosen, and a uniform grid is constructed:

; 0, ;n n n
b ax x a nh n N N

h
ω − = = + = = 

 
.

The task is to determine the value of the approximate solution ()n ny y x=
(1,n N=) according to formulas 1n n ny y y+ = + ∆ (1, 1n N= −), where ny∆ is
calculated, for example, according to the following formula:

117

()
()

()

() () () ()
1 1 2 3 4

()
1

() ()
2 1

() ()
3 2

() ()
4 3

2 2 ;
6
, ;

, ;
2 2

, ;
2 2

, ;

0, 1.

n n n n
n n

n
n n

n n
n n

n m
m m

n n
n n

hy y K K K K

K f x y

h hK f x y K

h hK f x y K

K f x h y hK

n N

+
 = + + + +


=

  = + +   
  = + +  

 
 = + +
 = −

 (3.40)

So, knowing 0y , 1y is calculated using formulas (3.40). Taking ()1 1,x y as the
initial data and repeating the same process, 2y is determined, etc. Similarly, any
computational scheme of the Runge-Kutta method for one equation is transferred
to a system of equations of the form (3.39). Example 3.4 examines the application
of numerical Runge-Kutta methods for higher-order ODE, which also additionally
allows determining the features of the numerical solution of ODE systems.

To estimate the total error of the numerical solution of the Cauchy problem
for ODE systems, the Runge method can be used based on equation (3.26). This
equation compares the results of calculating the values ny and ny at the point xn
with different steps nh and nh , respectively:

 () ()/ 1 2h p
n n nR y y −= − − , (3.41)

where p=4 – the order of approximation of the difference scheme used by the
fourth-order Runge-Kutta method.

The algorithm of the Runge-Kutta method for solving the ODE systems with
calculation error determination and automatic step selection is presented in Figure
3.9.

Example 3.4. Use the Runge-Kutta method to obtain a numerical solution to

the equation of oscillations of a pendulum in a medium that creates resistance to
movement:

2

2 0,2 10sin 0d d
dt dt
θ θ θ+ + = ; t⋲[0; 1,0] (3.42)

under the initial conditions θ(0) = 0,3; (0) 0d
dt
θ

= and cutoff errors Rh = 0,001.

In equation (3.42), θ(t) is a function of the pendulum deflection angle, which
depends on time t.

118

Figure 3.9 – Scheme of the fourth-order Runge-Kutta algorithm for ODE systems

119

Solution:

To solve this problem, the segment [0; 1,0] can be divided into ten parts by
the points x0 = 0; 0,1; 0,2; …, 1,0. Therefore, h=0.1. To solve the problem,

substitution dz
dt
θ

= is introduced. Then equation (3.42) with the initial conditions

can be presented in the form of the ODE system:

;

0,2 10sin ;

(0) 0,3; (0) 0.

d z
dt
dz z
dt

z

θ

θ

θ

 =

 = − −


= =


 (3.43)

Also, for a comparative analysis of the accuracy of the solution obtained by
using the fourth-order Runge-Kutta method, an analytical solution of the ODE
type (3.42) was obtained under the assumption that θ→0, namely:

 []0,1() 0,3 cos(3,1607) 0,03164 sin(3,1607)tt e t tθ −= ⋅ + ⋅ ⋅ . (3.44)

The values of θ1, θ2, …, θn and z1, z2, …, zn will be determined by the Runge-
Kutta method of the fourth order according to formula (3.40), namely:

(0)
1 0 0 0 0 0

(0) (0) (0) (0) (0)
2 0 1 0 1 0 0 1 0 1

(0) (0) (0) (0) (0)
3 0 2 0 2 0 0 2 0 2

(, ,) 0,2 10sin ;

(, ,) 0,2 10sin ;
2 2 2 2 2

(, ,) 0,2 10sin
2 2 2 2 2

z

z z z

z z z

K f z t z
h h h h hK f K z K t z K K

h h h h hK f K z K t z K K

θ θ

θ θ

θ θ

θ θ

θ θ

= = − −

   = + + + = − + − +   
   
  = + + + = − + − +  
  

() ()
()

(0) (0) (0) (0) (0)
4 0 3 0 3 0 0 3 0 3

(0) (0) (0) (0)
1 0 1 2 3 4

;

(, ,) 0,2 10sin ;

2 2 ;
6

z z z

z z z z

K f hK z hK t h z hK hK

hz z K K K K

θ θθ θ






 
 


 = + + + = − + − +



= + + + +

120

[]

(0)
1

(0)
2

(0)
3

(0)
4

0,2 0 10 sin 0,3 2,95520;
0,1 0,10,2 0 (2,9552) 10 sin 0,3 0 2,92565;
2 2

0,1 0,10,2 0 (2,92565) 10 sin 0,3 (0,14776) 2,85529;
2 2

0,2 0 0,1(2,85529)

z

z

z

z

K

K

K

K

= − ⋅ − ⋅ = −

   = − ⋅ + − − ⋅ + = −      
   = − ⋅ + − − ⋅ + − = −      

= − ⋅ + − []

()1

10 sin 0,3 0,1(0,28553) 2,75804;
0,10 2,95520 2 2,92565 2 2,85529 2,75804 0,28792;
6

z









 − ⋅ + − =

 = − + ⋅ + ⋅ + = −


−



(0)
1 0 0 0 0

(0) (0) (0) (0)
2 0 1 0 1 0 0 1

(0) (0) (0) (0)
3 0 2 0 2 0 0 2

(0) (0) (0) (0)
4 0 2 0 2 0 0 3

(0)
1 0 1

(, ,) ;

, , ;
2 2 2 2

, , ;
2 2 2 2

, , ;

2
6

z z

z z

z z

K z t z
h h h hK K z K t z K

h h h hK K z K t z K

K hK z hK t h z hK

h K

θ

θ θ

θ θ

θ θ

θ

ψ θ

ψ θ

ψ θ

ψ θ

θ θ

= =

 = + + + = +  
 = + + + = +  
 = + + + = + 

= + +()(0) (0) (0)
2 3 42 ;K K Kθ θ θ













+ +

()

(0)
1 0

(0)
2

(0)
3

(0)
4

1

0,00000;
0,10 (2,95520) 0,14776;
2

0,10 (2,92565 0,14628;
2

0 0,1 (2,85529) 0,28553;
0,10,3 0 2 0,14776 2 0,14628 0,28553 0,2 ;

)

8554
6

K z

K

K

K

θ

θ

θ

θ

θ

 = =

 = + − = −

 = + − = −

 = + ⋅ − = −

 = − + ⋅ + ⋅ + =


 ………………………………………………………………… .

In the process of solving, Table 3.4 was compiled with the results of the

calculation using the fourth-order Runge-Kutta numerical method and the
analytical solution (3.43), which are graphically interpreted in Figure 3.10.
Additionally, to determine the calculation error using the Runge method (3.41),
the value ()n nxθ was determined with a step size of h/2 = 0,05.

Table 3.4 shows that the value of the angle of deviation θn(tn) of the pendulum
in a resisting medium decreases over time, which corresponds to the physics of
the analyzed process.

121

Table 3.4 – Calculation results for the solution of the differential equation

n tn, sec θn(tn), grad ()n nxθ , grad ()n
d t
dt
θ , grad

sec
 ()ntθ , grad

0 0,0 0,30000 0,30000 0,00000 0,30000
1 0,1 0,28544 0,28544 – 0,28792 0,28522
2 0,2 0,24352 0,24351 – 0,54295 0,24274
3 0,3 0,17876 0,17874 – 0,74113 0,17726
4 0,4 0,09783 0,09780 – 0,86376 0,09567
5 0,5 0,00892 0,00889 – 0,89960 0,00630
6 0,6 – 0,07910 – 0,07914 – 0,84648 – 0,08191
7 0,7 – 0,15763 – 0,15767 – 0,71161 – 0,16034
8 0,8 – 0,21919 – 0,21923 – 0,51039 – 0,22147
9 0,9 – 0,25819 – 0,25821 – 0,26420 – 0,25964
10 1,0 – 0,27135 – 0,27136 0,00225 – 0,27157

Figure 3.10 – Diagram of numerical solution results for higher-order Cauchy
problems of ODE using the fourth-order Runge-Kutta method

The obtained results, given in Table 3.4, show a high degree of accuracy in
determining the solution, particularly at the points t3 = 0,3 sec і t10 = 1,0 sec:

– relative error by comparing the values of the analytical solution and the
Runge-Kutta method of the fourth order

122

3 3

3

3

0,17876 0,17726100% 100% 0,850 %
0,17726

t t
t

t

θ θ
ε

θ

− −
= ⋅ = ⋅ =




,

 10 10

10

10

0,27157 (0,27135)100% 100% 0,081%
0,27157

t t
t

t

θ θ
ε

θ

− − − −
= ⋅ = ⋅ =

−





;

– error in the Runge method’s approximation (see 3.41)

 () () () ()
3 3 3

4 5/ 1 2 0,17876 0,17874 / 1 2 2,13 10h p
x x xR θ θ − − −= − − = − − = ⋅ ,

 () () () ()
10 10 10

4 5/ 1 2 0,27135 (0,27136) / 1 2 1,07 10h p
x x xR θ θ − − −= − − = − − − − = ⋅ .

Consider the implementation of the fourth-order Runge-Kutta method for

systems of differential equations in the PYTHON programming language.

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import *
from sympy import *
entering the integration step
h_0=float(input())
entering the initial value of the integration argument (total integration

interval) t0
a=int(input()); t_mtr=np.array(a)
#entering the initial value of the argument of the function of the

differential equation q0
q_0=float(input()); q_mtr=np.array(q_0)
entering the initial value of the argument of the differential equation

function z0
z_0=float(input()); z_mtr=np.array(z_0)
#entering the final value of the total integration interval
b=int(input())
entering the permissible calculation error
e_0=float(input())
setting the functions of the differential equation system
def f1(z):
 return z
def f2(q,z):
 return (-0.2*z)-(10*math.sin(q))
calculation of iterative formulas
def runge(a,b,q_0,z_0,h_0):
 t=a; q=q_0; z=z_0
 t_mas=[t]; q_mas=[q]; z_mas=[z]
 t_mtr=np.array(t)
 q_mtr=np.array(q_0)
 z_mtr=np.array(z_0)
 h=h_0
 while t<=b:
 # iterative formulas of the Runge-Kutta method
 K1_Z=f2(q,z); K1_Q=f1(z)
 K2_Z=f2(q+(h/2*K1_Q),z+(h/2*K1_Z)); K2_Q=f1(z+(h/2*K1_Z))
 K3_Z=f2(q+(h/2*K2_Q),z+(h/2*K2_Z)); K3_Q=f1(z+(h/2*K2_Z))
 K4_Z=f2(q+(h*K3_Q),z+(h*K3_Z)); K4_Q=f1(z+(h*K3_Z))
 z=z+(h/6*(K1_Z+(2*K2_Z)+(2*K3_Z)+K4_Z))
 q=q+(h/6*(K1_Q+(2*K2_Q)+(2*K3_Q)+K4_Q))
 t=t+h
 q_mas.append(q)

123

 z_mas.append(z)
 t_mas.append(t)
 t_mtr=np.append(t_mtr, t)

 return t_mas, q_mas, z_mas, t_mtr
determination of the calculation error by the Runge method and adjustment

of the integration step
p=4; x=a
while x<=b:

 n=0
 for k in range(0,len(runge(a,b,q_0,z_0,h_0/2)[1]),2):

 Rh_q=(runge(a,b,q_0,z_0,h_0)[1][n]-
runge(a,b,q_0,z_0,h_0/2)[1][k])/(1-(1/2**p))
 Rh_z=(runge(a,b,q_0,z_0,h_0)[2][n]-

runge(a,b,q_0,z_0,h_0/2)[2][k])/(1-(1/2**p))
 #print(Rh_q)
 #print(Rh_z)
 n=n+1
 x=x+h_0
 if abs(Rh_q>e_0) and abs(Rh_z>e_0):

 h_0=h_0/2; x=a
 break

we construct graphs of the solutions of the differential equation
plt.figure(figsize=(7, 7))
plt.xlabel('t',fontsize=15, color='blue')
plt.ylabel('psi, dPsi(t)/dt',fontsize=15, color='blue')
plt.plot(runge(a,b,q_0,z_0,h_0)[0], runge(a,b,q_0,z_0,h_0)[1])
plt.plot(runge(a,b,q_0,z_0,h_0)[0], runge(a,b,q_0,z_0,h_0)[2])
plt.plot(runge(a,b,q_0,z_0,h_0)[3], 0.3*(e**(-

0.1*runge(a,b,q_0,z_0,h_0)[3]))*
 (np.cos(3.1607*runge(a,b,q_0,z_0,h_0)[3])+
 (0.03164*np.sin(3.1607*runge(a,b,q_0,z_0,h_0)[3]))))

plt.legend(['The Runge-Kutta method for Psi(t)',' The Runge-Kutta method
for dPsi(t)/dt',' The exact solution], loc=1)

plt.grid(True)
plt.xlim([0, 1])
plt.ylim([-0.95, 0.45])
plt.show().

It should be noted in Table 3.4 that at other time intervals tn, there is a
significant discrepancy between the results of numerical and analytical
calculations. This discrepancy is caused by obtaining the analytical calculation
(3.43) based on the assumption that θ→0.

The above-mentioned numerical one-step methods for solving the Cauchy
problem for ODE can be summarized by the following characteristics.

1) to obtain information at a new point, data from only one previous point is
required;

2) all one-step methods are based on the decomposition of the function into
a Taylor series, in which the terms containing the step h to the power of n inclusive
are stored. An integer is called the order of the method, and the step error has the
order of т+1;

3) one-step methods do not require the calculation of derivatives because
only the function is calculated, but its value at several intermediate points may be
required;

4) there is a possibility of changing the size of the calculation step.

124

Adams’ method

In one-step methods for solving the Cauchy problem for a single ODE:

 0 0 0(,); ; ()du f x u x x u x u
dx

= > = , (3.45)

which is considered correctly set, the value of un+1 depends only on the
information about the solution at the previous grid point xn (n = 0, 1, 2, …).

To increase accuracy, information about the solution at several previous grid
points xn, xn-1, xn-2, … can be used. Moreover, it is expedient to use the
information with a forward run beyond the point xn+1.

In multi-step, as well as single-step, methods, it is advisable to use a constant
step size in the calculation grid:

 ; 0, ;h m m
b ax x a mh m N N

h
ω − = = + = = 

 
. (3.46)

The grid functions yn = y(xn), fn = f(xn, yn), un = u(xn) defined on grid hω (3.46)
are entered. A linear n-step difference method is called a system of difference
equations:

 0 1 1 2 2
0 1 1

n n n m n m
n n m n m

a y a y a y a y b f b f b f
h

− − −
− −

+ + + +
= + + +



 , (3.47)

or in the compact form
0 0

m m
k n k

k n k
k k

a y b f
h

−
−

= =

=∑ ∑ , which is defined for n = m, (m+1),

…, where ak, bk are numerical coefficients that do not depend on n (k = 0, 1, …,
m), and 0 0a ≠ . Equation (3.47) is a recurrence relation for the determination of
the new value yn = y(xn) using the previously found values yn-1, yn-2, …, yn-m.

A partial case of multi-step methods (3.47) is the presence of the condition
when the derivative ()u x′ is approximated only by two points xn and xn–1, that
is, the coefficients ak acquire the following values: a0 = –a1 = 1; ak = 0 (k = 2,
3, …, m). In this case, the Adams’ method is used, which generally has the
form:

 1

0

m
n n

k n k
k

y y b f
h

−
−

=

−
=∑ . (3.48)

for b0 = 0, the methods are called explicit, and the order of approximation is
equal to m. For b0 ≠ 0, the methods are called implicit, and the order of
approximation is equal to m+1.

For explicit m-step Adams’ methods, the coefficients of the highest-order
method of approximation of equations (3.48) are determined for each value of m.

125

In particular, for m=4, an explicit method of the fourth order of approximation
will be obtained:

 ()1
1 2 3 4

1 55 59 37 9
24

n n
n n n n

y y f f f f
h

−
− − − −

−
= − + − (3.49)

with a local error 5 (5)251 ()
720

h u xρ = .

Formula (3.49) is known as the fourth-order Adams-Bashforth method. The
coefficients of the highest order approximation of equation (3.48) in this method
can be obtained by using information from an even larger number of previous
points, which also allows for obtaining the high-order Adams-Bashforth method.
However, the accuracy of calculations increases non-linearly with increasing
order (the greater the distance between the previous point and the current one, the
weaker its effect on the accuracy).

Multi-step methods give rise to the same problem as single-step methods.
Since multi-step methods use information about previously obtained points,
unlike single-step methods, they do not have the property of being «self-
starting». Therefore, before applying the multi-step method, it is necessary to
calculate the raw data using single-step methods, such as the Euler or Runge-
Kutta methods.

In implicit m-step Adams’ methods, for each value of m, the coefficients of
the method of the highest order of approximation of equations (3.48) are
determined, which are equal to (m+1). In this case, the next class of implicit
computing methods arises, which are called Adams-Moulton methods of the
second, third, and fourth orders, respectively. In particular, for m=3, the fourth-
order approximation method O(h4) will be obtained.

 ()1
1 2 3

1 9 19 5
24

n n
n n n n

y y f f f f
h

−
− − −

−
= + − + (3.50)

with a local error 5 (5)19 ()
720

h u xρ = − .

In the formula (3.50), the value of fn is unknown, since for the calculation
f(xn, yn) = fn, three values of yn that are unknown must be used. Accordingly, the
Adams-Moulton methods determine the value of yn implicitly. On the other hand,
the Adams-Bashforth methods are called explicit because the process of
determining the value of yn does not require solving any equations. Therefore, in
practice, a common explicit and implicit formula is used when solving the ODE,
which leads to the application of the «prediction and correction» method (a
combination of fourth-order Adams’ methods):

126

()

()
()

*
1 1 2 3 4

*
1 1 2 3

55 59 37 9 ;
24

, ;

9 19 5 .
24

n n n n n n

n n n

n n n n n n

hy y f f f f

f f x y

hy y f f f f

− − − − −

∗ ∗

− − − −

 = + − + −
 =

 = + + − +


 (3.51)

In general, the method of «prediction and correction» is clear. First, the
Adams-Bashforth formula (3.49) calculates the value of *

ny in (3.51), which is a
«prediction» for yn. The value of *

ny is then used to calculate the approximate
value of *

nf in (3.51), which is also used in the Adams-Moulton formula (3.50).
Thus, the Adams-Moulton formula «corrects» the approximation defined by the
Adams-Bashforth formula (3.49). Since the series intercept errors for the Adams-

Bashforth prediction formulas *
ny (3.49) are 5 (5)251 ()

720
h u xρ = , and for the

Adams-Moulton adjustment yn (3.50) are 5 (5)19 ()
720

h u xρ = − , this allows further

reduction of the calculation error by 3%.
The correction equations are more accurate than the forecasting formulas,

allowing you to generally increase the accuracy of the calculation of the ODE,
despite the occurrence of additional calculations. Additionally, to achieve the
highest calculation accuracy, the correction process in the «prediction and
correction» methods can be repeated several times at the same iteration step to
obtain a value with a certain specified accuracy using the absolute error

* ()i
n ny y− ≤ ∆ , where ()i

ny represents the current value of the solution by the
Adams-Moulton method (3.50) at a certain iterative step of the general method of
«prediction and correction» methods.

The algorithm of the Adams method is presented in Figure 3.11.
Adams’ method («prediction and correction») has been successfully

generalized to the Cauchy problem of ODE systems. Let a system of differential
equations be given:

(,)dy f x y
dx

= ; [;]x a b∈ , (3.52)

with initial conditions – 0()y a y= , де ()1 2, , , T
ny y y y=  , ()1 2, , , T

nf f f f=  ,
()0 10 20 0, , , T

ny y y y=  .

127

Figure 3.11 – Scheme of the Adams’ method algorithm

The value h > 0 is chosen and a uniform grid is constructed:

; 0, ;n n n
b ax x a nh n N N

h
ω − = = + = = 

 
.

The problem is to determine the value of the approximate solution ()n ny y x=
(1,n N=) using the following formulas (generalization of formula (3.51) for the
case of differential equations):

128

()
()

()

*
1 1 2 3 4

*
1 1 2 3

55 59 37 9 ;
24

, ;

9 19 5 (1, 1).
24

m m m m mm

m m m

m m m m m m

hy y f f f f

f f x y

hy y f f f f m N

− − − − −

∗ ∗

− − − −

 = + − + −
 =

 = + + − + = −

 (3.53)

So, having obtained values 0y , 1y , 2y 3y and 0f , 1f , 2f , 3f according to
formulas (3.40), values 4y and 4f are calculated according to formulas (3.53).
Taking ()4 4,x y and ()4 4,f x y as inputs and repeating the same process, 5y is
determined, and so on.

The algorithm of the Adams’ method for solving the ODE systems is
presented in Figure 3.12.

Example 3.5. To solve the Cauchy problem for the first-order ODE using the

numerical method of «prediction and correction» based on Adams’ iterative
formulas:

dy y x
dx

= + ; x⋲[0; 1,0], (3.54)

which satisfies the initial condition for x0=0, y0=1,0 and the absolute error at the
adjustment stage Δ=10-4.

Solution:
To solve this problem, the segment [0; 1,0] can be divided into ten parts by

points x0=0; 0,1; 0,2; …, 1,0. Accordingly, h=0,1. To begin with, the value of
0y , 1y , 2y , 3y is determined by the Runge-Kutta method of the fourth order in

example 3.3 (see Table 3.3). Also, for comparison, the value of 1y , 2y , 3y , 4y of
the analytical solution of the ODE (3.54) was obtained and summarized in Table
3.5. The application of the numerical method of «prediction and correction»
begins with obtaining the solutions of the ODE by the explicit Adams-Bashforth
method (3.49) of the difference scheme (3.51). To begin with, the «initial
segment» from Table 3.5 is selected, namely: x0=0,0; x1=0,1; x2=0,2; x3=0,3;

0y =1,0; 1y =1,11034; 2y =1,24280; 3y =1,39971.
Then the «prediction» calculation is performed (using the explicit Adams-

Bashforth method (3.49)):

()

()
*

4 3 3 3 3 2 2 1 1 0 04

*
4 4 4 44 4

() () 55 (,) 59 (,) 37 (,) 9 (,) ;
24

, ();

hy x y x f x y f x y f x y f x y

f f x y x y x
∗

∗

 = + − + −

 = = +


129

Figure 3.12 – Scheme of the Adams’ method algorithm for ODE systems

()

*
44

4 4 4

1,24280
1,58365

1,1103
55(0,3 1,39971) 59(0,2)0,1() 1,39971 ;

37(0,1) 9(0 1,0)24

, 0,4 ;

4

1,58365 1,98363

y x

f f x y∗ ∗

 + − + + 
= + =   + + − + 

 = == +

130

()

()
* *

5 4 4 4 3 3 2 2 1 15 4

*
5 5 5 5 55

() () 55 (,) 59 (,) 37 (,) 9 (,) ;
24

, ();

hy x y x f x y f x y f x y f x y

f f x y x y x∗ ∗

 = + − + −

 = = +


()

*
55

5 5 5

1,58365 1,39972
1,58364 1,79741

1,2
55(0,4) 59(0,3)0,1() ;

37(0,2) 9(0,1 1,11034280

1,797

4)24

, 0, 41 2,297 15 4 ;

y x

f f x y∗ ∗

 + − + + 
= + =   + + − + 

= = = +

……………………………………………………………………………. .

To correct the results obtained by the explicit Adams-Bashforth method
(3.49), the implicit Adams-Moulton method (3.50) of the difference scheme
(3.51) is used. To begin with, the «initial segment» from table 3.5 is chosen,
namely: x0=0,0; x1=0,1; x2=0,2; x3=0,3; 0y =1,0; 1y =1,11034;

2y =1,24280; 3y =1,39971. Then the «correction» calculation is performed
(implicit Adams-Moulton method (3.50)):

()
()

* *
4 4 3 3 4 4 3 3 2 2 2 2() () 9 (,) 19 (,) 5 (,) (,)

24
0,11,39971 9 1,9836 1,3 19 5 1,11034 1,58364;
2

39972 1,24280
4

hy x y x f x y f x y f x y f x y= + + − + =

= + ⋅ + ⋅ − ⋅ + =

()
()

* * *
5 5 4 4 5 5 4 4 3 3 2 2() () 9 (,) 19 (,) 5 (,) (,)

24
0,11,39971 9 2,29741 19 5 1,24280 1,79743;
2

1,9836
4

3 1,39972

hy x y x f x y f x y f x y f x y= + + − + =

= + ⋅ + ⋅ − ⋅ + =

 ………………………………………………………………………………. .

Also, to achieve the highest calculation accuracy, the correction process
(implicit Adams–Moulton method (3.50)) can be repeated several times at the
same iteration step to obtain a value with a certain specified accuracy Δ (absolute
error), which was implemented in the PYTHON programming language (see Fig.
3.12):

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import *
from sympy import *
entering the integration step
h=float(input())
entering the initial value of the integration argument (total integration

interval)
a=int(input()); x_mtr=np.array(a)
entering the initial value of the argument of the differential equation

function

131

y_0=int(input()); y_mtr=np.array(y_0)
entering the final value of the total integration interval
b=int(input())
entering the value of the calculation accuracy by the correction formula

of the Adams method
e=float(input())
setting the function of the differential equation
def f(x,y):
 return x+y
determination of the first three values of the solution of the differential

equation
x=a; y=y_0
x_mas=[x]; y_mas=[y]
x_mtr=np.array(a)
y_mtr=np.array(y_0)
while x<3*h:
 # iterative formula of the Runge-Kutta method
 K1=f(x,y); K2=f(x+(h/2),y+(h/2*K1))
 K3=f(x+(h/2),y+(h/2*K2))
 K4=f(x+(h/2),y+(h*K3))
 y=y+(h/6*(K1+(2*K2)+(2*K3)+K4))
 x=x+h
 x_mas.append(x)
 y_mas.append(y)
 x_mtr=np.append(x_mtr, x)
i=4
while x<=b-h:
 # iterative prediction formula of the Adams method
 y=y_mas[i-1]+(h/24*(55*f(x_mas[i-1],y_mas[i-1])-59*f(x_mas[i-

2],y_mas[i-2])+
37*f(x_mas[i-3],y_mas[i-3])-9*f(x_mas[i-4],y_mas[i-4])))

 x=x+h
 f_tran=y
 s_tran=y+1
 # iterative correction formula of the Adams method
 while abs(s_tran-f_tran)<=e:
 s_tran=f_tran
 f_tran=y_mas[i-1]+(h/24*(9*f(x,s_tran)+19*f(x_mas[i-1],y_mas[i-1])-
 5*f(x_mas[i-2],y_mas[i-2])+f(x_mas[i-

3],y_mas[i-3])))
 i=i+1
 x_mas.append(x)
 y_mas.append(f_tran)
 x_mtr=np.append(x_mtr, x)
 x_mtr=np.append(x_mtr, x)
we construct graphs of the solutions of the differential equation
plt.figure(figsize=(7, 7))
plt.xlabel('x',fontsize=15, color='blue')
plt.ylabel('y',fontsize=15, color='blue')
plt.plot(x_mas, y_mas)
plt.plot(x_mtr, (2*(e**x_mtr))-x_mtr-1)
plt.legend([' Adams method','f(x)=2*exp(x)-x-1'],loc=1)
plt.grid(True)
plt.xlim([0, 1])
plt.ylim([1, 4])
plt.show().

From the obtained results, given in Table 3.5, it is clear that a high degree of

absolute and relative error is allowed in the process of determining the solution,
particularly in points x5=0,5 і x10=1,0:

– the relative error is obtained by comparing the values of the analytical
solution and the Adams’ method

55

5

5

41,79744 1,79743100% 100% 5,56 10 %
1,79744

xx
x

x

y y

y
ε −

− −
= ⋅ = ⋅ = ⋅




,

132

 1010

10

10

33,43656 3,43652100% 100% 1,16 10 %
3,43656

xx
x

x

y y

y
ε −

− −
= ⋅ = ⋅ = ⋅




;

– absolute error by comparing the values of «prediction» *()n ny x (Adams-

Bashforth) and «adjustment» ()n ny x (Adams-Moulton)

*
5 5 5

51,79743 1,79741 2,0 10
xx xy y −∆ = − = − = ⋅ ,

 *
10 10 10

53,43652 3,43644 8,0 10
xx xy y −∆ = − = − = ⋅ .

Table 3.5 – Calculation results for the solution of the differential equation

n xn ()n ny x ()n ny x *()n ny x ()n ny x
0 0,0 1,00000 1,00000 1,00000 1,00000
1 0,1 1,11034 1,11034 1,11034 1,11034
2 0,2 1,24280 1,24281 1,24280 1,24280
3 0,3 1,39971 1,39972 1,39971 1,39971
4 0,4 1,58364 1,58365 1,58363 1,58364
5 0,5 1,79743 1,79744 1,79741 1,79743
6 0,6 2,04423 2,04424 2,04410 2,04423
7 0,7 2,32750 2,32751 2,32745 2,32749
8 0,8 2,65107 2,65108 2,65100 2,65106
9 0,9 3,01919 3,01921 3,01911 3,01918
10 1,0 3,43655 3,43656 3,43644 3,43652

Also, in the «prediction and correction» numerical method itself, it is possible

to observe an increase in the accuracy of the calculation using the «correction»
process (Adams-Moulton methods) based on the previously obtained results of
the numerical solution of the ODE based on the «prediction» iterative equation
(Adams-Bashforth method) problems of Cauchy ODE.

Since the solution of the Cauchy problem using the «prediction and
correction» method requires the initial values of the solution of the ODE system,
the data from the solution obtained by applying the fourth-order Runge-Kutta
method in Example 3.4 are necessary for the example.

Example 3.6. To solve the problem of oscillations of a pendulum in an

environment that creates resistance to movement, we will use the numerical
method of «prediction and correction» based on Adams’ iterative formulas:

2

2 0,2 10sin 0d d
dt dt
θ θ θ+ + = ; t⋲[0; 1,0], (3.55)

133

under the initial conditions θ(0) = 0,3; (0) 0d
dt
θ

= and with an absolute error at

the adjustment stage Δ = 10-3, equation (2.60) represents θ(t) as a function of the
pendulum deflection angle (grad) that varies with time t (sec).

Solution:
To solve this problem, the segment [0; 1,0] can be divided into ten parts by

points x0=0; 0,1; 0,2; …, 1,0. Accordingly, h = 0,1. To solve the problem, a

substitution dz
dt
θ

= is introduced. Then equation (3.55) with the initial conditions

can be written in the form of the ODE system:

;

0,2 10sin ;

(0) 0,3; (0) 0.

d z
dt
dz z
dt

z

θ

θ

θ

 =

 = − −


= =


 (3.56)

To begin with, the values 0θ , 1θ , 2θ , 3θ and 0z , 1z , 2z , 3z are determined by
the Runge-Kutta method of the fourth order, as shown in example 3.4 and listed
in Table 3.4. Additionally, for comparison, the value of 0θ , 1θ , 2θ , 3θ from the
analytical solution of ODE (3.43) was obtained and is given in Table 3.4. The
application of the numerical method of «prediction and correction» starts with
obtaining solutions of the ODE using explicit Adams-Bashforth methods of the
difference scheme (3.53). Initially, the «initial segment» from Table 3.6 is
selected, namely: t0=0; t1=0,1; t2=0,2; t3=0,3; 0θ =0,3; 1θ =0,28544; 2θ =0,24352;

3θ =0,17876; 0z =0; 1z =-0,28792; 2z =-0,54295; 3z =-0,74113. After that, the
«prediction» calculation is performed using the explicit Adams-Bashforth method
of the difference scheme (3.53):

()

()

()
()

*
4 4 3 3 3 3 3 2 2 2 1 1 1 0 0 0

*
4 4 3 3 3 3 3 2 2 2 1 1 1 0 0 0

* * *
4 4 4 4 4 4

* * *
4 4 4 4 4

() () 55 (, ,) 59 (, ,) 37 (, ,) 9 (, ,) ;
24

() () 55 (, ,) 59 (, ,) 37 (, ,) 9 (, ,) ;
24

, , ();

, , 0,2 10sin(

ht t f t z f t z f t z f t z

hz t z t t z t z t z t z

f f t z z t

t z z

θ θ θ θ θ θ

ξ θ ξ θ ξ θ ξ θ

θ

ξ ξ θ

∗

∗

= + − + −

= + − + −

= =

= = − − *
4);θ













134

*
4 4

*
4 4

55 (0,74113) 59()0,1() ;
37() 9 024
55 (0,2 () 10sin())

59 (0,2 () 10sin())0,1() 0,74113
37 (0,2 () 10sin24

0,54295
0,17876 0,09801

0,28792

0,74113 0,17876
0,54295 0,24352
0,28792

t

z t

θ
−

−
− − + 

= + = + − ⋅ 
⋅ − ⋅ −− −

− ⋅ −
−

− ⋅ − +
= − +

+ ⋅ − ⋅ −

*
4 4 4

* *
4 4 4

0,862 ;
())

9 (0,2 0 10sin(0,3))

() ;

0,2 10sin() 0,2() 1

99
0,28544

0,86299

0,86299 0,0980sin() ;01 0,80589

f z t

zξ θ

∗

∗




  
  
   =  −
  − ⋅ − ⋅ − 


= =


= − − = − − =

−

−

− −
………………………………………………………………………………. .

To correct the results obtained by the explicit Adams-Bashfort method, the
(implicit) Adams-Moulton method of the difference scheme (3.53) is used. To
begin with, the «initial segment» from Table 3.6 is chosen, namely: t0=0; t1=0,1;
t2=0,2; t3=0,3; 0θ =0,3; 1θ =0,28544; 2θ =0,24352; 3θ =0,17876; 0z =0;

1z =-0,28792; 2z =-0,54295; 3z =-0,74113. Then the «correction» (implicit
Adams–Moulton method) of the difference scheme (3.53) is calculated:

()
()

*
4 4 3 3 4 4 4 3 3 3 2 2 2 1 1 1

*
4 4 3 3 4 4 4 3 3 3 2 2 2 1 1 1

() () 9 (, ,) 19 (, ,) 5 (, ,) (, ,) ;
24

() () 9 (, ,) 19 (, ,) 5 (, ,) (, ,) ;
24

ht t f t z f t z f t z f t z

hz t z t t z t z t z t z

θ θ θ θ θ θ

ξ θ ξ θ ξ θ ξ θ

 = + + − +

 = + + − +


4 4

*
4 4

9 (0,86299) 19 (0,74113)0,1() 0,17876 ;
5 (0,54295) (0,28792)24
9 (0,80589)

19 (0,2 () 10sin())0,1() 0,7411

0,097840

0,74113 0
3

5 (0,2 () 1
,17876

0,5429 0sin())24
(

5 0
0

5
2

2
,

,243

t

z t

θ
⋅ + ⋅ − − 

= + = − ⋅ − + − 
⋅ − +

+ ⋅ − ⋅ − −
= − +

− ⋅ − ⋅ +
+ −

−
− −

0,86390

0,28792 0,28

;

() 10sin())544




  
  
   =  
  ⋅ −

−

− 

…………………………………………………………………………………. .
Also, to achieve the highest calculation accuracy, the correction process

(implicit Adams–Moulton method) of the difference scheme (3.53) can be
repeated several times at the same iteration step to obtain a value with a certain
specified accuracy Δ (absolute error), which was implemented in the
programming language PYTHON (see Fig. 3.12):

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import *
from sympy import *
entering the integration step
h=float(input())

135

entering the initial value of the integration argument (total integration
interval) t0

a=int(input()); t_mtr=np.array(a)
entering the initial value of the argument of the differential equation

function q0
q_0=float(input()); q_mtr=np.array(q_0)
entering the initial value of the argument of the differential equation

function z0
z_0=int(input()); z_mtr=np.array(z_0)
entering the final value of the total integration interval
b=int(input())
entering the value of the calculation accuracy by the correction formula

of the Adams method
e=float(input())
setting the functions of the differential equation system
def f1(z):
 return z
def f2(q,z):
 return (-0.2*z)-(10*math.sin(q))
determination of the first three values of the solution of the differential

equation
t=a; q=q_0; z=z_0
t_mas=[t]; q_mas=[q]; z_mas=[z]
t_mtr=np.array(t)
q_mtr=np.array(q_0)
z_mtr=np.array(z_0)
while t<3*h:
 # iterative formulas of the Runge-Kutta method
 K1_Z=f2(q,z); K1_Q=f1(z)
 K2_Z=f2(q+(h/2*K1_Q),z+(h/2*K1_Z)); K2_Q=f1(z+(h/2*K1_Z))
 K3_Z=f2(q+(h/2*K2_Q),z+(h/2*K2_Z)); K3_Q=f1(z+(h/2*K2_Z))
 K4_Z=f2(q+(h*K3_Q),z+(h*K3_Z)); K4_Q=f1(z+(h*K3_Z))
 z=z+(h/6*(K1_Z+(2*K2_Z)+(2*K3_Z)+K4_Z))
 q=q+(h/6*(K1_Q+(2*K2_Q)+(2*K3_Q)+K4_Q))
 t=t+h
 t_mas.append(t)
 q_mas.append(q)
 z_mas.append(z)
 t_mtr=np.append(t_mtr, t)
i=4
while t<=b-h:
 # iterative prediction formula of the Adams method
 q=q_mas[i-1]+(h/24*(55*f1(z_mas[i-1])-59*f1(z_mas[i-2])+
 37*f1(z_mas[i-3])-9*f1(z_mas[i-4])))
 z=z_mas[i-1]+(h/24*(55*f2(q_mas[i-1],z_mas[i-1])-59*f2(q_mas[i-

2],z_mas[i-2])+
 37*f2(q_mas[i-3],z_mas[i-3])-9*f2(q_mas[i-

4],z_mas[i-4])))
 t=t+h
 b_tran=q; c_tran=z
 a_tran=q+1; d_tran=z+1
 # iterative correction formula of the Adams method
 while abs(b_tran-a_tran)<=e or abs(c_tran-d_tran)<=e:
 a_tran=b_tran; d_tran=c_tran
 b_tran=q_mas[i-1]+(h/24*(9*f1(d_tran)+19*f1(z_mas[i-1])-

5*f1(z_mas[i-2])+
 f1(z_mas[i-3])))
 c_tran=z_mas[i-1]+(h/24*(9*f2(a_tran,d_tran)+19*f2(q_mas[i-

1],z_mas[i-1])-
 5*f2(q_mas[i-2],z_mas[i-2])+f2(q_mas[i-

3],z_mas[i-3])))
 i=i+1
 t_mas.append(t)
 q_mas.append(b_tran)
 z_mas.append(c_tran)
 t_mtr=np.append(t_mtr, t)
we construct graphs of the solutions of the differential equation
plt.figure(figsize=(7, 7))
plt.xlabel('t',fontsize=15, color='blue')
plt.ylabel('psi, dPsi(t)/dt',fontsize=15, color='blue')
plt.plot(t_mas, q_mas)
plt.plot(t_mas, z_mas)

136

plt.plot(t_mtr,0.3*(np.exp(-
0.1*t_mtr))*(np.cos(3.1607*t_mtr)+(0.03164*np.sin(3.1607*t_mtr))))

plt.legend(['The Runge-Kutta method for Psi(t)','The Runge-Kutta method for
dPsi(t)/dt','Exact solution'], loc=1)

plt.grid(True)
plt.xlim([0, 1])
plt.ylim([-0.95, 0.45])
plt.show().

From the obtained results, given in Table 3.6, it is clear that the calculations

are highly accurate compared to the results of analytical calculation (()ntθ) (see
Table 3.4), in particular, at the points t4 = 0,4 sec і t10 = 1,0 sec:

– relative error is calculated by comparing the values of the analytical
solution and the Adams’ method

4
4

4

4

0,09567 0,09783100% 100% 2,26%
0,09567

tt
t

t

θ θ
ε

θ

− −
= ⋅ = ⋅ =




,

 10
10

10

10

(0,27157) (0,27163)100% 100% 0,02%
0,27157

tt
t

t

θ θ
ε

θ

− − − −
= ⋅ = ⋅ =

−





;

– absolute error by comparing the values of «prediction» *()n ntθ (Adams-

Bashforth) and «correction» ()n nxθ (Adams-Moulton)

 4 44

*
40,09783 0,09800 1,7 10t tt θ θ −∆ = − = − = ⋅ ,

 10 1010

*
5(0,27157) (0,27163) 6,0 10t tt θ θ −∆ = − = − − − = ⋅ .

Table 3.6 – Calculation results for the solution of the differential equation

n tn,
sec

*()ntθ ,
grad

*

()n
d t
dt
θ ,

grad/sec

()ntθ ,
 grad

()n
d t
dt
θ ,

grad/sec
()ntθ , grad

0 0,0 0,30000 0,00000 0,300000 0,000000 0,30000
1 0,1 0,28544 – 0,28792 0,285440 – 0,287920 0,28522
2 0,2 0,24352 – 0,54295 0,243520 – 0,542950 0,24274
3 0,3 0,17876 – 0,74113 0,178760 – 0,741130 0,17726
4 0,4 0,09800 – 0,86298 0,097830 – 0,86390 0,09567
5 0,5 0,00914 – 0,89904 0,008901 – 0,89987 0,00630
6 0,6 – 0,07884 – 0,84631 – 0,07916 – 0,84684 – 0,08191
7 0,7 – 0,15740 – 0,71199 – 0,15775 – 0,71194 – 0,16034
8 0,8 – 0,21906 – 0,51117 – 0,21939 – 0,51060 – 0,22147
9 0,9 – 0,25819 – 0,26504 – 0,25845 – 0,26418 – 0,25964
10 1,0 – 0,27147 0,00166 – 0,27163 0,00256 – 0,27157

137

It should be noted that in Table 3.6, at other time intervals tn, there is a
significant discrepancy between the results of numerical and analytical
calculations (see Table 3.4). This discrepancy is also caused by obtaining the
analytical calculation (3.43) under the assumption that θ→0. However, the results
of the numerical calculation using the «prediction and correction» method show
close values to the results of the fourth-order Runge-Kutta calculation in Table
3.4.

Compared to one-step methods, «prediction and correction» methods have a
number of special features:

1. To implement «prediction and correction» methods, it is necessary to have
information about several previous points. Therefore, they do not belong to the
«self-starting» methods, and a certain one-step method must be used to start the
solution. Therefore, in the process of solving differential equations, the
integration step cannot be changed.

2. One-step methods and «prediction and correction» methods provide
approximately the same accuracy of results, but the latter, unlike the former,
allows for easy estimation of the step error.

3. Using the fourth-order Runge-Kutta method, four function values must be
calculated at each step, while two function values are sufficient to ensure
convergence in the «prediction and correction» method of the same order of
accuracy. Therefore, «prediction and correction» methods require almost half as
much machine time as Runge-Kutta methods of comparable accuracy.

3.3 Numerical methods for solving ordinary differential equations in
boundary value problems

During the formulation of the boundary value problem, it is necessary to find
the solution of the n-th order differential equation ()() (1), , , , ,n ny f x y y y y −′ ′′= 

on segment a x b≤ ≤ , subject to the specified boundary conditions:

0 0

1 1

() ()

() , () ;
() , () ;

..;
() , () ;

..;

k m
k m

y a A y b B
y a A y b B

y a A y b B

= =
′ ′= =

= =





() ()() , () ,i j
i jy a A y b B= =

where Ak, Bm are some constants (k=0, 1, 2, …, i; m=0, 1, 2, …, j). The total
number of additional conditions at the ends of the segment [a; b] must be equal to
the order of the differential equation i+j+2=n.

138

In the case of a system of differential equations, the same rule must be
followed. Moreover, additional conditions cannot be concentrated at one end of
the segment. For example, for differential equations of the second and third
orders, the problem is formulated as follows.

Solve the boundary value problem for the equations:
– of the second order (), ,y f x y y′′ ′= on segment a x b≤ ≤ under the

boundary conditions y(a) = A, y(b) = B;
– of the third order (), , ,y f x y y y′′′ ′ ′′= on segment a x b≤ ≤ under the

boundary conditions y(a) = A, yʹ(a) = C, y(b) = B or under the boundary
conditions y(a) = A, y(b) = B, yʹ(b) = D.

Constants A, B, C and D correspond to the values of the specified functions at
points a and b.

Specific boundary conditions are selected from the physical formulation of
the problem.

The Cauchy problem differs from boundary-value problems in that the region
in which the solution must be determined is not specified in advance. However,
the Cauchy problem can be considered as one of the boundary value problems.
The Cauchy problem usually arises during the analysis of processes determined
by the differential law of evolution and the initial state (the mathematical
expression of which is the equation and the initial condition). Moreover, there are
methods that allow the search for the solution of the boundary value problem to
lead to the search for the solutions of a series of Cauchy problems for the
corresponding differential equation. One such well-known numerical method for
solving the ODE for boundary value problems is the «shooting» method.

«Shooting» method

The «shooting» method reduces the solution of the boundary value problem
for the ODE to the solution of an iterative sequence of Cauchy problems. Suppose
it is necessary to solve the following boundary value problem of the type:

 () (, ,)y x f x y y′′ ′= , xϵ[a; b]; (3.57)

 y(a) = A; (3.58)
 y(b) = B. (3.59)

Instead of the boundary value problem (3.57) – (3.59), the following Cauchy
problem is considered:
 () (, ,)y x f x y y′′ ′= , xϵ[a; b]; (3.60)

 y(a)=A; (3.61)
 ()y a tgα′ = , α: y(b, α) = B, (3.62)

139

in which the integral curve y(x, α) depends not only on the variable x but also on
the parameter α, which is called the shooting angle (the angle between the tangent
to the curve of the ODE solution and the abscissa axis). It is chosen based on the
condition that the value of the integral curve on the right boundary, y(b, α), is
equal to the value of B with a predetermined accuracy ε (Fig. 3.13):

 (,)y b Bα ε− ≤ . (3.63)

The shooting angle that satisfies the inequality (3.63) will be denoted by α*.
The integral curve obtained from the solution of the Cauchy problem (3.60)–
(3.62) with an angle close to this value, according to inequality (3.63), will be the
solution of problem (3.57)–(3.59) with an accuracy of ε.

Figure 3.13 – Diagram of the geometric interpretation of the «shooting»

method

Thus, to implement the «shooting» method, the initial value of the angle α0

from condition 0
B Atg
b a

α −
=

−
 is initially selected. With this value of α0, one of the

known numerical methods discussed above solves the Cauchy problem
(3.60)–(3.62) to obtain y(x, α0) and y(b, α0). If condition (3.63) is fulfilled at the
same time, then the boundary value problem (3.57)–(3.59) is solved with accuracy
ε.

Otherwise, there may be two options:
a) if y(b,!α0) > B, then the aiming angle is reduced in some way and the

Cauchy problem (3.60)–(3.62) is solved using the same numerical method until
the condition y(b, α0) < B is met;

b) if y(b,!α0) < B, then the angle of attack is increased in any way and the
Cauchy problem is solved until the condition y(b, α0) > B is fulfilled.

140

Thus, the aiming angle is in the middle of the interval αϵ[α0; α1]. After this,
the true value α* of the aiming angle is determined by the method of halving,
namely: the next value of the angle is determined using the iterative formula
αk+1 = (αk-1+αk)/2. The value of the ordinates y(x, αk+1) and y(b, αk+1) is determined
at the corresponding points. After that, the inequality (,)y b Bα ε− ≤ is analyzed.
If it is fulfilled, then α*= (αk-1+αk)/2 and y(x*, αk+1) is a true integral curve. If the
inequality does not hold, then the iterative process is repeated from the beginning.

The halving method converges very slowly, and it is necessary to solve a
significant number of Cauchy problems for different «shooting» angles αk.
Newton’s iterative formula is used to accelerate the convergence of the iterative
process:

 1 1
1

(,) ()
(,) (,)

k
k k k k

k k

B y b
y b y b

αα α α α
α α+ −

−

−
= + −

−
. (3.64)

To determine the preliminary value of the aiming angle αk-1 in equation (3.64),
the intermediate value determined at the first iteration step for k=1 is used,
namely:

 0
1 0

0 0

(,)
(,) (,)

B y b
y b y b

αα α δ
α δ α

−
= +

+ −
, (3.65)

where δ – a small value of the angle increment (δ=10°… 20°).
The algorithm for the «shooting» method to solve ODE boundary value

problems is presented in Figure 3.14.

Example 3.7. To solve the boundary value problem for the second-order

ODE with the accuracy of ε = 0,01 using the numerical "shooting" method:

 21y y x
x

′′ ′= + , (3.66)

which satisfies the initial conditions y(1, 0) = 0 і y(2, 0) = 1.

Solution:

The boundary value problem (3.66) reduces to the Cauchy problem:

2

*

* *

1 ;

(1) 0;
(1) ;
(2,) 1; ().

y y x
x

y
y tg
y

α

α α α

 ′′ ′= +
 =
 ′ =


= =

 (3.67)

141

Figure 3.14 – Scheme of the «shooting» method algorithm

The equation f(α) = y(2, α) – y(2, α*) = y(2, α) – 1, as a nonlinear equation

with respect to the aiming angle α, can be solved using one of the numerical
iterative methods considered, with parallel solving of the Cauchy problem at each
iteration.

Let the initial aiming angle α0 be determined using the relation:

0
1 0 1
2 1

B Atg
b a

α − −
= = =

− −
; α0=45°.

Then the Cauchy problem for the second-order ODE (3.67) and the
corresponding Cauchy problem for the normal system of the second-order ODE
at the first iteration will have the form:

142

2

0

1 ;

(1,0) 0;
(1,0) 1;

y y x
x

y
y tgα

 ′′ ′= +


=
 ′ = =


 →
2

;
1 ;

(1,0) 0;
(1,0) 1.

y z

z z x
x

y
z

′ =

 ′ = +

 =


=

 (3.68)

Solving the system (3.68) with a step size h=0,25 using the fourth-order
Runge-Kutta numerical method, we obtain: y(2, 45°) = y4 = 2,625 (Table 3.7).
Since f1(45°) = y(2, 45°)–1 = 2,625–1,0 = 0,625 > 0, it is necessary to reduce the
shooting angle α (for example, Δδ = 44°) so that the value of f(α) is less than zero
in the next iteration. You can take α1 = α0–Δδ= 45°–44° = 1°, and then the Cauchy
problem at the second iteration will have the form:

2

1

1 ;

(1,0) 0;
(1,0) 0,0175;

y y x
x

y
y tgα

 ′′ ′= +


=
 ′ = =


 →
2

;
1 ;

(1,0) 0;
(1,0) 0,0175.

y z

z z x
x

y
z

′ =

 ′ = +

 =


=

 (3.69)

Solving the system (3.69) again with a step size h = 0,25 using the fourth-
order Runge-Kutta numerical method will yield: y(2, 1°) = y4 = 1,151 (see Table
3.7). Since f2(1, 0°) = y(2, 1°) –1 = 1,151–1,0 = 0,151 > 0, it is necessary to
reduce the aiming angle α until the value of f(α) at the next iteration is less than
zero. Therefore, taking α2 = α1–Δδ = 1°–44° = –43°, the solution to the Cauchy
problem at the third iteration will be y(2, -43°) = y4 = -0,274 (see Table 3.7), i.e.,
f3(1°) = y(2, 1°) –1 = 1,151–1,0 = 0,151 > 0.

Accordingly, the angle α* is within the interval: α1=1°< α*< α2= –43°.
At the fourth iteration, the aiming angle is selected based on the iterative

formula α3 = (α1+α2)/2 = (1°+(–43°))/2 = -21°. Then the Cauchy problem at the
fourth iteration will have the form:

2

3

1 ;

(1) 0;
(1) 0,384;

y y x
x

y
y tgα

 ′′ ′= +


=
 ′ = = −


 →
2

;
1 ;

(1) 0;
(1) 0,384.

y z

z z x
x

y
z

′ =

 ′ = +

 =


= −

 (3.70)

Solving the system (3.70) with a step h = 0,25 by the Runge-Kutta numerical
method of the fourth order, we obtain: y(2–21°) = y4 = 0,549 (see Table 3.7). Then
f 4(–21°) = y(2;–21°)–1 = 0,549–1,0 = -0,451 < 0, and also |f4(–21°)|=
= 0,451 > ε = 0,01.

Comparing the values of the function f(α) on the fourth (f 4(–21°) < 0) and on
the third iterations (f 3(1°) > 0) means that –21°< α*< 1°.

143

Continuing by analogy with the solution of the given Cauchy problem in the
following iterations (α4 = (α3+α2)/2 = (1°+(–21°))/2 = -10°, –10° <α* <1°;
α5 = (α4+α3)/2 = (1°+(–10°))/2 = -4,5°) by the fourth-order Runge-Kutta
numerical method with a step h = 0.25, the results are summarized in Table 3.7.
At the last, sixth, iterative step, y(2,-4,5°) = 1,007, f 5(–4,5°) = y(2; –4,5°) –
–1 = 1,007–1,0 = 0,007 > 0, and |f 5(–21°) =0,007<ε = 0,01.

Thus, the aiming angle turns out to be α*=-4,5°. At this angle, the integral
curve has the value yi from the row of Table 3.7, which corresponds to the sixth
iteration.

It is also possible to note the relatively high accuracy of the method for
boundary value problems of the ODE compared to the exact solution

4 21 7 1()
8 24 6

y x x x= − + , the results of which are shown in Table 3.7.

Table 3.7 – Calculation results of the solution for the differential equation of

the boundary value problem
i 0 1 2 3 4
xi 1,0 1,25 1,50 1,75 2,0

α0=450 1st iteration
yi 0,0 0,321 0,820 1,563 2,625

α0=10 2nd iteration
yi 0,0 0,044 0,206 0,550 1,151

α0=-430 3rd iteration
yi 0,0 – 0,223 – 0,388 – 0,430 – 0,274

α0=-210 4th iteration
yi 0,0 – 0,068 – 0,045 0,136 0,549

α0=-100 5th iteration
yi 0,0 – 0,010 0,085 0,350 0,860

α0=-4,50 6th iteration
yi 0,0 0,017 0,146 0,451 1,007
yi 0,0 0,016 0,143 0,446 1,000

Let’s consider the implementation of the «shooting» method for the second-

order boundary value problem in the PYTHON programming language:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import *
from sympy import *
import random
import math
#entering the integration step

144

h=float(input())
#entering the initial value of the integration argument (total integration

interval) x1
x_a=int(input()); x_mtr=np.array(x_a)
#entering the initial value of the argument of the differential equation

function y(x1)
A=float(input())
#entering the initial value of the argument of the differential equation

function y(x2)
B=float(input())
#entering the final value of the total integration interval x2
x_b=int(input())
#entering the calculation error value
e=float(input())
setting the functions of the 2nd-order differential equation in the form

of a system of differential equations
def f1(z):
 return z
def f2(x,z):
 return (z/x)+(x**2)
specification of the function of calculating the differential equation of

the 2nd order by the Runge-Kutta method of the 4th order
def runge(x_a,x_b,h,y_0,z_0):
 # calculation of iterative formulas
 x=x_a; y=y_0; z=math.tan(z_0*math.pi/180)
 y_mas=[]; x_mas=[]; z_mas=[];
 del y_mas
 del z_mas
 del x_mas
 x_mas=[x]; y_mas=[y]; z_mas=[z]
 x_mtr=np.array(x)
 y_mtr=np.array(y_0)
 z_mtr=np.array(z_0)
 while x<x_b:
 #iterative formulas of the Runge-Kutta method
 K1_Z=f2(x,z); K1_Y=f1(z)
 K2_Z=f2(x+(h/2),z+(h/2*K1_Z)); K2_Y=f1(z+(h/2*K1_Z))
 K3_Z=f2(x+(h/2),z+(h/2*K2_Z)); K3_Y=f1(z+(h/2*K2_Z))
 K4_Z=f2(x+h,z+(h*K3_Z)); K4_Y=f1(z+(h*K3_Z))
 z=z+(h/6*(K1_Z+(2*K2_Z)+(2*K3_Z)+K4_Z))
 y=y+(h/6*(K1_Y+(2*K2_Y)+(2*K3_Y)+K4_Y))
 x=x+h
 x_mas.append(x)
 y_mas.append(y)
 z_mas.append(z)
 x_mtr=np.append(x_mtr, x)
 return y_mas, z_mas, x_mas, x_mtr
determination of the data of the initial two aiming angles
t_an=(B-A)/(x_b-x_a)
ang=math.atan(t_an)*180/math.pi
ang_sec=ang
while (runge(x_a,x_b,h,A,ang)[0][len(runge(x_a,x_b,h,A,ang)[0])-1]-

B)*(runge(x_a,x_b,h,A,ang_sec)

[0][len(runge(x_a,x_b,h,A,ang_sec)[0])-1]-B)>0:
 ang_frst=ang_sec
 if (runge(x_a,x_b,h,A,ang_sec)[0][len(runge(x_a,x_b,h,A,ang_sec)[0])-

1]-B)>0:
 ang_sec=ang_sec-44
 else:
 ang_sec=ang_sec+44
determination of the exact value of the aiming angle by the method of

halving
ang_new=ang_frst
while abs(runge(x_a,x_b,h,A,ang_new)[0][len(runge(x_a,x_b,h,A,ang_new)[0])-

1]-B)>=e:
 ang_new=(ang_frst+ang_sec)/2
 if (runge(x_a,x_b,h,A,ang_new)[0][len(runge(x_a,x_b,h,A,ang_new)[0])-

1]-

B)*(runge(x_a,x_b,h,A,ang_frst)[0][len(runge(x_a,x_b,h,A,ang_frst)[0])

145

-1]-B)<=0:
 ang_sec=ang_new
 else:
 ang_frst=ang_new
print(' Shooting angle: alpha=',ang_new,'; The tangent of the shooting

angle:tg(alpha)=',math.tan(ang_new*math.pi/180))
print('The solution of the ODE boundary value problem for

yi=',runge(x_a,x_b,h,A,ang_new)[0])
we construct graphs of the solutions of the differential equation
plt.figure(figsize=(7, 7))
plt.xlabel('t',fontsize=15, color='blue')
plt.ylabel('psi, dPsi(t)/dt',fontsize=15, color='blue')
plt.plot(runge(x_a,x_b,h,A,ang_new)[2], runge(x_a,x_b,h,A,ang_new)[0])
plt.plot(runge(x_a,x_b,h,A,ang_new)[2], runge(x_a,x_b,h,A,ang_new)[1])
plt.plot(runge(x_a,x_b,h,A,ang_new)[3],

(runge(x_a,x_b,h,A,ang_new)[3]**4/8)-
 ((7*runge(x_a,x_b,h,A,ang_new)[3]**2)/24)+(1/6))
plt.legend([' Shooting method for y(x)','Shooting method for y`(x)','Exact

solution'], loc=1)
plt.grid(True)
plt.xlim([1, 2])
plt.ylim([0, 3])
plt.show().

Finite difference method
Suppose it is necessary to solve a boundary value problem of this type:

 () () () ()y x p x y q x y f x′′ ′+ + = , xϵ[a; b]; (3.71)

 y(a)=A, y(b)=B. (3.72)
where p(x), q(x), f(x) – known continuous values on the segment [a; b] functions;
А і B – set constant values.

One of the most effective and popular numerical tools for solving ODE and
partial differential equations is the apparatus of difference methods.

It is based on the presentation of an independent argument on the segment
[a; b] in the form of a discrete set of points xi (i=0, 1, …, n); x0=a, xn=b, which is
called a grid.

The uniform grid (3.46) with a step was the most widely used xi–xi-1=h
(Fig. 3.15). In this case, instead of the continuous function f(x), the grid function
yi = f(xi) is considered.

Figure 3.15 – Scheme of a one-dimensional calculation grid

A grid function can be thought of as a function with an integer argument

y(i) = yi (i=0, ±1, ±2, …).

146

For yi, you can introduce operations that are a discrete (difference) analogue
of differentiation and integration operations.

An analogue of the first derivative is differences of the first order:

1i i iy y y+∆ = − – right difference;
1i i iy y y −∇ = − – left difference;

1 1
1 1() ()
2 2i i i i iy y y y yδ + −= ∆ +∇ = − – central difference.

It should be noted that 1i iy y +∆ = ∇ .
Next, the second-order differences are recorded:

2
1 2 1 1

1 1 1 1 1

() () 2 ;
() () () 2 .

i i i i i i i i

i i i i i i i i i i

y y y y y y y y
y y y y y y y y y y

+ + + +

− + − + −

∆ = ∆ ∆ = ∆ − = − + = ∆∇

∆∇ = ∆ − = − − − = − +

The difference of the m-th order is determined similarly:
1()m m

i iy y−∆ = ∆ ∆ .

It is obvious that:

1

i

i i k
j k

y y y+
=
∆ = −∑ ; 1

i

i i k
j k

y y y −
=
∆ = −∑ .

On the set of the calculation grid (see Fig. 3.15), which is called a template,
the continuous differential operator Ly is replaced by the difference Lhy. Difference
schemes are built by replacing derivatives in differential equations with difference
relations. The general formula for approximating derivatives at some point xi has
the following form:

() 1 () ()
n l

pi
s in n

s m

d y x a y x sh O h
dx h =−

= + +∑ ,

where the coefficients are selected as (s= –m, –m+1, …, 1) in such a way as to
achieve the required order of approximation. The limit of the sum of m and l is
subject to the condition m+l ≥ n+p–1.

Very often, in practice, difference relations are used to approximate the first-
order derivative with respect to h at three grid nodes:

– the right scheme
() () () ()i i i

h X
dy x y x h y xL y O h y

dx h
+ ++ −

= = + = ;

– the left scheme
() () () ()i i i

h X
dy x y x y x hL y O h y

dx h
− −− −

= = + = ;

– the central scheme
0 0() () () ()

2
i i i

h X
dy x y x h y x hL y O h y

dx h
+ − −

= = + = ;

147

– the central scheme with second-order accuracy in h
2

2
2 2

() () 2 () () ()

() () () () ().

i i i i
hy

X i X i X i X i
XX

d y x y x h y x y x hL O h
dx h

y x y x y x h y x y x
h h

+ − − −

+ − + −
= = + =

− + −
= = =

When obtaining a difference scheme, an important role is played by the
requirement that the difference scheme best reflects the main properties of the
original differential equation. The assessment of the accuracy of the difference
scheme is reduced to the study of the approximation error and stability.

In the finite difference method, the solution of the boundary value problem
(3.71) and (3.72) is reduced to a system of finite difference equations. For this,
the main segment [a; b] is divided into n equal parts of length h (step), where
h=(b–h)/n (Fig. 3.16). That is, the area of continuous change of the argument
[a; b] is replaced by a discrete set of points called nodes xi (0,i n=).

Figure 3.16 – Scheme of the calculation grid of the finite difference method

Breakpoints have abscissa coordinates:

xi = x0+ih (i = 0, 1, 2, …, n), x0 = a, xn = b.
We denote the value at the division points xi of the desired function y=y(x)

and its derivatives yʹ = yʹ(x), yʺ = yʺ(x) by yi = y(xi), yiʹ = yʹ(xi), yiʺ = yʺ(xi).
Notations are also introduced:

pi = p(xi), qi = q(xi), fi = f(xi).
By replacing the derivatives with symmetric finite-difference relations for the

interior points xi of the segment [a; b]:

 1 1

2
i i

i
y yy

h
+ −−′ = ; (3.73)

148

 1 1
2

2i i i
i

y y yy
h

+ −− +′′= . (3.74)

Substituting (3.73) and (3.74) into the original equation (3.71) for x = xi
(1, 1)i n= − , we obtain a system of difference equations:

 1 1 1 1
2

2
2

i i i i i
i i i i

y y y y yp q y f
h h

+ − + −− + −
+ + = (1, 1i n= −), (3.75)

which can be presented in the form of such a LAES with a tridiagonal matrix:

1

0

1

2 2

2

;
1 2; ;

2
1 ; ;

1, .;
2

; 1

i i

n

i i i i i i i

i
i i i

i
i

a y b y c y d
pa b q

h h h
pc

h h
i n

d f

y A y B

− ++ + =

=



 = − = − +


 =

= = −=

+




 (3.76)

In the case of a large value of n, the direct solution of the system (3.76)
becomes cumbersome. To solve a system of this type, the running method is used
(see Chapter 1).

The error estimate of the finite difference method for problem (3.71), (3.72)

has the form
2

24() ()
96i i

h My y x b a− ≤ − , where y(xi) is the value of the exact

solution for x = xi, (4)
4 [,]

max ()
a b

M y x= .

The LAES (3.76) has a tridiagonal matrix and the fulfillment of the
precedence condition by the modulus of the diagonal elements (i i ib a c≥ +)
guarantees stable implementation of the sweep method for solving (3.75).

The numerical method of running for solving the LAES consists of a forward
and a reverse run. For direct travel, the running coefficients are determined by the
formulas:

1

i
i

i i i

c
b a

ξ
ξ −

−
=

+
;

1

1

i i i
i

i i i

d a
b a

ηη
ξ

−

−

−
=

+
;

1, 1i n= − , (3.77)

moreover ξ1 = -c1/b1, η1 = d1/b1, since ξ0 = 0 and η0 = 0.
During the return stroke, the values of yi (1,1i n= −) are determined using the

expressions yi = ξi yi+1+ηi:

1 1 1 1

2 2 1 2

1 1 2 1

1: ;
2 : ;

;
1: .

n n n n n

n n n n

i n y y
i n y y

i y y

ξ η η
ξ η

ξ η

− − − −

− − − −

= − = + =
 = − = +


 = = +



 (3.78)

149

Thus, the solution of the boundary value problem for the differential equation
is reduced to the solution of the system of n–1 linear algebraic equations of the
form (3.76), with n–1 unknowns y1, …, yn-1. After solving this system, we will get
a table of values of the desired function y.

The algorithm of the finite difference method for solving ODE boundary
value problems is presented in Figure 3.17.

Figure 3.17 – Scheme of the finite difference method algorithm

Example 3.8. To solve the boundary value problem for the second-order ODE
using the numerical method of finite differences:

 2 2 1x y x y′′ ′+ = , (3.79)

which satisfies the initial conditions for y(1, 0)=0; y(1, 4) = 0,0566.

150

Solution:
Using formulas (3.73) and (3.74) we replace the original equation (3.79) with

a system of finite-difference equations:

2 1 1 1 1
2

2 1
2

i i i i i
i i

y y y y yx x
h h

+ − + −− + −   + =   
   

.

As a result of summing the free members, we get:

 2 2 2 2
1 1(2) 4 (2) 2i i i i i i i iy x hx x y y x hx h− +− − + + = , (3.80)

where , 24i ib x= − , 22i i ic x hx= + , 22id h= .

Choosing the step h = 0.1, three internal nodes will be obtained:

xi = 0, 1, i+1 (i=1, 2, 3) where 2 2
1 1 12 2 1,1 0,1 1,1 2,31;a x hx= − = ⋅ − ⋅ =

2 2
1 14 4 1,1 4,84;b x= − = − ⋅ = − 2 2

1 1 12 2 1,1 0,1 1,1 2,53c x hx= + = ⋅ + ⋅ = ;
2 22 2 0,1 0,02id h= = ⋅ = .

Similarly, the coefficients for aj, bj, cj, dj (j=2, 3).
After writing equation (3.80) for each of these nodes we obtain the following

system of equations:

1 0 1 1 1 2 1

2 1 2 2 2 3 2

3 2 3 3 3 4 3

;
;
;

a y b y c y d
a y b y c y d
a y b y c y d

− + =
 − + =
 − + =

→
0 1 2

1 2 3

2 3 4

2,31 4,84 2,53 0,02;
2,76 5,76 3,00 0,02;
3,25 6,76 3,51 0,02.

y y y
y y y
y y y

− + =
 − + =
 − + =

 (3.81)

Since the obtained tridiagonal matrix of the system of equations (3.81) fulfills
the condition of preferring diagonal elements (i i ib a c≥ +), the sweep method
can be used.

Racing coefficients on a straight course:

1
1

1

2,53 / (4,84) 0,52273c
b

ξ −
= = − − = ; 1

1
1

0,02 / (4,84) 0,00413d
b

η = = − = − ;

2
2

2 2 1

3 0,69488
5,76 2,76 0,52273

c
b a

ξ
ξ

− −
= = =

+ − + ⋅
;

2 2 1
2

2 2 1

0,02 2,76 (0,00413) 0,00727
5,76 2,76 0,52273

d a
b a

ηη
ξ

− − ⋅ −
= = = −

+ − + ⋅
;

3
3

3 3 2

3,51 0,77971
6,76 3,25 0,69488

c
b a

ξ
ξ

− −
= = =

+ + ⋅
;

3 3 2
3

3 3 2

0,02 3,25 (0,00727) 0,0969
6,76 3,25 0,69488

d a
b a

ηη
ξ

− − − ⋅ −
= = = −

+ − + ⋅
.

22i i ia x hx= −

151

On the reverse course, the values of yi are determined using expressions
yi = ξi yi+1+ηi:

3 3 4 3 3

2 2 3 2

1 1 2 1

3: 0,03446;
2 : 0,69488 0,03446 0,00727 0,01668;
1: 0,52273 0,01668 0,00413 0,00459.

i y y
i y y
i y y

ξ η η
ξ η
ξ η

= = + = =
 = = + = ⋅ − =
 = = + = ⋅ − =

It is also possible to note the relatively high accuracy of the finite difference
method for the boundary value problems of the ODE compared to the exact
solution of 2() 0,5lny x x= at the corresponding points:

y(x1) = y(1,1) = 0,0047; y(x2) = y(1,2) = 0,0166; y(x3) = y(1,3) = 0,0344.
In particular, in points x1 = 1,1 and x3 = 1,3:
– relative error by comparing the values of the analytical solution and the

finite difference method

1 1

1

1

0,00459 0,00470100% 100% 2,40%
0,00459

x x
x

x

y y
y

ε
− −

= ⋅ = ⋅ =




,

3 3

3

3

0,03446 0,03440100% 100% 0,17%
0,03446

x x
x

x

y y
y

ε
− −

= ⋅ = ⋅ =




.

Let’s consider the implementation of the finite difference method for the ODE
second-order boundary value problem in the PYTHON programming language:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import *
from sympy import *
#introducing an integration step
h=float(input())
#entering the initial value of the integration argument (total integration

interval) x1
x_a=int(input()); x_mtr=np.array(x_a)
#entering the final value of the total integration interval x2
x_b=float(input())
#entering the initial value of the argument of the differential equation

function y(x1)
A=float(input())
entering the initial value of the argument of the differential equation

function y(x2)
B=float(input())
determination of the coefficients of the system of difference equations
n=round((x_b-x_a)/h)
x,a,b,c,d=[],[0],[0],[0],[0]
sig_ma,tet_ta=[0],[0]
x_tr=x_a
for i in range(0,n):
 x.append(x_tr)
 x_tr=x_tr+h
 x_mtr=np.append(x_mtr, x_tr)
for i in range(1,n):
 a.append(2*(x[i]**2)-(h*x[i]))
 b.append(-4*x[i]**2)

152

 c.append(2*(x[i]**2)+(h*x[i]))
 d.append(2*h**2)
#verification of the fulfillment of the precedence condition modulo the

diagonal elements of the matrix
 if abs(b[i])<abs(a[i])+abs(c[i]):
 print('The system of finite difference equations has no solution')
 break
#determination of driving coefficients on a straight course
 sig_ma.append(-c[i]/(b[i]+(a[i]*sig_ma[i-1])))
 tet_ta.append((d[i]-(a[i]*tet_ta[i-1]))/(b[i]+(a[i]*sig_ma[i-1])))
determination of the solution of the differential equation on the reverse

course
y=[0]*(n+1)
y[0]=A; y[n]=B
for i in range(n-1,0,-1):
 y[i]=(sig_ma[i]*y[i+1])+tet_ta[i]
x.append(x_b)
print('x(i)=',x)
print('y(i)=',y)
we construct graphs of the solutions of the differential equation
plt.figure(figsize=(7, 7))
plt.xlabel('x',fontsize=15, color='blue')
plt.ylabel('y',fontsize=15, color='blue')
plt.plot(x, y)
plt.plot(x_mtr, (0.5*(np.log(x_mtr)**2)))
plt.legend(['The Runge-Kutta method','f(x)=0.5*(ln(x))^2'],loc=1)
plt.grid(True)
plt.xlim([1, 1.4])
plt.ylim([0, 0.06])
plt.show().

3.4 Numerical methods for solving ordinary differential equations for
«stiff» problems

There are ODE for which it is difficult to obtain a satisfactory solution to the
problems using the numerical methods described above. The definition of such
problems is related to the concept of the time constant of a differential equation,
which is introduced in relation to the analytical solution. For equations of the first
order, this is the time interval when the variable part of the solution decreases by
e times. An equation of order n has, accordingly, n time constants; if any two of
them differ greatly (in practice by a hundred or more times) or any of them is quite
small compared to the time interval on which the solution is searched, then the
problem is called «stiff», and its practical solution cannot be solved by
conventional methods. The coefficients in such equations differ by several orders
of magnitude.

It is appropriate to consider the «stiff» system using the example of the
solution of the ODE:

 0

0 0

, (;];

() .

du u x x X
dx
u x u

λ = ∈

 =

 (3.82)

The analytical solution of ODE (3.82) is given by expression 0()
0() x xu t u eλ −=

in Figure 3.18.

153

Figure 3.18 – The scheme of the analytical solution

of the ODE for different values of λ

Assuming an error of δu in the input data, the exact solution will change over

time:
 () () ()0 0 0

0 0() () .x x x x x xu x u u e u e ueλ λ λδ δ− − −= + = + (3.83)
From equation (3.83), for λ>0, the error will only increase; in this case, the

problem is ill-conditioned. For λ<0, the error always decreases, so in this case, the
problem is stable with respect to input data errors (see Fig. 3.18). However, only
if λ<0 do problems arise when solving the problem by numerical methods. During
the solution of «stiff» problems by conventional numerical methods, the
integration step should be small enough so that it is possible to take into account
the growth of the most rapidly changing components of the solution even after
their contribution becomes practically unnoticeable. But the reduction of the step
leads to an increase in the consumption of machine time of computer systems, and
the accumulation of errors. Moreover, even on a smooth part of the solution,
increasing the step leads to an increase in rounding and discretization errors.

The simplest apparatus for solving «stiff» problems is the implicit Euler
method, which has the first order of accuracy, where the solution is determined
from the following iterative equation:
 ()1 1 1,n n n ny y hf y x+ + += + . (3.84)

The algorithm of Euler implicit method for solving «stiff» problems is
presented in Figure 3.19.

«Stiff» problems are frequently encountered in the theory of automatic
control, such as when analyzing transient processes in a system containing high-
order links with coefficients that significantly differ from each other. Differential
equations describing the controlled motion of a manipulator robot also exemplify
«stiff» systems, as transient processes in the drive control system decay faster than
in the mechanical part of the robot.

154

Figure 3.19 – Scheme of the Euler implicit method algorithm for ODE systems

155

Example 3.9. To solve the numerical method of ODE for the «stiff», problem
of a mathematical model describing the behavior of the concentration of chemical
substances in a mixture in which an exothermic chemical reaction takes place:

1 1

2 2

() ();

() (),

du a u t b v t
dt

dv a u t b v t
dt

 = +

 = − −


 (3.85)

which satisfies the initial conditions for u(0) = v(0) = 1,0 mol/l,
where a1 = 998 sec-1, a2 = 999 sec-1, b1 = 1998 sec-1, b2 = 1999 sec-1 – parameters
determining the kinetics of the chemical reaction; u(t), v(t) are the concentrations
of the initial chemical substance and the final product, respectively.

Compare the results of the numerical solution with the analytical solution of
the ODEsystem for the «stiff» problem (3.84).

Solution:

Compare the results of the numerical solution with the analytical solution of
the ODE system of the «stiff» problem (3.84):

1 1

2 2

() ();

() ();

du a u t b v t
dt

dv a u t b v t
dt

 = +

 = − −


 →
()
()

1 1 1 1 1

1 2 1 2 1

;
,

n n n n

n n n n

u u h a u b v
v v h a u b v

+ + +

+ + +

 = + +
 = + − −

 (3.86)

where h – step of integration over the time course of a chemical reaction.
The system of iterative equations (3.86) can be solved using Newton’s

method (see Chapter 2) or the parameters can be expressed un+1
and vn+1:

2

1 2
2 1 2

1 1 1

;
1

,

n n
n

n n n

v u hav
a b h b h

u u h v hb

λ
λ

λ λ

+

+ +

− = + +
 = +

 (3.87)

where ()11 / 1 a hλ = − .
To solve this problem, the time interval [0; 0,08], which is divided into the

corresponding number of parts with a step of h = 5,0·10-6 sec. Then the values of
v1, v2, …, vn and u1, u2, …, un will be determined by Euler implicit method
according to formula (3.87), namely:

156

()
() ()

()
()() ()

0 0 2
1 2

2 1 2

6

26 6

6 6
1 0 1 1

1

1,0 1,0 1,01 5,0 10 999,0
0,985;

1 999,0 1998,0 5,0 10 1,01 1999,0 5,0 10

1,0 1,01 5,0 10 0,985 1,01 5,0 10 1998,0 1,015;

v u ha
v

a b h b h

u u h v hb

λ
λ

λ λ

−

− −

− −

 −
= = + +

 − ⋅ ⋅ ⋅ ⋅ = = + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅


= + = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ =

()
() ()

()
()() ()

1 1 2
2 2

2 1 2

6

26 6

6 6
2 1 2 1

1

0,985 1,015 1,01 5,0 10 999,0
0,970;

1 999,0 1998,0 5,0 10 1,01 1999,0 5,0 10

1,015 1,01 5,0 10 0,970 1,01 5,0 10 1998,0 1,029;

v u ha
v

a b h b h

u u h v hb

λ
λ

λ λ

−

− −

− −

 −
= = + +

 − ⋅ ⋅ ⋅ ⋅ = = + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅


= + = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ =
………….………………….………………….……………………………… ,

where 6
1

1 1 1,01
1 1 998,0 5,0 10a h

λ −= = =
− − ⋅ ⋅

.

Also, for comparison, an analytical solution of the ODE system of the «stiff»
problem was obtained u(0)=v(0)=1,0:

1000

1000

() 4 3 ,
() 2 3 .

t t

t t

u t e e
v t e e

− −

− −

 = −


= − +





 (3.88)

The numerical results of the calculation of the solution of the ODE system of
the «stiff» problem (3.85) for ten integration steps are presented in Table 3.8.

Table 3.8 – Calculation results of the solution of the differential equation

n tn⋅10-6, sec v(t) u(t) ()v t ()u t
0 0,0 1,00000 1,00000 1,00000 1,00000
1 0,5 0,98508 1,01475 0,98505 1,01494
2 1,0 0,97024 1,02944 0,97017 1,02981
3 1,5 0,95548 1,04405 0,95537 1,04460
4 2,0 0,94079 1,05858 0,94064 1,05932
5 2,5 0,92617 1,07305 0,92598 1,07397
6 3,0 0,91163 1,08744 0,91140 1,08854
7 3,5 0,89715 1,10175 0,89689 1,10304
8 4,0 0,88276 1,11600 0,88244 1,11747
9 4,5 0,86843 1,13017 0,86808 1,13183
10 5,0 0,85418 1,14427 0,85379 1,14611

157

Also, for a visual comparison, it is convenient to present the results of the
numerical solution on a graph (Fig. 3.20) for the time interval [0; 0,08].

u(x), v(x) – Euler implicit method; ()), (u x v x  – the exact solution

Figure 3.20 – Diagram of the results of the numerical solution of the
«stiff» problem ODE system

It can be seen from the graph (Fig. 3.20) that after a small period of time

t=0,004 sec, the solution is very close to the functions:





−≅
≅

−

−

.2
,4
t

t

ev
eu

From the results obtained, as shown in Table 3.8, it is evident that errors in

the process of determining the solution increase towards the end of the table,
especially at certain points x5 = 2,5⋅10-6 sec і x10 = 5,0⋅10-6 sec:

– relative error by comparing the values of the analytical solution and Euler’s
implicit method

5 5

5

5

1,07397 1,07305100% 100% 0,09%
1,07397

x xu
x

x

u u

u
ε

− −
= ⋅ = ⋅ =




,

5 5

5

5

0,92617 0,92598100% 100% 0,02%
0,92617

x xv
x

x

v v

v
ε

− −
= ⋅ = ⋅ =




,

158

10 10

10

10

1,14611 1,14427100% 100% 0,16%
1,14611

x xu
x

x

u u

u
ε

− −
= ⋅ = ⋅ =




,

10 10

10

10

0,85379 0,85418100% 100% 0,05%
0,85379

x xv
x

x

v v

v
ε

− −
= ⋅ = ⋅ =




.

Let’s consider the implementation of the implicit Euler’s method for the
system of the ODE «stiff» problem in the PYTHON programming language:

connection of computing libraries
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import *
from sympy import *
introducing an integration step
h_0=float(input())
#entering the initial value of the integration argument (total integration

interval) x0
a=int(input())
entering the final value of the integration interval total
b=float(input())
#entering the initial value of the argument of the differential equation

function v0
v_0=float(input())
#entering the initial value of the argument of the differential equation

function u0
u_0=float(input())
#entering the permissible calculation error
e_0=float(input())
lambd_a=1/(1-(998*h_0))
#specification of the 1st iterative formula of the differential equation

system
def f_1(u,v,h):
 return (v-(u*lambd_a*h*999))/(1+(999*1998*(h**2)*lambd_a)+(1999*h))
#specification of the 2nd iterative formula of the differential equation

system
def f_2(u,v,h):
 return (u*lambd_a)+(f_1(u,v,h)*lambd_a*h*1998)
#calculation of iterative formulas by Euler's implicit method
def eyler_impl(a,b,u_0,v_0,h):
 v_mas=[v_0]; x=a; x_mas=[x]; u_mas=[u_0]
 u=u_0; v=v_0; x_mtr=[x]; x_mtr=np.array(x)
 while x<=b:
 x=x+h
 v=f_1(u,v,h)
 u=f_2(u,v,h)
 v_mas.append(v)
 u_mas.append(u)
 x_mas.append(x)
 x_mtr=np.append(x_mtr, x)
 return x_mas, v_mas, u_mas
#we construct graphs of the solutions of the differential equation
plt.figure(figsize=(7, 7))
plt.xlabel('x',fontsize=15, color='blue')
plt.ylabel('y',fontsize=15, color='blue')
plt.plot(eyler_impl(a,b,u_0,v_0,h_0)[0], eyler_impl(a,b,u_0,v_0,h_0)[1])
plt.plot(eyler_impl(a,b,u_0,v_0,h_0)[0], eyler_impl(a,b,u_0,v_0,h_0)[2])
plt.plot(eyler_impl(a,b,u_0,v_0,h_0)[3], (4*np.exp(-

159

eyler_impl(a,b,u_0,v_0,h_0)[3]))-
 (3*np.exp(-eyler_impl(a,b,u_0,v_0,h_0)[3]*1000)))
plt.plot(eyler_impl(a,b,u_0,v_0,h_0)[3], (-2*np.exp(-

eyler_impl(a,b,u_0,v_0,h_0)[3]))+
 (3*np.exp(-eyler_impl(a,b,u_0,v_0,h_0)[3]*1000)))
plt.legend(['Euler's implicit method for v(x)',' Euler's implicit method for

u(x)','u(x)=4*e^(-x)-3*e^(-x*1000)','v(x)=-2*e^(-x)+3*e^(-x*1000)'],
loc=1)

plt.grid(True)
plt.xlim([0, 0.015])
plt.ylim([-2.5, 4.5])
plt.show().

Conclusions on the application of numerical methods for solving

ordinary differential equations
Numerical methods for solving the ODE do not allow finding a general

solution; they can only provide a partial solution. However, these methods can be
applied to a wide class of differential equations and all types of problems related
to them. Numerical methods can be applied only to correctly posed (or adjustable)
problems. However, it should be noted that for the successful application of
numerical methods, the formal fulfillment of correctness conditions may not be
sufficient. It is necessary for the problem to be well-conditioned, meaning that
small changes in the initial conditions would result in sufficiently small changes
in the integral curves. If this condition is not met, meaning the problem is ill-
conditioned (weakly stable), then small changes in the initial conditions or,
equivalent to these changes, small errors in the numerical method could
significantly distort the result. To solve ordinary differential equations, it is
advisable to use the following methods: Euler, Runge-Kutta of the fourth order,
Adams («prediction and corrections»), «shooting», as well as finite differences.
Before applying these methods, the type of problem is identified based on the type
of ODE (Cauchy problem, boundary value problem, or «stiff» problem) and
appropriate methods are applied. There are two types of numerical methods for
solving Cauchy problems: one-step methods, where information on only one
previous step is required to find the next point on the curve (Euler’s and Runge-
Kutta methods of the fourth order); multi-step methods, where information about
more than one of the previous points is required to find the next point of the curve
(«prediction and correction» methods or the Adams method). When comparing
the efficiency of single-step and multi-step methods, the following features are
highlighted: multi-step methods require a large amount of memory in computing
systems, as they operate with a large amount of initial data; when using multi-step
methods, there is an opportunity to estimate the error per step, therefore, the step
size is chosen optimally, which, compared to single-step methods, gives a certain
margin, reducing the speed of calculations; with the same accuracy, one-step
methods require a smaller number of calculations (for example, using the Runge-
Kutta method of the fourth order, it is necessary to calculate four values of the
function at each step, and to ensure the convergence of the «prediction and

160

correction» method of the same order of accuracy - two); one-step methods, unlike
multi-step methods, allow you to start solving the problem (self-starting) and
easily change the step during the solution process. If the Cauchy problem is very
difficult, then the «prediction and correction» (Adams) method is usually
preferred, which is also faster. The solution to the problem in this case starts with
one-step methods, namely Euler or fourth-order Runge-Kutta. If more than two
iterations are needed to calculate the next value yi, or if the truncation error is
significant, then it is necessary to decrease the calculation step h. On the other
hand, in the case of a very small slice error, the step can be increased, which will
increase the speed, but in this case, the entire solution process is performed first.
Sometimes, in practice, it is necessary to minimize the time of preparing a
problem for solving. Then it is advisable to use one-step methods. The «shooting»
method or difference methods are used to solve boundary value problems. In the
case of nonlinear differential equations, difference methods are preferred. When
solving «stiff» problems, the easiest way is to use the «implicit» Euler method,
where the step must be small enough to account for the growth of the most rapidly
changing components of the solution even after their contribution becomes
practically negligible. In general, for effective problem-solving, the experience,
intuition, and qualification of the researcher are of great importance both in the
process of setting the problem and in the process of choosing a method,
developing an algorithm, and software solutions by means of computer systems.

Control questions and tasks

1. Give examples of the application of differential calculus in various areas
of scientific research.

2. Formulate a generalized formulation of the problem for ordinary
differential equations.

3. Formulate the Cauchy problem and the boundary value problem. What is
the difference between these problems?

4. What types of numerical methods exist for solving ODE? Give them a
comparative characteristic.

5. What is the difference between the usual Euler method and the refined one
for the numerical solution of the Cauchy ODE problem?

6. Give a geometric interpretation of Euler method.
7. In the mathematical model of the problem of ballistics, namely the vertical

fall of a body of mass m:

 d g
dt m
υ α υ= − + , (3.89)

which is acted upon by the force of viscous friction Ffr, proportional to the velocity
(Ffr= –αυ, where α is the coefficient of viscous friction). Using the usual Euler

161

numerical method and the refined one, determine the value of its velocity
depending on time. Compare the obtained results of the numerical study with the

analytical solution () 1
t

mmgt e
α

υ
α

− 
= − 

 
under the initial condition υ(0) = 0 m/sec

during the time interval tϵ[0; 10,0] seconds. The initial data for the calculation are
presented in Table 3.9.

Table 3.9 – Output data for the task

Version Body weight (m, kg) Coefficient of viscous friction
 (α, N⋅sec/m)

1 2,0 0,00035
2 3,2 0,00027
3 3,5 0,00010
4 4,6 0,00004

8. The simplest mathematical model of the battle of two opposing armies is
described by the Lanchester battle equations:

() ();

() (),

dx t by t
dt

dy t ax t
dt

 = −

 = −


 (3.90)

where a, b – the effectiveness of the weapons of armies X and Y, respectively,
means that each combat unit of Army X destroys a soldier of Army Y in a unit of
time, and vice versa. By using Euler numerical method, determine the value of
the change in the number of opposing armies during the battle in the time interval
t∈[0; 100,0] seconds. How should the initial number of armies be altered to impact
the battle’s outcome? The initial data for the calculation are presented in Table
3.10.

Table 3.10 – Output data for the task

Version

Weapons
effectiveness

of the Army X
(a, unit/hour)

Weapons
effectiveness
of the Army Y
(b, unit/hour)

Initial size of
the Army X
(x(0), units)

Initial size of
the Army Y
(y(0), units)

5 2,0 2,8 100,0 180,0
6 3,2 4,1 220,0 280,0
7 3,5 2,4 300,0 240,0
8 4,6 3,1 410,0 390,0

162

9. Reveal the essence of the fourth-order Runge-Kutta numerical method for

solving the Cauchy ODE problem.
10. Give a geometric interpretation of the Runge-Kutta method of the fourth

order.
11. How is the calculation error determined by the Runge-Kutta numerical

method of the fourth order?
12. Using the Runge-Kutta numerical method of the fourth order for the

simplest mathematical model of the epidemic:

 []() 1 ()dx x t N x t
dt

α= ⋅ ⋅ + − , (3.91)

where N – the number of people in the research group, and α is the proportionality
coefficient. Determine the value of x(t) – the number of cases of people depending
on the units of time with the specified accuracy of the cut-off error h

nR =0,001.
Compare the obtained results of the numerical study with the analytical solution
of ODE (3.91) for the time interval t ϵ [0; 150,0] seconds, namely:

(1)
1() .

1N t
Nx t

N e α− +

+
=

⋅ +
 The initial data for the calculation are presented in

Table 3.11.

Table 3.11 – Output data for the task

Version Number of people in the research
group (N, person)

Coefficient of
proportionality (α, sec-2)

9 100,0 0,0010
10 80,2 0,0012
11 50,5 0,0022
12 60,6 0,0035

13. Using the Runge-Kutta numerical method of the fourth order for the

mathematical model of the ballistics problem, namely the vertical fall of a body
by mass m:

2

2
d x dx g
dt m dt

α = − + 
 

 , (3.92)

which is acted upon by the force of viscous friction Ffr, proportional to the velocity
(Ffr= –αυ, where α is the coefficient of viscous friction), determine the value of
its displacement depending on time t with the specified accuracy

163

h
nR =0,001 under the initial condition υ(0)=0 m/sec and drop height h. The initial

data for the calculation are presented in Table 3.12.

Table 3.12 – Output data for the task

Version Body weight
(m, kg)

Coefficient of viscous
friction (α, N⋅sec/m)

Initial height of fall
(h, m)

13 2,0 0,00035 120,0
14 3,2 0,00026 110,0
15 3,5 0,00010 100,0
16 4,6 0,00004 150,0

14. Reveal the essence of the numerical method of «prediction and

correction» (Adams’) for solving the Cauchy problem of ODE.
15. How the calculation error is determined by the numerical method of

«prediction and correction» (Adams’) for solving the Cauchy problem of the
ODE?

16. What is the «self-start» property? What methods for solving ODE have
it?

17. What is the order of accuracy of the numerical methods of Euler, Runge-
Kutta, and Adams for solving the Cauchy ODE problem?

18. Using the numerical method of «prediction and correction» (Adams’) for
a mathematical model of limited population growth (Ferhulst’s logistic model):

 2dN rN kN
dt

= − , (3.93)

where r – the average growth rate of the population, k, is the meeting coefficient
of competing individuals. Determine the value of the population size N depending
on the time t with the specified accuracy of the error of the cut h

nR =0,0001 for the
time interval t ϵ[0; 5,0]. Determine the smallest population size in the presence of
competition. The initial data for the calculation are presented in Table 3.13.

Table 3.13 – Output data for the task

Version Initial population
size (N, unit)

Average population
growth rate

(r, 1/time unit)

Coefficient of meeting
of competing persons

(k, person/unit of time)
17 1000,0 3,23 2,15
18 900,0 3,80 2,80
19 800,0 4,10 5,10
20 700,0 2,50 1,95

164

19. In the mathematical model of free oscillations of a sprung body of mass
m under the linear resistance of the medium (Ffr=1–α(dx/dt), where α is the
coefficient of viscous friction)):

2

2
d x dxm kx
dt dt

α= − − , (3.94)

where k – stiffness coefficient of the elastic element, using the numerical method
of «prediction and correction» (Adams’), determine the value of displacement x
depending on time t with the specified accuracy Δ=0,0001 under the initial
condition x(0)=0,02 m for the time interval tϵ[0; 5,0] seconds. The initial data for
the calculation are presented in Table 3.14.

Table 3.14 – Output data for the task

Version
Body weight

(m, kg)

Coefficient of
viscous friction

(α, N⋅sec/m)

Stiffness coefficient of
an elastic element

(k, N/m)
21 10,0 45,0 5,0⋅103
22 12,0 42,0 8,0⋅103
23 8,0 52,0 11,0⋅103
24 9,0 38,0 13,0⋅103

20. A mathematical model for forecasting climatic conditions based on the
Lorenz model (a model of the physical process of two-dimensional thermal
convection):

()() () () ;

() () () () ();

() () () (),

dx t y t x t
dt

dy t Rx t y t x t z t
dt

dz t x t y t bz t
dt

σ = −

 = − −

 = −

 (3.95)

where x(t) – intensity of convection; y(t) is the difference between the
temperatures of the ascending and descending air flows; z(t) – deviation of the
vertical temperature profile from the linear dependence; R is the normalized
Rayleigh number (reflects the behavior of the airflow under the influence of the
temperature gradient); σ – Prandtl number (criterion of the similarity of thermal
processes in liquids and gases); b – geometric parameters of the convective
calculation cell. With the help of any one-step or multi-step numerical method,
plot the dependence diagram of x(y, z) on the time interval t ϵ[0; 100] seconds
with a calculation step of t=0,01 sec. As initial parameters, select the following

165

values: x(t)=0,0; y(0)=1,0; z(t)=1,05. The initial data for the calculation are
presented in Table 3.15.

Table 3.15 – Output data for the task

Version
Normalized

Rayleigh
number (R)

Prandtl number
(σ)

Geometric parameters of the
convective calculation cell (b)

25 28,0 10,0 10/3
26 30,0 12,0 11/3
27 31,0 13,0 13/5
28 27,0 9,0 9/2
29 29,0 11,0 14/3
30 33,0 14,0 15/4

21. What is the difference between the initial and boundary conditions of the

problem statement during the solution of the ODE?
22. Reveal the essence of the numerical method of «shooting» for solving the

boundary value problem of the ODE.
23. The problem of the brachystochrone (the optimal path that the body takes

in the minimum time under the influence of the Earth’s gravity) is given by a
mathematical model:

22

22 1 0d y dyy
dx dx

 + + = 
 

, (3.96)

where y – coordinate of the path along the x axis; 0<x<L cm – coordinates of the

path along the x axis; (0) 0dy
dx

= ; 0<y<H cm – coordinates of the path along the y

axis. Using the numerical «shooting» method, determine the value of the y
coordinates of the optimal path curve depending on the x coordinate with an
accuracy of ε=0,0001. The initial data for the calculation are presented in Table
3.16.

Table 3.16 – Output data for the task

Version
The initial position of the body

along the vertical axis y
(H, cm)

The initial position of the body
along the horizontal axis x

(L, cm)
1 35,0 45,0
2 30,0 20,0
3 40,0 50,0
4 25,0 38,0

166

24. Reveal the essence of the numerical method of finite differences for
solving the boundary value problem of ODE. What are the stages of solving a
problem using the finite difference method?

25. Write down the general formula for approximating derivatives at some
point?

26. The problem of compressing a viscoplastic rod under longitudinal impact
is given by a mathematical model:

2

2 0
bd dax

dx dx
δ δ + = 

 
, (3.97)

where δ – compression value of the rod along the x axis; 0<x<L m – the coordinate
of the length of the rod along the x axis; b=1,0 is a dimensionless parameter of the
shock characteristic of the system; a is the stiffness of the rod under tension and
compression. Using the numerical method of finite differences, determine the
value of the local compression of the rod depending on the longitudinal coordinate
x under the following boundary conditions δ(0)=0 mm, δ(L) = Δ mm. The initial
data for the calculation are presented in Table 3.17.

Table 3.17 – Output data for the task

Version Rod length
 (L, m)

Stiffness of the rod in
tension and

compression (a)

Deformation of the edge
of the rod at the point of

impact (Δ, mm)
5 1,0 0,0034 1,2
6 1,5 0,0038 1,5
7 1,8 0,0023 2,1
8 2,5 0,0048 2,8

27. What differential equations are called «stiff»? What are the peculiarities

of their solution?
28. Reveal the essence of Euler numerical implicit method for solving «stiff»

problems of ODE?
29. The problem of chemical reaction kinetics is given by a mathematical

model:

0,5 30 ;

30 ,

dx x y
dt
dy y
dt

 = − +

 = −


 (3.98)

where x – the current value of the concentration of chemical substance A; y is the
current value of the concentration of chemical substance B. Using Euler’s implicit
numerical method for this «stiff problem» of the ODE system (3.98), determine
the value of the change in the concentration of chemical substances x(t) and y(t)

167

during the time interval tϵ[0; 2,0] seconds with initial data x(0)=X0 та y(0)=Y0.
The initial data for the calculation are presented in Table 3.18.

Table 3.18 – Output data for the task

Version
The initial value of the

concentration of chemical
substance A (X0, mol/l)

The initial value of the
concentration of the chemical

substance В (Y0, mol/l)
9 1,6 2,8
10 5,5 3,5
11 3,8 2,9
12 4,5 5,1

168

Chapter 4. DIFFERENTIAL EQUATIONS OF MATHEMATICAL
PHYSICS

One of the characteristic features of modern research is the mathematization

of physical knowledge, which involves the intensive use of mathematical
modeling methods in non-traditional and even «descriptive» sciences such as
ecology and medicine. In today’s practice, scientists are required to solve various
kinds of problems, the thorough examination of which can often only be done
numerically or through a carefully designed physical experiment. Therefore, the
development of general numerical methods (algorithms) for solving problems in
mathematical physics and nonlinear mechanics is highly significant.

The subject of mathematical physics is the construction and research of
mathematical models of physical phenomena. The problems of classical
mathematical physics are reduced to boundary value problems for partial
differential equations. The main means of researching such problems are the
theory of differential equations together with the theory of functions, calculus of
variations, functional analysis, theory of probability, and computational
mathematics.

If we denote by D the region of the n-dimensional space of Rn points
x=(x1, x2, …, xn); x1, x2, …, xn; n≥2 are Cartesian coordinates of point x, then
equations of the form:

1

1 1 1

, , , , , , 0
n

k

ii m
n n

u u u uF x u
x x x x x

 ∂ ∂ ∂ ∂
= ∂ ∂ ∂ ∂ ∂ 





 (x∈D;
1

n

j
j

i k
=

=∑ ; k=0, 1, …, m) (4.1)

are called a partial differential equation of order m with respect to the unknown

function u=u(x), where
1

, , ,uF F x u
x

 ∂
=  ∂ 


 is a given real function of the points

x∈D, the unknown function u and its partial derivatives. The left part of equation
(4.1) is called a differential operator with partial derivatives of order m.

The real function u=u(x1, x2, …, xn), defined in the region D by equation (4.1),
is continuous along with its partial derivatives included in this equation, and when
it is inverted into the identity, it is called a classical (regular) solution in terms of
equation (4.1).

The solution of equation (4.1) in the n+1-dimensional space of variables x1,
x2, …, xn, u determines some smooth surface of dimension n, which is called the
integral surface of equation (4.1).

Many problems in the physics of continuous media are reduced to solving
differential equations with partial derivatives. In such cases, the desired functions
are usually density, temperature, stress, and others, with the arguments being the
coordinates of the point being considered in space, as well as time itself.

In particular, the thermal conductivity equation is used to describe the
temperature distribution in a given area of space and its change over time:

169

2 2 2

2 2 2
1 2

(,)
n

u u u u f x t
t x x x

α
 ∂ ∂ ∂ ∂

− + + + = ∂ ∂ ∂ ∂ 


, (4.2)

where x = (x1, …, xn) are Cartesian coordinates, f(x, t) is a function of heat sources,
α is a coefficient of thermal conductivity, u(x, t) is the desired temperature
function at a point with coordinates x at time t. If f(x, t) ≡ 0, that is, there are no
heat sources and «sinks» inside the system, then the heat conduction equation
(4.2) is called homogeneous.

The complete mathematical formulation of the problem, along with the
differential equations, also includes some additional conditions. If the search for
a solution is conducted within a limited domain, boundary conditions are also
defined. In such cases, the problem is referred to as a boundary value problem for
equations with partial derivatives.

If one of the independent variables is time t, then the values of the sought
functions at the initial moment of time t=0 are set, and they are called initial
conditions. In particular, for the thermal conductivity equation (4.2), the boundary
and initial conditions are u|Ω = ψ(t) and u|t=0 = φ(x), respectively, where nΩ∈
(n = 2, 3) is a two-dimensional or three-dimensional region.

The problem in which it is necessary to solve a partial differential equation
under given initial conditions is called the Cauchy problem. At the same time, the
problem is solved in an unbounded space, and boundary conditions are not set.
Problems, in which both boundary and initial conditions are set at the same time,
are called non-stationary (or mixed) boundary value problems. The solution that
will be obtained in this case changes over time.

This section will only consider correctly posed problems, that is, problems
whose solution exists and is unique in a certain class of initial and boundary
conditions.

4.1 Classification of partial differential equations

Let u(x, y) be an unknown function of two variables, x and y, which must be
determined. Then, a sufficiently narrow class of problems for equations of the first
and second orders, linear with respect to the derivatives, is expressed by the
following form of the equation:

2 2 2

2 2(,) 2 (,) (,) (,)

(,) (,) ,

u u u uA x y B x y C x y D x y
x x y y x

uE x y F x y G
y

∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂ ∂
∂

+ + =
∂

 (4.3)

where A, B, C, D, E, F – functional coefficients that can depend on the arguments
x, y, and on the function u.

170

Depending on this equation (4.3) can be:
a) a second-order equation in partial derivatives with constant coefficients;
b) linear, if the right-hand side of the equation depends linearly on the

function u, and the coefficients depend only on x, y;
c) quasi-linear if the coefficients depend on u.
Similarly to ordinary differential equations, the unique solution of the

equation can be obtained only by setting additional conditions. However, since
there are two independent variables, x and y, in equation (4.2), the condition must
be set for some curve in the x, y plane. This condition can be imposed on the
function u or (and) on its derivatives, depending on the type of equation that
determines its type and nature of change.

Different types of equations are distinguished depending on the ratio between
the coefficients:

1) for A = B = C = D = F =0, D≠0, E≠0 we have the transfer equation

 u uP G
x y
∂ ∂

+ =
∂ ∂

 (P=E/D). (4.4)

If time is one of the independent variables in equation (4.3), then this equation
is called evolutionary.

2) if at least one of the coefficients A = B = C ≠ 0, then equation (4.3) is a
second-order equation. In this case, depending on the discriminant

24 4Ds B AC= − , equation (4.2) can belong to one of three types: hyperbolic (Ds
> 0), parabolic (Ds = 0), or elliptic (Ds < 0)

Equations can change from one type to another depending on the values of
the corresponding coefficients.

In the case when the coefficients A, B, C are constant, equation (4.3) has the
same type at all points of the plane of variables x and y. In the event that the
coefficients A, B, C depend continuously on x and y, the set of points in which this
equation belongs to the hyperbolic (elliptic) type forms an open region on the
plane, which is called hyperbolic (elliptic), and the set of points in whose
equations belong to the parabolic type, is closed. Equation (4.3) is called mixed
(of mixed type) if it is hyperbolic in some points of the plane, and elliptic in others.
In this case, the parabolic points usually form a line called the line of change of
type or the line of degeneration.

There are two types of methods for solving equations of this type: analytical
(the result is derived by various mathematical transformations), and numerical, in
which the obtained result corresponds to the real one with a given accuracy, but
many algebraic calculations are necessary, which requires the use of computing
power of computer systems.

This section is devoted to numerical methods, algorithms and their application
for partial differential equations of the second order, which are most often used in
scientific and applied engineering problems.

Examples of some partial differential equations that describe different types
of problems are given in Table 4.1.

171

Table 4.1 – Differential equations in partial derivatives

Equation type Mathematical
form Examples of problems

Laplace 0u∆ = A steady flow of liquid. Stationary thermal
fields

Poisson u k∆ = − Heat transfer with an internal heat source

Diffusion
2

2 2
1 uu
h t

∂
∆ =

∂
 Unsteady thermal conductivity

Wavy
2

2 2
1 uu
c t

∂
∆ =

∂
 Propagation of waves (sound,

electromagnetic, etc.)

Biharmonic 2 (,)u F x y∆ = Plate deformation

Table 4.1 uses accepted designations of the most common operators:
2 2

2 2
u uu

x y
∂ ∂

∆ = +
∂ ∂

 – Laplace,
4 4 4

2
4 2 2 42u u uu

x x y y
∂ ∂ ∂

∆ = + +
∂ ∂ ∂ ∂

 – biharmonic.

There are two main methods of numerical solution for partial differential
equations: the difference method (finite difference method) and the finite element
method. In modern applied mathematics, both methods are considered as
interpretations of the use of the general theory of difference schemes for solving
partial differential equations.

The basis of the finite element method is variational calculus. Differential
equations that describe the problem and corresponding boundary conditions are
used to formulate the variational problem. In the finite element method, the
physical problem is replaced by a piecewise smooth model. This method requires
a complex formulation of the problem, high qualification, and experience. It is not
universal, as each solution is only applicable to a specific problem. The finite
element method has found wide use in solving special problems in theoretical
mechanics, hydrodynamics, and field theory. It is complex and requires serious
training and knowledge in a specific field of use.

4.2 Finite difference method

The apparatus of difference methods is an effective means of numerical
solution for both ordinary and partial differential equations. In section 3.3, the
main principles of constructing difference systems were discussed, which are
based on representing an independent variable as a discrete set of points, known
as a grid. In addition to the commonly used rectangular grid, other types such as
polar, triangular, slanted, and others are also employed (Fig. 4.1).
Multidimensional grids are used for solving partial derivative problems with
multiple independent variables.

172

а) b) c) d)
Figure 4.1 – Schemes of calculation grids:

a) rectangular; b) polar; c) triangular; d) beveled

Figure 4.2 – Calculation scheme of a
two-dimensional square grid

For differential equations of the second order in partial derivatives, a two-
dimensional rectangular grid is most often used (Fig. 4.1, a). The central-
difference templates, which are applied on a two-dimensional square grid with a
step size h (Fig. 4.2), can be obtained similarly to the one-dimensional case (the
index j refers to the independent variable y, and the index i refers to x).

For convenience, the notation u(xi+h, yi) must be replaced by ui+1,j. Using the
following notations and performing an expansion in a Taylor series, we obtain
expressions for partial derivatives, namely:

1, 1, 1
2 2

i j i ju uu
x h h

+ −−∂
≈ ≈

∂
[];

2
1, , 1,

2 2 2

2 1i j i j i ju u uu
x h h

+ −− +∂
≈ ≈

∂
[];

-1 0 1
i, j

1 -2 1
i, j

173

, 1 , 1 1
2 2

i j i ju uu
y h h

+ −−∂
≈ ≈

∂
 ;

2
, 1 , , 1

2 2 2

2 1i j i j i ju u uu
y h h

+ −− +∂
≈ ≈

∂
 ;

2
1, 1 1, 1 1, 1 1, 1

2 2
1

4 4
i j i j i j i ju u u uu

x y h h
+ + − + + − − −− − +∂

≈ ≈
∂ ∂

 ;

4
2, 1, , 1, 2,

4 4 4

4 6 4 1i j i j i j i j i ju u u u uu
x h h

− − + +− + − +∂
≈ ≈

∂
[];

4
, 2 , 1 , , 1 , 2

4 4 4

4 6 4 1i j i j i j i j i ju u u u uu
y h h

+ + − −− + − +∂
≈ ≈

∂
 .

More complex computational templates for differential equations are built
from these elements. The addition of derivatives is carried out by superposition
of the corresponding calculation patterns. This method constructs templates for
Δu and Δ2u, which have an error of order h2:

2 2

1, , 1, , 1 , 1
2 2 2 2

4 1i j i j i j i j i ju u u u uu uu
x y h h

− + + −− + + +∂ ∂
∆ = + ≈ ≈

∂ ∂
 ;

1

0

-1

i, j

1

-2

1
i, j

1

-1

0

0

0

0

1

0

-1

1 -4 6 -4 1

6

-4

-4

1

1

i, j

i, j

i, j

-4

1

1

1 1
i, j

174

4 4 4

2
4 2 2 4

4

12u u uu
x x y y h
∂ ∂ ∂

∆ = + + ≈
∂ ∂ ∂ ∂

 .

All of the computational patterns shown have second-order errors. It is

possible to construct more accurate computational patterns if additional nodes are
considered. The central-difference approximation is the basis of all the
computational templates built above. Sometimes, left or right differences are used
to minimize the spread of errors. When using computational templates, the
difference equation (approximate partial differential equation) can become
unstable. A difference scheme is considered unstable if the error does not decrease
with each iteration step. Problems of instability of difference schemes especially
arise in evolutionary problems.

By applying the computational template to each of the n nodes of the grid, we
obtain a system of n equations, which can be linear if the initial differential
equation has the appropriate structure. In this case, solving the problem is reduced
to solving the system of equations in the form of.

coefficient unknown value in vector - column
 matrix nodes (vector - column) of free members
     

=     
     

,

which is most often solved by iterative methods (see Chapter 1).

4.3 Solving various types of partial differential equations

Practical methods and algorithms for solving various types of partial

differential equations have certain features and require separate consideration.
This can be demonstrated using the most common problems as examples.

Solving elliptic equations

Many different physical problems can be reduced to elliptic equations, such
as the calculation of stresses arising during the elastic torsion of a long cylindrical
rod, the distribution of electric stresses on the conductor plane, and the problem
of stationary heat flows in a flat body, among others.

20

-8

-8

-8

1

1

1 1

2

2

2

2
i, j

-8

175

Most elliptic equations are described by Poisson’s equation or its partial case
– Laplace’s equation.

One of the well-known problems is the classical Dirichlet problem for the
Laplace equation in a rectangular domain. It is necessary to define a continuous

function u(x, y) that satisfies the Laplace equation
2 2

2 2
u uu

x y
∂ ∂

∆ = +
∂ ∂

 inside the

rectangular domain Ω = {(x; y) |0 ≤ x ≤ a, 0 ≤y ≤b}, and also acquires given
values at the boundary of the domain: x = 0, u(0,1y) = u1(y); x = a, u(a,1y) = u2(y);
y = 0, u(x, 0) = u3(x); x = b, u(x, b) = u4(x).

A two-dimensional grid with a pitch h along the x-axis and l along the y-axis
is introduced into the solution domain. Then, using the given notation and
approximating the Laplace equation by a difference equation (see Chapter 4.2),
we obtain the following system of linear equations (l = h):

(), 1, 1, , 1 , 1

,0 3 , 4 0, 1 , 2

1 ;
4

(), (), (), ();
1, 2, , 1; 1, 2, , 1.

i j i j i j i j i j

i i i m i j i n j i

u u u u u

u u x u u x u u y u u y
i n j m

+ − + −
 = + + +


= = = =
 = − = −


 

 (4.5)

Such a system of equations has a large number of zero elements and satisfies
the condition of convergence when using iterative methods. To solve systems of
equations of the type (4.5), the Gauss-Seidel method (see Chapter 1) is most often
used, which, when applied to elliptic differential equations, is called the Liebmann
method or the method of successive displacements. The algorithm for solving
elliptic differential equations based on the Laplace equation and the difference
scheme (4.5) by the Gauss-Seidel method is presented in Figure 4.3.

It should be noted that any elliptic equations that do not contain
2u

x y
∂
∂ ∂

reduce to systems of difference equations that can be solved by both the
Liebman’s method and other iterative methods, as long as sufficient

convergence conditions are used. For elliptic equations that contain
2u

x y
∂
∂ ∂

, in

the general case, the issue of convergence of iterative methods has no
theoretical solution. Therefore, it is necessary to consider the obtained system
of equations separately in each case.

176

Figure 4.3 – Scheme of the algorithm for solving elliptic partial differential

equations

Example 4.1. Determine the stationary temperature distribution in the plate
by size L×H = 1,0×1,0 m, for which the following boundary conditions are
specified: u(0,y) = u1(y) = 0°C; u(L,y) = u2(y) = 100 °C; u(x,0)=u3(x)=100x grad;
u(x, H) = u4(x) = 100x2 grad.

Solution:
The steady-state temperature distribution for a flat body is described by the

homogeneous heat conduction equation (4.1), namely the Laplace equation with
two independent variables, x and y:

177

2 2

2 2 0u uu
x y
∂ ∂

∆ = + =
∂ ∂

. (4.6)

To formulate the problem, it is necessary to enter a two-dimensional grid on
the plate with a distance between nodes of h=0,25 m (Fig. 4.4). The grid contains
25 nodes, out of which 16 have known temperature values based on the boundary
conditions. It is necessary to determine the temperature in all 9 internal grid nodes.
The serial number of the calculation node is indicated by the index i on the x-axis
and by the index j on the y-axis. The new value of the node temperature ui,j can be
calculated using the calculation template (see section 4.3) from equation (4.6),
namely:
since

2 2

1, , 1, , 1 , , 1
2 2 2 2

2 2
0i j i j i j i j i j i ju u u u u uu uu

x y h h
+ − + −− + − +∂ ∂

∆ = + = + =
∂ ∂

,

then
 (), 1, 1, , 1 , 10,25i j i j i j i j i ju u u u u+ − + −= + + + . (4.7)

Figure 4.4 – Calculation scheme of stationary temperature distribution

178

Based on equation (4.7), we write down the system of equations for the
temperature value of each node in the calculation grid of the plate:

()
()
()
()
()
()
()
()

11 21 12 01 10

21 31 22 11 20

31 41 32 21 30

12 22 13 02 11

22 32 23 12 21

32 42 33 22 31

13 23 14 03 12

23 33 24 13 22

33

0,25 ;

0,25 ;

0,25 ;

0,25 ;

0,25 ;

0,25 ;

0,25 ;

0,25 ;

0,25

u u u u u

u u u u u

u u u u u

u u u u u

u u u u u

u u u u u

u u u u u

u u u u u

u

= + + +

= + + +

= + + +

= + + +

= + + +

= + + +

= + + +

= + + +

= ()43 34 23 32 ,u u u u
















+ + +

 (4.8)

where u00 = u01 = u02 = u03 = u04 = 0 °С; u40 = u41 = u42 = u43 = u44=100 °С; since
u14 = 100x2 = 100h2 = 100·0,252 = 6,25 °С, then u24 = 25,0 °С; u34 = 56,25 °С; then
u14 = 100x = 100h = 100·0,25 = 25,0 °С, then u20 = 50,0 °С; u30 = 75,0 °С.

The actual temperature values in all nine internal nodes of the grid will be
determined by the Gauss-Seidel method (see Chapter 1). For this, the system of
equations (4.8) must be written in iterative form, assuming that the initial value of
the temperature in the desired nodes is zero.

()
()
()
()
()

() (1) (1)
11 21 12 01 10

() (1) (1) ()
21 31 22 11 20

() (1) ()
31 41 32 21 30

() (1) (1) ()
12 22 13 02 11

() (1) (1) (1) ()
22 32 23 12 21

32

0,25 ;

0,25 ;

0,25 ;

0,25 ;

0,25 ;

n n n

n n n n

n n n

n n n n

n n n n n

u u u u u

u u u u u

u u u u u

u u u u u

u u u u u

u

− −

− −

−

− −

− − −

= + + +

= + + +

= + + +

= + + +

= + + +

()
()
()
()

() (1) () ()
42 33 22 31

() (1) ()
13 23 14 03 12

() (0) (1) (1)
23 33 24 13 22

() (1) (1)
33 43 34 23 32

0,25 ;

0,25 ;

0,25 ;

0,25 ,

n n n n

n n n

n

n

u u u u

u u u u u

u u u u u

u u u u T

−

−












= + + +


= + + +


= + + +


= + + +

 (4.9)

where (0) (0) (0) (0) (0) (0) (0) (0) (0)
11 21 31 12 22 32 13 23 33 0u u u u u u u u u= = = = = = = = = – initial

temperature values in the calculation nodes; n = 1, 2, … – computational iteration
number.

179

Using the Gauss-Seidel calculation algorithm (see Fig. 4.3) with a calculation
error of ε = 0.001, the following calculation result was obtained after 17 iterations:

 . (4.10)

Based on the results of calculations (4.10), it is possible to construct a three-
dimensional graph of the stationary temperature distribution in the plate (Fig. 4.5).

Figure 4.5 – Diagram of the stationary temperature
distribution in the plate

The result of solving example 4.1 in the PYTHON programming language:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import *
from sympy import *
from matplotlib.colors import LinearSegmentedColormap
entering the length of the plate
l=float(input())
entering the width of the plate
h=float(input())
entering the step value of the calculation grid along the x-axis
h_x=float(input())
entering the step value of the calculation grid along the y axis
h_y=float(input())

04 14 24 34 44

03 13 23 33 43
(17)

02 12 22 32 42

01 11 21 31 41

00 10 20 30 40

0,0 6,25 25,0 56,25 100,0
0,0 16,35 38,06 66,35 100,0
0,0 21,09 44,53 71,09 100,0
0,0 23,49 47,88 73,49 100,0
0,0 25,0 50,0 75,0 100,0

u u u u u
u u u u u

u u u u u u
u u u u u
u u u u u

= =

180

entering the value of the boundary conditions:
 # entering the temperature value on the left wall of the plate
t_left=float(input())
 # entering the temperature value on the right wall of the plate
t_right=float(input())
introduction of the initial temperature distribution function on the upper

wall of the plate
def t_top(x):
 return (t_right/(l*l))*x*x
introduction of the initial temperature distribution function on the bottom

wall of the plate
def t_down(x):
 return (t_right/l)*x
entering the calculation error value
e=float(input())
input of boundary condition values:
for the upper wall
side_top, side_down=[],[]
x=0
for i in range(0,int(l/h_x)+1):
 side_top.append(t_top(x))
for lower wall
 side_down.append(t_down(x))
 x=x+h_x
side_top, side_down=np.array(side_top),np.array(side_down)
for the left wall and the right wall
side_left,

side_right=[float(t_left)]*(int(h/h_y)+1),[float(t_right)]*(int(h/h_y)
+1)

side_left, side_right=np.array(side_left),np.array(side_right)
side_right=side_right.reshape(-1,1); side_left=side_left.reshape(-1,1)
u=np.full((int(h/h_y)+1,int(l/h_x)+1),0.0)
u=np.append(u,side_right,axis=1); u=np.delete(u,int(l/h_x),axis=1)
u=np.insert(u,[0],side_left,axis=1); u=np.delete(u,1,axis=1)
u=np.insert(u,int(h/h_y)+1,side_down,axis=0);

u=np.delete(u,int(h/h_y),axis=0)
u=np.insert(u,0,side_top,axis=0); u=np.delete(u,1,axis=0)
print(' Initial calculation grid with boundary conditions); print(u)
calculation of the system of difference equations by the Gauss-Seidel method
k=0
while True:
 count=0
 for i in range(1,int(h/h_y)):
 for j in range(1,int(l/h_x)):
 u_last=u[i,j]
 u[i,j]=0.25*(u[i+1,j]+u[i,j+1]+u[i-1,j]+u[i,j-1])
 if abs(abs(u_last)-abs(u[i,j]))>=e:
 count=count+1
 k=k+1
 if count==0:
 break
u=np.around(u, decimals=2)
print(' The number of computational iterations k=',k)
print('The number of computational iterations'); print(u)
construction of a three-dimensional graph of temperature distribution
x=np.linspace (0, l, int(l/h_x)+1)
y=np.linspace (0, h, int(h/h_y)+1)
x,y=np.meshgrid(x, y)
fig = plt.figure(figsize=(20, 20))
axes = fig.add_subplot(1, 2, 1, projection='3d')
axes.plot_surface(x, y, u, rcount=1000, ccount=1000, linewidth=0.2,

edgecolors='k', cmap='jet')
axes.view_init(elev=35, azim=75)
axes.set_xlabel('X')
axes.set_ylabel('Y')
axes.set_zlabel('T')
plt.show().

181

Solving hyperbolic equations

One of the most common types of hyperbolic equations with second-order
partial derivatives in engineering practice is the wave equation, which describes
various types of oscillations:

2 2 2 2
2

2 2 2 2
1 2

(,)
n

u u u ua f x t
t x x x

 ∂ ∂ ∂ ∂
= + + + + ∂ ∂ ∂ ∂ 

 , (4.11)

where x = (x1, …, xn) – Cartesian coordinates;; f(x, t) f(x, t) is a function of external
influence (external force); t∈R – time; a – phase speed; u(x, t) is a function of the
position of the wave at the point with coordinates x at time t.

Depending on the number of Cartesian coordinates, one-dimensional, two-
dimensional, and three-dimensional wave equations are distinguished.
The one-dimensional wave equation describes the longitudinal oscillations of a
rod, in which the sections carry out plane-parallel oscillatory movements, as well
as the transverse oscillations of a thin rod (string) and other tasks.

The two-dimensional wave equation is used to study the oscillations of a thin
plate (membrane).

The three-dimensional wave equation describes the propagation of waves in
space (for example, sound waves in a liquid, elastic waves in a continuous
medium, etc.).

The one-dimensional homogeneous wave equation for the case of free
oscillations, based on equation (4.11), is written in the following form:

2 2

2
2 2
u ua

t x
∂ ∂

=
∂ ∂

, (4.12)

where u(x, t) – a function that describes the position of the string at time t; a2=T/ρ
(T – the tension of the string, ρ – its linear (linear) density); f(x, t) = 0 – external
influence function (see (4.11)).

Oscillations are assumed to be small, that is, their amplitude is small
compared to the length of the string. The resistance of the medium to the
oscillating process is not taken into account.

The simplest problem for equation (4.12) is the Cauchy problem: at the initial
moment of time, two conditions are set (the number of conditions is equal to the
order of the derivative with respect to time t):

 0
(, 0) ()

t
u u x xϕ

=
= = ,

0

()
t

u x
t

ψ
=

∂
=

∂
. (4.13)

These conditions describe the initial shape of the string u=φ(x) and the speed
of movement of its points ψ(x). In practice, one does not solve the Cauchy
problem for an infinite string, but a mixed problem for a finite string of some
length l. In this case, the boundary conditions at its ends u(0, t) = µ1(t) and
u(l, t) = µ2(t).

182

For example, at fixed ends, their displacements are equal to zero, and the
boundary conditions have the form:

 0
0

t
u

=
= , 0

x l
u

=
= . (4.14)

To solve the problem (4.12)–(4.14), a three-layer scheme is most often used,
where the set of nodes according to t=const is called a layer. At the same time, a
uniform rectangular grid is introduced: xi = i·h (i = 0, 1, …, n), τi = j·τ (j = 0, 1,
…, m). Based on basic difference schemes (see Section 4.3), equation (4.12) is
represented by finite-difference relations:

, 1 , , 1 1, , 1,2

2 2

2 2

1, 2, , 1; 1, 2, , 1.

;i j i j i j i j i j i ju u u u u u
a

h
i n j m

τ
+ − + −

= … − = … −

 − + − +
=




. (4.15)

An explicit expression for the value of the grid function on the j+1 layer is
determined from equation (4.15):

 , 1 1, 1, , , 1() 2(1)i j i j i j i j i iu u u u uλ λ+ + − −= + + − − , (4.16)

where
2 2

2
a
h
τλ = .

The solution scheme based on equation (4.16) is called a three-layer scheme
because it connects the values of ui,j on three time layers: j–1, j, and j+1. To
determine the unknown values on the j+1 layer, it is necessary to know the
solutions on the j−th and (j–1)th layers. Therefore, calculations according to
formulas (4.16) must start from the second layer, and the solutions on the zero
and first layers must be known. In other words, they are determined using the
initial conditions (4.13). Specifically, on the zero layer:

 ,0 ()i iu xϕ= (i=0, 1, …, n). (4.17)

To obtain the solution on the first layer, it is necessary to use the second initial
condition (4.13), where the derivative /u t∂ ∂ is replaced by the finite-difference
approximation:

 ,1 ,0

0

()i i
i

t

u uu x
t

ψ
τ=

−∂
≈ ≈

∂
. (4.18)

The value of the grid function on the first time layer is determined from
relation (4.18):

 ,1 ,0 ()i i iu u xτψ= + (i=0, 1, …, n; t=0). (4.19)

It should be noted that the approximation of the initial condition in the form
of (4.18) worsens the approximation of the original differential problem. The
approximation error becomes of the order of O(h2+τ), which means it is of the first
order with respect to τ. However, scheme (4.16) itself has the second order of

183

approximation with respect to h and τ. Therefore, to increase the accuracy, a more
accurate representation is chosen instead of equation (4.19):

2 2

,1 ,1 2
0 02i i

t t

u uu u
t t

ττ
= =

∂ ∂
= + +

∂ ∂
. (4.20)

Instead of /u t∂ ∂ , ψ(x) is used. The expression for the second derivative of
equation (4.20) can be determined using equation (4.12) and the first initial
condition (4.13), namely:

2 2 2
2 2

2 2 2
0 0t t

u ua a
t t x

ϕ

= =

∂ ∂ ∂
= =

∂ ∂ ∂
 .

Then equation (4.19) takes the following form:

2

2
,1 ,0 () ()

2i i i iu u x a xττψ ϕ′′= + + (i=0, 1, …, n). (4.21)

The difference scheme (4.15) taking into account (4.21) has an approximation
error of the second order of accuracy O(h2+τ2).

When solving a mixed problem with boundary conditions of the form (4.14),
that is, when the value of the function itself is set at the ends of the considered
segment, the second order of approximation is preserved. In this case, the extreme
nodes of the grid are located at the limit points (x0 = 0, x1 = l). However, boundary
conditions can also be specified for the derivative. For example, in the case of free
longitudinal oscillations of a rod at its unfixed end, the condition is set:

 0
x l

u
x =

∂
=

∂
. (4.22)

If this condition is written in the difference form with the first order of
approximation, then the approximation error of the scheme will be of the order of
O(h2+τ2). Therefore, to preserve the second order of this scheme with respect to
h, it is necessary to approximate the boundary condition (4.22) with the second
order of accuracy.

The difference scheme (4.16) for the solution of problem (4.12) – (4.14) is
conditionally stable. Therefore, the necessary and sufficient condition for stability
is in the form:

 1r a
h
τ

= < . (4.23)

Condition (4.23) ensures the acceptable accuracy of obtaining the solution
u(x, t), which has continuous derivatives of the fourth order. Moreover, under the
condition r >1, the solution is unstable, and under r<1, the solution is stable, but
its accuracy decreases as r decreases. Provided that r=1, the difference solution is
stable and coincides with the exact one.

The algorithm for modeling free string vibrations based on the wave equation
(4.12) is presented in Figure 4.6.

184

Figure 4.6 – Scheme of the algorithm for solving hyperbolic partial differential
equations

185

Example 4.2. Determine the position of the string as a function of time, which
undergoes free oscillations during the time t = 2,0 sec with fixed ends (the distance
between the points of fixing the ends L = 4,0 m) and for which the following
conditions are set:

– phase velocity coefficient а = 1,0 m/sec;
– initial

2, 0 cos() (
2

) xx u xϕ = =  
 

, (,0) sin()()
2

u x xx
t

ψ ∂
= = −

∂
 (0 x L≤ ≤);

– borderline
2(0), cos

2
tu t =  

 
 

, 2, cos 2,0
2

() tu tL  
 


=


+ (0 2,0t≤ ≤).

Compare the obtained solution with the exact solution: 2s() ., co
2

tx xu t  
 
 
+

=

Solution:

The free oscillations of the string are described by one of the types of
hyperbolic equations, namely, the uniform wave equation (4.12) with two
independent variables x, t:

2 2

2
2 2
u ua

t x
∂ ∂

=
∂ ∂

. (4.24)

To formulate the problem and fulfill the condition of stability of the solution
of the difference scheme (4.23), it is necessary to introduce a two-dimensional
calculation grid, namely: along the horizontal axis x with a distance between
nodes h=0,2 m (Fig. 4.7), as well as for time (variable t) with a distance between
nodes τ=0,1 sec. The grid along the horizontal axis x contains
nx=(L/h)+1=(4,0/0,2)+1=21 nodes, and along the time variable τ also contains
nτ=(t/τ)+1=(2,0/0,1)+1=21 nodes. The serial number of the calculation node is
indicated by the index i on the x-axis, and by the index j on the time axis.

Figure 4.7 – Calculation scheme for the free oscillations of the string

The value of the vector of positions of the oscillating string for the first time
layer at the instant of time t0 = 0,0 sec (j = 0):

186

() (

)

0 0,0 1,0 ,0 ,0 1,0 0,990 0,961 0,913 0,848

0,770 0,681 0,585 0,485 0,386 0,292 0,206 0,131 0,716 0,289
0,005 0,00085 0,017 0,052 0,105 0,173 ,

xi nU u u u u= = 

where 2 2
0,0

0,0(0,0) cos cos 1,00
2 2
tu u    = = = =   

   
 m; 2

,0 (,0) cos
2

i
i i

xu u x  = =  
 

;

2 21
1,0

0,2(,0) cos cos 0,99
2 2
xu u h    = = = =   

   
m; 2

20,0 0 co(4,0;) 2,0
2

su tu  + =


= 


=

2 0,0cos 2,0 7
2

0,1 3  = 
 

= + m.

The value of the position vector of the oscillating string for the second time
layer, at the moment of time t1 = τ = 0,1 sec (j = 1) based on equation (4.21):

() (

)

1 0,1 1,1 ,1 ,1 0,998 0,978 0,939 0,882 0,811

0,727 0,634 0,535 0,435 0,338 0,248 0,167 0,099 0,048 0,014
0,0004 0,0063 0,032 0,076 0,137 0,213 ,

xi nU u u u u= = 

where 2 21
0,1

0,1(0; 0,1) cos cos 0,998
2 2
tu u    = = = =   

   
 m; 20,1 (0),4; 1u u= =

2 21 0,1cos cos2,0 02, ,0
2

173
2
t

+
  = + = =    

 m;
2

2
,1 ,0 ()

2i i iu u x a ττψ= + + ×

2 2
2

,02
() sin() cos()

2 2 2
i i

i
d x x xu a

dx
ϕ ττ

     × = + − + −     
    

; 1,1 1,0(; 0,1)u u h u= = +

2 2
2 21 1sin() cos() sin(0,1) 0,1 cos(0,2)0,99 0,1 1

2 2 2 2 2 2
x xa ττ        + − + − = + − + − =       

       

=0,978 m.
The value of the position vector of the oscillating string for the third time

layer, at the moment of time t2=2τ=2·0,1 sec based on equation (4.16) for the same

value of j=1, for
2 2 2 2

2 2
1,0 0,1 0,25

0,2
a
h
τλ ⋅

= = = :

() (

)

2 0,2 1,2 ,2 ,2 0,990 0,961 0,913 0,848 0,770

0,681 0,585 0,485 0,386 0,292 0,206 0,131 0,071 0,029 0,005
0,0008 0,0167 0,052 0,105 0,173 0,255 ,

xi nU u u u u= = 

where 2 22
0,2

0,2(0; 0,2) cos cos 0,990
2 2
tu u    = = = =   

   
 m; , 1 1, 1,()i j i j i ju u uλ+ + −= + +

, , 12(1) i j i iu uλ −+ − − ; 1,2 2,1 0,1 1,1 1,0() 2(1) 0,25(0,939 0,998)u u u u uλ λ= + + − − = + +

187

2(1 0,25)0,978 0,990 0,961+ − − = m; 2 2
20,2 0,2 cos 2,0)

2
(4,0; tu u=   = + 

 
=

2 0,2cos 2,0 0,255
2





= =


+ m.

Similarly, formula (4.16) is used to determine the position vectors of the
oscillating string for the remaining time layers (j = 3, 4, …, 20). Based on the
results of the calculations, it is possible to construct a diagram of the positions of
the string for different moments of time during free oscillation (Fig. 4.8), where
the movement of the wave (point A) can be clearly determined.

Figure 4.8 – Diagram of the positions of the string at different moments of time

during free oscillation

The relative error of calculating the wave equation by comparing the values
of the analytical solution and the numerical method is:

– of the third time layer at the nodal point i=10 (x10=2,0 m)

10,2 10,2
10,2

10,2

0,2058 0,2060100% 100% 0,01%
0,2058

an num

an

u u
u

ε
− −

= ⋅ = ⋅ = ,

where 2 22 10
10,2

0,2 2 8,0 0cos c 0,o 2 5s
2 2

аn t xu    = =   
   

+ +
= m, 10,2 0,2060numu = m.

– of the fourth temporal layer at the nodal point i=15 (x10=3,0 m)
15,3 15,3

15,3
15,3

0,00630 0,00626100% 100% 0,64%
0,00626

аn num

аn

u u
u

ε
− −

= ⋅ = ⋅ = ,

188

where 2 23 15
15,3

0,3 3,0cos 0c
2

0,0063os
2

аn t xu    = =   
   

+ +
= m,

15,3 16,2 14,2 15,2 15,1() 2(1) 0,25(0,0167 0,0050)numu u u u uλ λ= + + − − = + +

2(1 0,25)0,0008 0,0004+ − − = 0,00626 m.
The value of the relative errors in the calculation using the numerical method

of finite differences demonstrates the high accuracy of solving partial differential
equations of the hyperbolic type. This is achieved by employing the explicit
difference scheme for evaluating the grid function.

The result of solving example 4.2 in the programming language PYTHON:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
from scipy import *
from sympy import *
#entering the value of the length of the string
l=float(input()) #l=4.0
entering the step value of the calculation grid along the length of the

string
h_x=float(input()) #h_x=0.2
entering the step value of the calculation grid over time
h_t=float(input()) #h_t=0.1
#entering the value of the boundary conditions:
#entering the coordinate value of the position of the left end of the string
def u_left(t):
 return np.cos(0.5*t)*np.cos(0.5*t)
#entering the coordinate value of the position of the right end of the string
def u_right(t):
 return np.cos((0.5*t)+2)*np.cos((0.5*t)+2)
#entering the function of the initial position of the string
def u_x0(x):
 return np.cos(0.5*x)*np.cos(0.5*x)
#entering the function of the initial velocity of the points of the string
def v_first(x):
 return -0.5*np.sin(x)
#entering the value of the total oscillation time
t=float(input()) #t=2.0
#entering the calculation error value
e=float(input()) #e=0.005
#entering the string tension indicator
a=float(input()) #a=1
lamb_da=(a*a*h_t*h_t)/(h_x*h_x)
#control of the solution's stability condition
if np.sqrt(lamb_da)>1:
 print("The solution condition is not stable. Change the resolution

parameters!")
#entering the values of the boundary conditions:
u_first,u_second,x_coord=[u_left(0)],[u_left(h_t)],[0]
x=h_x
for i in range(0,int(l/h_x)):
#for the first temporal layer
 u_first.append(u_x0(x))
#for the second time layer
 if i==int(l/h_x):
 u_first.append(u_right(0))
 else:
 u_second.append(u_x0(x)+(v_first(x)*h_t)+(0.5*(a*a)*(h_t*h_t)*(0.5*(-

189

np.cos(x)))))
 x_coord.append(x)
 x=x+h_x
u_second[int(l/h_x)]=u_right(h_t)
u_first, u_second=np.array(u_first),np.array(u_second)
u=np.array([u_first,u_second])
#solution of a three-layer system of finite-difference equations
t_0=h_t
for j in range(2,int(t/h_t)+1):
 t_0=t_0+h_t; u_next=[u_left(t_0)]
 for i in range(0,int(l/h_x)-1):
 u_next.append(lamb_da*(u[j-1,i+2]+u[j-1,i])+(2*(1-lamb_da)*u[j-

1,i+1])-u[j-2,i+1])
 u_next.append(u_right(t_0)); u=np.insert(u,j,u_next,axis=0)
 del u_next
print('The matrix of values of the position of the oscillating string for

each moment in time:')
print(u)
#graphing the solutions of the hyperbolic (wave) equation
k=0
plt.figure(figsize=(8, 8))
plt.xlabel('x',fontsize=15, color='blue')
plt.ylabel('y',fontsize=15, color='blue')
for i in range(0,6):
 plt.plot(x_coord, u[k]); k=k+4
plt.grid(True)
plt.xlim([0, 4])
plt.ylim([-0.1, 1.1])
plt.show()
#calculating the values of the exact solution of the hyperbolic (wave)

equation
x_an=0; t_an=0
u_an=[]
for i in range(0,int(l/h_x)+1):
 u_an.append(np.cos(0.5*(x_an+t_an))*np.cos(0.5*(x_an+t_an)))
 x_an=x_an+h_x
t_an=t_an+h_t
u_an=np.array([u_an])
for j in range(1,int(t/h_t)+1):
 u_tran=[]; x_an=0
 for i in range(0,int(l/h_x)+1):
 u_tran.append(np.cos(0.5*(x_an+t_an))*np.cos(0.5*(x_an+t_an)))
 x_an=x_an+h_x

 t_an=t_an+h_t
 u_an=np.insert(u_an,j,u_tran,axis=0)
 del u_tran
print('The matrix of exact values of the position of the oscillating string

for each instant of time:')
print(u_an)
#determination of calculation error
e_tran=[]; count=0
for j in range(0,int(t/h_t)+1):
 for i in range(0,int(l/h_x)-1):
 e_tran.append(abs(u_an[j,i]-u[j,i]))
 if abs(u_an[j,i]-u[j,i])>=e:
 count=count+1
if count>0:
 print("The calculation error exceeds the specified accuracy. Please

change the initial parameters of the calculation.").

190

Solving parabolic equations

An example of a problem that can be reduced to a parabolic equation in partial

derivatives is the problem of non-stationary thermal conductivity described by the
homogeneous equation (4.2). In particular, in the homogeneous thermal
conductivity problem, it is necessary to determine the function u(x, t) that satisfies
the equation in the domain Ω ={(x, t), 0 ≤ x ≤ l, 0 ≤ t ≤T)}.

2

2
u u
t x

α∂ ∂
=

∂ ∂
 (k = const>0), (4.25)

initial condition 0(,0) ()u x u x= and boundary conditions of the first kind u(0,
t) = µ1(t) and u(l, t) = µ1(t).

There are two possible options for constructing the difference equation on the
calculation grid with steps h along x and τ along t.

 A variant of approximation using a four-point template, a central difference
scheme of the second kind (see Section 4.3), and a left difference scheme

, 1 , 1i j i ju uu
t τ τ

+ −∂
≈ ≈

∂
[] leads to an explicit two-layer scheme,

namely: , 1 , 1, , 1,
2

2i j i j i j i j i ju u u u u
h

α
τ

+ + −− − + 
≈  

 
 (i = 1, 2, …, n–1;

j = 0, 1, …, m–1), then
 , 1 1, 1,(1 2)i j i j ij i ju u u uδ δ δ+ + −= + − + , (4.26)

where 2h
τδ α= .

The explicit two-layer difference scheme (4.26) is stable only for δ≤0.5,
which leads to the need to perform calculations with a very small step in
t (20,5hτ ≤). This also limits the speed of operation and requires a large
expenditure of machine time for computer systems.

The algorithm for solving parabolic differential equations based on the heat
conduction equation and the explicit difference scheme (4.26) is presented in
Figure 4.9.

Therefore, for parabolic equations, the most widely used implicit scheme is
the one where the approximation is performed using a four-point template, a
central difference scheme of the second kind (see Section 4.3), and a right-hand

difference scheme. , , 1 1i j i ju uu
t τ τ

−−∂
≈ ≈

∂
[] leads to an implicit

two-layer scheme, namely: , , 1 1, , 1,
2

2i j i j i j i j i ju u u u u
h

α
τ

− + −− − + 
≈  

 
 (i = 1, 2, …,

n-1; j = 1, 2, …, m), then
 , 1 1, 1,(1 2)i j i j ij i ju u u uδ δ δ− + −− = − + + . (4.27)

1 -1 0
i, j

0 1 -1
i, j

191

Figure 4.9 – Scheme of the algorithm for solving parabolic partial differential
equations using the explicit difference method

The implicit two-layer difference scheme (4.27), supplemented with

equations from the boundary conditions 0, 1()j ju tµ= and , 2 ()n j ju tµ= , leads to a
system of equations that has a stable solution for any values of δ.

The algorithm for solving parabolic differential equations based on the heat
conduction equation and the implicit difference scheme (4.27) by the sweep
method is presented in Figure 4.10.

192

Figure 4.10 – Scheme of the algorithm for solving parabolic partial differential
equations using the implicit difference method

193

Example 4.3. A copper rod of length L = 2,0 m with a constant cross-
sectional area along its length is placed in an insulated material in such a way that
only its extreme right and left ends interact with the environment. At the initial
moment of time, the rod has a balanced temperature T = 0 °С, and its left and right
ends are constantly maintained at temperatures Tl = 80,0 °C and T = 10,0 °C,
respectively. It is necessary to determine the change in temperature distribution
along the rod depending on time during one hour (t=3600,0 sec). Compare the
results of calculations with the help of explicit and implicit difference schemes.

Solution:

The non-stationary temperature distribution along the length of the body is
described by the homogeneous heat conduction equation (4.1), namely:

2 2

2
u u
t x

α∂ ∂
=

∂ ∂
. (4.28)

To formulate the problem and fulfill the condition of stability of the solution
of the difference scheme (4.26), it is necessary to introduce a two-dimensional
calculation grid: along the horizontal axis x with the distance between nodes
h = 0,2 m (Fig. 4.11); for the explicit difference scheme, the distance along the
vertical axis for the time variable t with the distance between the nodes

2 20,5 0,5 0,2 0,02hτ = = ⋅ = sec; for implicit – τ=0,1 sec. The grid along the
horizontal axis x contains nx = (L/h)+1 = (2,0/0,2)+1 = 11 nodes, and the grid
along the vertical axis τ contains: for the explicit difference seven – enτ = (t/τ) +1=
=(3600,0/0,02)+1=180001 nodes; for implicit – inτ = (t/τ)+1= (3600,0/0,02)+1 =
=180001. The serial number of the calculation node is denoted by the index i on
the x-axis, and by the index j on the time axis.

Figure 4.11 – Calculation diagram of heat transfer along the rod

194

The value of the temperature vector along the rod for the first time layer at
the moment of time t0 = 0 sec (j = 0) for both explicit and implicit difference
schemes:

() ()0 0,0 1,0 ,0 10,0 20,0 0 0 0 0 0 0 0 0 10,0 ,iU u u u u= = 
where 0,0 (0,0) 20,0u u= = grad; ,0 (,0) 0,0i iu u x= = grad;

10,0 (2,0;0) 20,0u u= = grad.
The value of the temperature distribution vector for the second time layer, at

the moment of time t1 = 0,02 sec based on the equation of the explicit difference

scheme (4.26) for the same value of j = 0, for 2
0,020,00011
0,2h

τδ α= = =

55,49 10−= ⋅ (α = 0,00011 m/sec2 – coefficient of thermal conductivity for
copper):

() (1 0,1 1,1 ,1 10,1 20,0 0,0011 0 0 0 0 0 0 0e e e e e
iU u u u u= = 

)0,00055 10,0 , where 0,1 (0;0,02) 20,0eu u= = grad; 10,1 (2,0;0,02)eu u= =
=20,0 grad; , 1 1, 1,(1 2)i j i j ij i ju u u uδ δ δ+ + −= + − + ; 1,1 2,0 1,0 0,0(1 2)eu u u uδ δ δ= + − + =

55,49 10−= ⋅ × 5 50,0 (1 2 5,49 10) 0,0 5,49 10 20,0 0,00011− −+ − ⋅ ⋅ ⋅ + ⋅ ⋅ = grad,
5 5

9,1 10,0 9,0 8,0(1 2) 5,49 10 10,0 (1 2 5,49 10) 0,0eu u u uδ δ δ − −= + − + = ⋅ ⋅ + − ⋅ ⋅ ⋅ +
55,49 10 0,0 0,00055−+ ⋅ ⋅ = grad.

Similarly, based on the equation of the explicit difference scheme (4.26), the
temperature distribution vectors for the remaining time layers are determined
(j = 2, 3, …, 1enτ −), in particular for the last time layer:

()180000 0,180000 1,180000 ,180000 10,180000
e e e e e

iU u u u u= = 

()20,0 16,74 13,71 11,12 9,12 7,81 7,21 7,25 7,84 8,82 10,0= .

Using the equation of the implicit difference scheme (4.27), the number of
calculations can be significantly reduced, specifically for the second time layer
and the value of j = 1 for each calculation node:

0,1 1,1 2,1 1,0

1,1 2,1 3,1 2,0

(1),1 ,1 (1),1 ,0

(3),1 (2),1 (1),1 (2

(1 2) (1);

(1 2) (2);
;

(1 2) ; ();
;

(1 2)
x x x x

i i i

i i i

i i i
k k k k

i i i
n n n n

u u u u i

u u u u i

u u u u i k

u u u u

δ δ δ

δ δ δ

δ δ δ

δ δ δ

− +

− − − −

− + + = − =

− + + = − =

− + + = − =

− + + = −





),0 (2).xi n










 = −

 (4.29)

If the system of equations (4.29) is reduced to the following form:

195

1,1 0,1 1,1 1,1 1,1 2,1 1

2,1 1,1 2,1 2,1 2,1 3,1 2,1

,1 (1),1 ,1 ,1 ,1 (1),1 ,1

2,1 (3),1 2,1 (2),1 2,

(1);

(2);
;
();
;

x x x x x

i i i

i i i

i i i
k k k k k k k

i i
n n n n n

a u b u c u d i

a u b u c u d i

a u b u c u d i k

a u b u c

− +

− − − − −

+ + = =

+ + = =

+ + = =

+ +





1 (1),1 2,1 (2).
x x

i
n n xu d i n− −










 = = −

(4.30)

where () ()1 1,1 2,1 ,1 (2),1, , , , , 0, , , , ,
xk na a a a a δ δ δ−= =    ; (1 1,1,b b=

) ()2,1 ,1 (2),1, , , , (1 2), (1 2), , (1 2), , (1 2)
xk nb b b δ δ δ δ− = − + − + − + − +    ;

() ()1 1,1 2,1 ,1 (2),1, , , , , , , , , , 0
xk nc c c c c δ δ δ−= =    ; (1 1,1 2,1, , ,d d d= 

) (),1 (2),1 1,0 0,1 2,0 ,0 (2),0 (1),1, , (), (), , (), , () ,
x x xk n k n nd d u u u u u uδ δ− − −= − − − − − −  

then, in the obtained tridiagonal matrix of the system of equations (4.30), the
condition of preferring diagonal elements is fulfilled (),1 ,1 ,1i i ib a c≥ + , which
allows us to use the run-off method (see Chapter 1) to solve this LAES.

Then the value of the driving coefficients on the straight line:

− ,1
,1

,1 ,1 (1),1

i
i

i i i

c
b a

ξ
ξ −

−
=

+
 (i = 1, 2, …, nx–2)

()
5

1,1
1,1 5

1,1 1,1 0,1

5,49 10 0.000275
(1 2) 0 0 1 2 (5,49 10)

c
b a

δξ
ξ δ

−

−

− − − ⋅
= = = =

+ − + + ⋅ − + ⋅ ⋅
,

 ()
5

2,1
2,1 5 5

2,1 2,1 1,1

5,49 10 0.000275,
1 2 (5,49 10) 5,49 10 0,000275

c
b a

ξ
ξ

−

− −

− − ⋅
= = =

+ − + ⋅ ⋅ + ⋅ ⋅

…………………………………………………………………………… ,

() (1 1,1 2,1 ,1 9,1, , , , , 0,000275 0,000275 0,000275 0,000275kξ ξ ξ ξ ξ= = 

)0,000275 0,000275 0,000275 0,000275 0,0 ;

− ,1 ,1 (1),1
,1

,1 ,1 (1),1

i i i
i

i i i

d a
b a

η
η

ξ
−

−

−
=

+
 (i = 1, 2, …, nx–2)

()
5

1,1 1,1 0,1 1,0 0,1
1,1 5

1,1 1,1 0,1

() 0 0 20,0 (5,49 10) 20,0 0.0055,
(1 2) 0 0 1 2(5,49 10)

d a u u
b a

η δ
η

ξ δ

−

−

− − − − ⋅ − − ⋅ ⋅
= = = =

+ − + + ⋅ − + ⋅

2,1 2,1 1,1 2,0 1,1
2,1

,12 2,1 1,1 1,1

()
(1 2)

d a u
b a

η δη
η

ξ δ δξ
− − −

= = =
+ − + +

196

()
5

5 5
6(0,0) (5,49 10 0,0055)

1 2 5,49 10 (5,49 10 0,
1,

000275)
51·10

−

− −
−− − ⋅ ⋅

= =
− + ⋅ ⋅ + ⋅ ⋅

 ,

……………………………………………………………………………… ,

() (6 10 13
1 1,1 2,1 ,1 9,1, , , , , 0,0055 1,51 10 4,15 10 1,14 10kη η η η η − − −= = ⋅ ⋅ ⋅ 

)17 21 24 283,14 10 8,62 10 2,37 10 6,51 10 0,00275− − − −⋅ ⋅ ⋅ ⋅ .

On the return stroke, the ,1
i
iu values are determined using recursive equations

,1 ,1 (1),1 ,1
i i
i i i iu uξ η+= + (i=nx–2, nx–3, …, 1):

(2),1 9,1 (1),1 (1),1 (2),1

9,1 10,1 9,1

(3),1 8,1 (3),1 (2),1 (3),1

8,1 9,1 8,1

2 11 2 9 :

0 10,0 0,00275 0,0028 grad;

3 11 3 8:

0,000275 0,00275 6,

x x x x

x x x x

i i i
x n n n n

i

i i i
x n n n n

i

i n u u u

u

i n u u u

u

ξ η

ξ η

ξ η

ξ η

− − − −

− − − −

= − = − = = = + =

= + = ⋅ + =

= − = − = = = + =

= + = ⋅ + 28

7

(10),1 1,1 (10),1 (9),1 (10),1

6
1,1 2,1 1,1

51 10

7,55 10 grad;
;

10 11 10 1:

0,000275 1,51 10 0,0055
0,0055 grad,

x x x x

i i i
x n n n n

i

i n u u u

u

ξ η

ξ η

−

−

− − − −

−






 ⋅ =
 = ⋅


 = − = − = = = + =


= + = ⋅ ⋅ + =
 =



() (6 10
1 0,1 1,1 ,1 10,1 20,0 0,0055 1,51 10 4,15 10i i i i i

iU u u u u − −= = ⋅ ⋅ 

)13 17 14 10 71,14 10 4,71 10 5,71 10 2,08 10 7,55 10 0,0027 10,0− − − − −⋅ ⋅ ⋅ ⋅ ⋅ .

Similarly, based on the equation of the implicit difference scheme (4.27), the
temperature distribution vectors are determined for the remaining time layers
(j = 2, 3, …, 1inτ −), particularly for the last time layer:

()36000 0,36000 1,36000 ,36000 10,36000
i i i i i

iU u u u u= = 

()20,0 16,74 13,71 11,12 9,12 7,81 7,21 7,25 7,84 8,82 10,0= .

Based on the results of the calculations, it is possible to construct a diagram
of the temperature distribution along the rod for different moments of time
(Fig. 4.12).

Comparing the temperature values in the nodes of the rod, determined by the
explicit and implicit methods in the corresponding time layers, it is possible to
observe a high level of convergence in the calculation results. It is important to
note the high efficiency of using the implicit calculation method, particularly as

197

the number of calculations using the implicit difference method is reduced by
three times compared to the explicit method.

Figure 4.12 – Diagram of temperature distribution along the rod

The result of solving example 4.3 in the PYTHON programming language:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
from scipy import *
from sympy import *
#entering the length of the rod
l=float(input()) #l=2.0
#entering the time value of the heat exchange duration
t=float(input()) #t=3600.0
entering the step value of the calculation grid along the length of the rod
h_x=float(input()) #h_x=0.2
#entering the step value of the calculation grid over time
print("Enter the value of the step of the calculation grid in time for the

explicit difference scheme (the step should not be more)", 0.5*h_x*h_x,
"c")

h_texp=float(input()) #h_texp=0.02
print("Enter the time grid step value for the implicit difference scheme")
h_tnexp=float(input()) #h_tnexp=0.1
#entering the value of the coefficient of thermal conductivity
a=0.00011 #a=float(input()) a=0.00011
del_tae=(a*h_texp)/(h_x*h_x); del_tane=(a*h_tnexp)/(h_x*h_x)
#entering the value of the boundary conditions:
#entering the value of the temperature of the left end of the rod
def u_left(t):
 return 20.0
#entering the temperature value of the right end of the rod
def u_right(t):
 return 10.0
#introduction of the initial temperature distribution function along the

length of the rod
def u_x0(x):
 return 0

198

#entering the values of boundary and initial conditions:
u_first,x_coord=[u_left(0)],[0]
x=h_x
for i in range(0,int(l/h_x)):
for the first time layer
 u_first.append(u_x0(x)); x_coord.append(x)
 x=x+h_x
u_first[int(l/h_x)]=u_right(0)
ru_first=np.array(u_first)
u_exp=np.array([u_first]); u_nexp=np.array([u_first])
#calculation of the temperature distribution along the rod using an explicit

difference scheme
t_0=0
for j in range(1,int(t/h_texp)+1):
 t_0=t_0+h_texp; u_next=[u_left(t_0)]
 for i in range(1,int(l/h_x)):
 u_next.append((del_tae*u_exp[j-1,i-1])+((1-(2*del_tae))*u_exp[j-

1,i])+(del_tae*u_exp[j-1,i+1]))
 u_next.append(u_right(t_0))
 u_exp=np.insert(u_exp,j,u_next,axis=0)
 del u_next
print("Matrix of temperature distribution along the rod by time layers

determined by the implicit difference method:")
print(u_exp)
determination of the temperature distribution vector along the rod in the

current time layer by the implicit difference method
def u_rawnexp(del_tane,h_tnexp, k):
 a_kof=[0]; b_kof=[-1-(2*del_tane)]; c_kof=[del_tane]; d_kof=[-

u_nexp[k,1]-(del_tane*u_left(h_tnexp))]
 for i in range(2,int(l/h_x)):
 a_kof.append(del_tane)
 b_kof.append((-1-(2*del_tane)))
 if i==int(l/h_x)-1:
 c_kof.append(0)
 d_kof.append((-u_nexp[k,int(l/h_x)-1]-

(del_tane*u_right(h_tnexp))))
 else:
 c_kof.append(del_tane)
 d_kof.append(-u_nexp[k,i])
 et_ta,tet_ta=[-c_kof[0]/b_kof[0]],[d_kof[0]/b_kof[0]]
 for i in range(1,int(l/h_x)-1):
 et_ta.append((-c_kof[i])/(b_kof[i]+(a_kof[i]*et_ta[i-1])))
 tet_ta.append((d_kof[i]-(a_kof[i]*tet_ta[i-

1]))/(b_kof[i]+(a_kof[i]*et_ta[i-1])))
 u=[tet_ta[int(l/h_x)-2]]
 for i in range(int(l/h_x)-3,-1,-1):
 u.append((et_ta[i]*u[int(l/h_x)-3-i])+tet_ta[i])
 u=list(reversed(u))
 u.append(u_right(h_tnexp))
 u.insert(0,u_left(h_tnexp))
 return u
#determination of the distribution matrix of the temperature distribution

along the rod using an implicit difference scheme
for k in range(0,int(t/h_tnexp)-1):
 u_nexp=np.insert(u_nexp,k+1,u_rawnexp(del_tane,h_tnexp, k),axis=0)
print(u_nexp)
print(len(u_nexp))
construction of the diagram of temperature distribution along the rod by

time layers
plt.figure(figsize=(8, 8))
plt.xlabel('x',fontsize=15, color='blue')
plt.ylabel('y',fontsize=15, color='blue')
for k in range(1,6,2):
 plt.plot(x_coord, u_exp[36000*k])
 plt.plot(x_coord, u_nexp[1440*k])
plt.grid(True)
plt.xlim([0, 2])
plt.ylim([0, 20])
plt.show().

199

Conclusions on the application of numerical methods for solving
differential equations in mathematical physics

Solving engineering problems in many areas of science and technology is
connected with partial differential equations. They contain partial derivatives, and
the sought function depends on several variables at the same time.

The complete mathematical formulation of the problem, along with the partial
differential equations, also includes some additional conditions. If the search for
a solution is conducted within a limited domain, then boundary conditions are set,
and the problem is then referred to as a boundary value problem for equations
with partial derivatives. A problem in which it is necessary to solve a partial
differential equation under given initial conditions is called a Cauchy problem.
The problem is solved in an unbounded space, and boundary conditions are not
specified. Problems in which both boundary and initial conditions are set
simultaneously are referred to as non-stationary (or mixed) boundary value
problems. The resulting solution changes over time.

Depending on the values of the functional coefficients and their ratios,
different types of differential equations of mathematical physics are
distinguished: transport, evolutionary, hyperbolic, parabolic, and elliptic.

There are two types of methods for solving equations of the following types:
– analytical (the result is derived through various mathematical

transformations);
– numerical, where the obtained result corresponds to reality with a given

accuracy, but requires a lot of algebraic calculations and the use of computing
power of computer systems.

When comparing the methods of solving partial differential equations, it is
necessary to remember that the finite element method approximates the solution
of the problem, while the finite difference method approximates the derivatives
of the sought functions. The finite element method, unlike the difference method,
requires a time-consuming formulation of the problem, high qualification, and
experience of the researcher, but it is convenient when solving a problem with a
complex boundary shape and a non-uniform distribution of parameters.

In the initial stage of solving partial differential equations, the method for
solving the problem is selected. Usually, it is easier to use the finite difference
method, as it requires simpler preparation of the problem for solution. However,
in certain cases, such as problems in mechanics that have a well-developed theory,
it is advisable to turn to the finite element method.

When determining the steps to solve a problem, accuracy is the main factor.
If accuracy is high, then either a very fine mesh or a very fine decomposition is
required. At the same time, it is necessary to take into account that the error of
finite-difference methods is of the first order, meaning it is proportional to h2.

In the case of symmetry in the solution area, the number of nodes can be
reduced by two or four times due to symmetry along both coordinate axes. This
allows you to save time and the amount of memory of the computer system.

200

The choice of the initial values of the variables is of great importance for the
effective solution of the problem. The speed of convergence of the calculation
results depends significantly on this in the process of using iterative methods. It
is often advisable to solve the problem in several stages: at the first stage, with the
help of a coarse grid (or division into large elements), an initial approximation is
obtained, after which an exact solution is performed on a fine grid.

To solve partial differential equations, a number of modern and effective
software tools have been developed, which are used in automating the design of
technological systems.

Control questions and tasks

1. Provide the definition of partial differential equations.
2. What kinds of necessary conditions must be met in order to obtain a

solution to partial differential equations?
3. Provide examples of engineering problems that can be described by partial

differential equations.
4. What generalized functional equation characterizes all types of partial

differential equations?
5. What are the types of second-order partial differential equations,

depending on the input functional coefficients?
6. Provide examples of engineering problems that are described by the

corresponding types of differential equations in mathematical physics.
7. Determine the type of partial differential equations given in Table 4.2.

Table 4.2 – Output data for the task

Version Differential equation

1
2 2

2 6 0u u
t t x

∂ ∂
+ =

∂ ∂ ∂

2
2 2 2

2 26 9 0u u u
t t x x

∂ ∂ ∂
− + =

∂ ∂ ∂ ∂

3
2 2 2

2 26 9 0u u u
y x y x
∂ ∂ ∂

− + =
∂ ∂ ∂ ∂

4
2

3 5u u u u
t x t x
∂ ∂ ∂

− + =
∂ ∂ ∂ ∂

5
2 2 2

2
2 22u u ux xu

x x y y
∂ ∂ ∂

− + =
∂ ∂ ∂ ∂

6
2 2 2

2
2 210 25 0u u u xy u

x x y y
∂ ∂ ∂

+ + − =
∂ ∂ ∂ ∂

201

8. What are the methods for solving partial differential equations? Provide a
comparative analysis of each method.

9. Describe the heat conduction equation.
10. How are computational templates for partial derivatives constructed?
11. Compile calculation templates for the Laplace operator and the

biharmonic operator.
12. Create calculation templates for the partial differential equations provided

in Table 4.3.

Table 4.3 – Output data for the task
Version Differential equation

7
2 2

2 0u u
x y x
∂ ∂

+ =
∂ ∂ ∂

8
2 2

2 0u u u
t t x x

∂ ∂ ∂
− + =

∂ ∂ ∂ ∂

9

10
2 4

4 (,)u u u x t
t x x
∂ ∂

− =
∂ ∂ ∂

11
2 2 2

2 2 (,)u u ux xu x y
x x y y
∂ ∂ ∂

− + =
∂ ∂ ∂ ∂

12
2 3 2

2 3 0u u u u
x x y x y
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂ ∂

13. What different methods are used to calculate the classical Dirichlet

problem for the Laplace equation in a rectangular domain?
14. Describe the wave equation.
15. Develop an algorithm for solving elliptic partial differential equations.
16. Create a three-layer scheme for solving hyperbolic equations.
17. What necessary and sufficient stability condition must be met for the

numerical solution of hyperbolic partial differential equations?
18. Develop an algorithm for solving hyperbolic equations with partial

derivatives.
19. Compare the effectiveness of using explicit and implicit schemes for

solving parabolic equations with partial derivatives.
20. Develop an algorithm for solving parabolic equations with partial

derivatives using the explicit difference method.
21. Develop an algorithm for solving parabolic equations with partial

derivatives using the implicit difference method.
22. Under what conditions are explicit and implicit two-layer difference

schemes for solving parabolic partial differential equations stable?

2 3

2 3 0u u
y x
∂ ∂

− =
∂ ∂

202

23. How is the step chosen when solving partial differential equations?
24. Provide a general algorithm for solving partial differential equations

using the difference method.
25. Determine the steady-state temperature distribution in a rectangular plate

measuring 2,0 1,5l h× = × m, for which the following boundary conditions are set
(Table 4.4): ()), (0u y yϕ= , ()), (yu l y = Ψ , 1(), 0 ()u x xµ= , 2(), ()u hx xµ= (
0 x l≤ ≤ , 0 y h≤ ≤). Construct a diagram of the stationary temperature
distribution in the plate.

Table 4.4 – Output data for the task

Version
Functions of initial conditions Functions of boundary conditions

φ(y) Ψ(y) μ1(x) μ2(x)
13 cos(0,5y) e-4cos(0,5y) e-x e-xcos(0,5x)
14 e2y(2y2+1) e2y(2y2+3) e6(x+19) x+1,0
15 tgy tg2(y+0,9) tg2(x+0,4) tg2(x)
16 0,0 cosy 5cosx+sinx 10sinx+xsin(1,0)
17 –cosy 62cos(y2) 2x3+3x–1 (15x2+1)cos(x)
18 5y(y–1) 11y(y–1) 12(x2–x)+60 0,0

26. It is necessary to determine the position of the string depending on time

(the total time of the oscillating process T), which performs free oscillations with
fixed ends (the distance between the points of fixing the ends l = 4,0 м) with initial

conditions ()), 0 (u x xϕ= , (,0) ()u x x
t

ψ∂
=

∂
 (0 x l≤ ≤) and boundary conditions

1(0), ()u t tµ= , 2(), ()u tl tµ= (0 t T≤ ≤) (Table 4.5). The phase velocity
coefficient а=1,2 m/sec. Plot the position of the oscillating string at different
times.

Table 4.5 – Output data for the task

Ver-
sion

Functions of initial
conditions

Total
oscillation

time,
T (sec)

Functions of boundary
conditions

φ(x) Ψ(x) μ1(t) μ2(t)

19 0,5(x+1)2 (x+0,5)cos(πx) 1,0 0,5 2,0–3t
20 x2cos(πx) x2(x+1) 0,2 0,5t t–1,0
21 x+1 0,0 1,2 0,5t2 t+1,0

22 exsinx ex(cosx+sinx) 2,0 cos2t+sint cos2(t+6,0)+
+sinx

23 cos2x+sinx 2xsin(2x) 2,0 etsint et+2sin(t+2,0)
24 cos2(0,5x) –0,5sinx 6,0 cos2(0,5t) cos2(0,5t+3,0)

203

27. It is necessary to determine the change in temperature distribution along

the rod depending on time during the time t0 = 30,0 min. A rod of length L with a
cross-sectional area constant along its length is placed in an insulated material in
such a way that only its extreme right and left ends interact with the environment.
At the initial moment of time, the rod has a balanced temperature ()), 0 (u x xϕ= ,
and the temperature 1(0,) (),u t tµ= 2(), ()u tl tµ= (0 t T≤ ≤) remains constant at
its left and right ends (Table 4.6). Construct a diagram of the temperature
distribution of the rod for different moments of time.

Table 4.6 – Output data for the task

Ver-
sion

Functions
of initial

conditions
φ(x)

Rod
length,

l(m)

Functions of boundary
conditions

Rod
material

A type
of

diffe-
rence

method
μ1(t) μ2(t)

25 x2 1,3 50sint 40cos2t Steel Implicit

26 15,0 2,2 20cost+
+10sint 80,0 Copper Explicit

27 2x+5 1,5 0,05t+5,0 0,01t–15,0 Silver Implicit
28 10sinx 1,4 2e0,001t+3,0 0,01t+20sint Graphite Explicit
29 5ex 2,5 –30,0 70sint Cast iron Implicit

30 cos(x)+
+10sin(x) 3,0 35sin2(0,3t) –20,0 Glass Explicit

28. Create a computational template of the Laplace operator for three

coordinates.
29. The transverse deformation w of a thin rectangular plate, l h× =

=3,0×1,7 m in size and uniformly loaded with pressure p, is determined by the
equation:
 Δ2w=p/D, (4.31)

where
3

212(1)
EtD
ν

=
−

 – bending stiffness, E = 2,1⋅1011 MPa – elasticity modulus,

ν = 0,3 – Poisson’s ratio, t = 0,005 m – plate thickness, p = 100,0 Pa – the pressure
with which the plate is uniformly loaded. Determine the plate deformation
distribution w(x, y) depending on the given load p.

30. The Navier-Stokes equation, which describes the steady motion of a
viscous fluid in a pipe of arbitrary cross-section, has the form:

2 2

2 2
1v v dp

x y dtµ
∂ ∂

+ =
∂ ∂

, (4.32)

204

where v – fluid velocity modulus (it is zero at the pipe walls), μ – viscosity
coefficient, dp/dz – derivative of pressure along the length of the pipe. Taking
dp/dz=-5000,0 Pa/m and μ=1,5⋅10-4 N⋅sec/m2, determine the distribution of the
velocity modulus in the cross section of the pipe shown in Figure 4.13.

Figure 4.13 – Pipeline cross-section diagram

205

Chapter 5. DATA PROCESSING TASKS

A very important task in the process of identifying mathematical models is

the processing of experimental data obtained during active or passive
identification experiments. Various methods and algorithms are used for this
purpose, and the choice of method depends on the type of modeling object, model,
and the available computing power of computer tools. Among the main methods
of data processing, we highlight interpolation, approximation, and statistical data
processing.

5.1 Interpolation

The purpose of interpolation is to construct the function F(x) (interpolant)
from a given class of functions, which takes on values at individual points
xiϵ[a; b] (i=0, 1, 2, …, n) (interpolation nodes, and their set is an interpolation
grid):
 0 0 1 1() , () , ..., () , ..., () ,i i n nF x y F x y F x y F x y= = = = (5.1)

which coincide with the previously specified values (for example, obtained from
the experiment) at these points of the unknown function y = f(x). Geometrically,
this means that it is necessary to define a curve y = F(x) of a certain type, which
passes through the system of points M(xi, yi) (і = 0, 1, 2, ..., n).

In general, this problem has both an infinite set of solutions and no solutions
at all. However, it becomes unique if, instead of an arbitrary function F(x), we
look for a polynomial Pn(x) of no higher than the n-th power that satisfies the
condition (5.1), i.e.:

 0 0 1 1() , () , , () , , ()n n n i i n n nP x y P x y P x y P x y= = = =  .

The interpolation formula Y = F(x) is used for the approximate calculation of
the values of the function f(x) for x≠xi (i = 0, 1, 2, …, n). It should be noted that
there is interpolation in the narrow sense when xϵ[x0; xn], and extrapolation when
x is outside the interval [x0; xn] i.e. x < x0 or x > xn.

When analyzing the interpolation procedure, it is necessary to specify the
constraints that are imposed on the set of base points (xi, yi). The initial
interpolation grid of points should only describe a smooth function. According to
the conditions of a specific problem, the values of the derivative function must be
set at the edge points of the input interpolation grid to obtain an unambiguous
result.

The main methods of interpolation include:
1. Linear interpolation (linear interpolation). The simplest and fastest

method, in which the specified nodal points (xi, yi) are connected by straight lines.
2. Interpolation using polynomials. A polynomial of the n-th order is used,

which in the general case has the form:

206

 nn
nn

n axaxaxaxPxP ++++== −
−

1
1

10 ...)()(,

where ai (i=0, 1, …, n) – constant coefficients.
All methods of finding the interpolation polynomial are reduced to obtaining

constant coefficients. Such methods include:
a) interpolation by difference methods;
b) interpolation according to Lagrange;
c) Hermit polynomial interpolation.

3. Polynomial spline interpolation. Nodal points are connected using a
polynomial of a given order, which is chosen depending on the method. The most
common spline interpolation methods include:

 a) classical cubic splines;
 b) Hermit splines;
 c) B-splines;
 d) Bezier curves.

This section considers the algorithmization and application of the most
common interpolation methods in engineering practice.

5.1.1 Different methods

There are many well-known finite-difference interpolation methods. The
most common is Newton’s method for «forward» interpolation (Newton–Gregory
method). The interpolation polynomial in this case has the form:

0 1 0 2 0 1() () ()()nP x C C x x C x x x x= + − + − − + ...

0 1 1()() ... ()n nC x x x x x x −+ − − − .

Coefficients Сі are determined from equations:
()n i iP x y= (= 0, 1, 2, , i n),

which allows you to record the system:

0 0

0 1 1 0 1

0 1 2 0 2 2 0 2 1 2

0 1 0 0 1 1

,
() ,
() ()() ,

() ... ()()...() .n n n n n n n

C y
C C x x y
C C x x C x x x x y

C C x x C x x x x x x y−

=
 + − = + − + − − =



+ − + + − − − =



 (5.2)

Equation (5.2) is a LAES with a triangular matrix. If you take a step
xi+1–xi = h, then in the region of change of values of interpolation nodes xϵ[x0; xn],
a one-dimensional uniform interpolation grid will be obtained. This will allow us

207

to use the difference image of the system (5.2), resulting in difference expressions
for determining the coefficients:

0 0C y= , 1 0 0
1

y y yC
h h
− ∆

= = ,

where Δy0 – right difference of the first order at the point y0;
2

2 1 0 0
2 2 2

2
2 2

y y y yC
h h

− + ∆
= = ,

where Δ2y0 – right difference of the second order;

0

(!)

j

j j
yC

j h
∆

= ,

where Δjy0 – right difference of the j-th order.
Then equation (5.2) can be written as:

2
0 0

0 0 0 12() () ()()
1! 2!n

y yP x y x x x x x x
h h

∆ ∆
= + − + − − +

 0
0 1 1()() ().

!

n

nn
y x x x x x x

n h −
∆

+ − − −  (5.3)

From a practical standpoint, the expression is used to determine higher order
differences:

1 1 1
1()j j j j

i i i iy y y y− − −
+∆ = ∆ ∆ = ∆ − ∆ , (i=0, 1, 2, …, n–j).

In the case when n=1, from (5.3) we obtain the formula for linear
interpolation:

0
1 0 0() ()yP x y x x

h
∆

= + − ,

and if n=2 – parabolic or quadratic interpolation formula:
2

0 0
2 0 0 0 12() () ()()

2
y yP x y x x x x x x
h h
∆ ∆

= + − + − − .

If an unlimited number of values of the function x is specified, then n can be
any number. In practice, n is chosen in such a way that the difference Δnyi is
constant within a given level of accuracy. Any tabular value of the argument x can
be used as the initial value of x0. When the number of function values is finite, the
number of n is limited and cannot exceed the number of function values y reduced
by one.

The scheme of the algorithm for implementing interpolation according to
Newton’s first interpolation formula will take the form shown in Figure 5.1.

208

Figure 5.1 – Algorithm of the first interpolation method Newton’s
 interpolation formula

To find the differences, you need to use recursion. For this, the function
 float right(float y[], int p, int i) is created. The algorithm for determining finite
differences for a given function is shown in Figure 5.2.

6

209

Figure 5.2 – Algorithm for determining finite differences:
y[] is an array of y values; p is the order of difference; i is the ordinal number of

the variable y for which the difference is calculated

Consider the procedure for finding differences in the C++ programming

language:

#include <stdio.h>
#include <math.h>
#include <conio.h>
const int n = 6;
float y (float x)
{return (1/(pow(x,4)+5));}
float right(float y[], int p, int i)
{
 if (p == 1)
return y[i+1]-y[i];
 else
return right(y,p-1,i+1)-right(y,p-1,i);
}
void main()
{
float x[6] = {1, 1.1, 1.2, 1.3, 1.4, 1.5};
float y[6] = {0.16667, 0.15470, 0.14137, 0.12729, 0.11310, 0.09938};

210

 for (int i = 1; i<n; i++) {
for (int j = 0; j<n-i; j++)
printf("%9.5f ", right(y, i, j));
printf("\n");
} }

Result:

-0.01197 -0.01333 -0.01408 -0.01419 -0.01372
-0.00136 -0.00075 -0.00011 0.00047
 0.00061 0.00064 0.00058
 0.00003 -0.00006
-0.00009

Implementation of the Newton’s method algorithm according to the first

interpolation formula in the C++ programming language:

#include <stdio.h>
#include <math.h>
#include <conio.h>
const int n = 6;
float y (float x)
{return (1/(pow(x,4)+5));}
float right(float y[], int p, int i) // auxiliary function for finding

differences from array Y, order of difference p, coefficient i
{
if (p == 1)
 return y[i+1]-y[i];
 else
{
return right(y,p-1,i+1)-right(y,p-1,i);
 }
};
void main()
{
float X[6] = {1, 1.1, 1.2, 1.3, 1.4, 1.5};
float Y[6] = {0.16667, 0.15470, 0.14137, 0.12729, 0.11310, 0.09938};
float h = 0.1, d = 1, Pr;
float x = 1.07;
float P = Y[0];
for (int i = 1; i<n-1; i++)
{
Pr = 1;
for (int j = 0; j<i; j++)
Pr = Pr * (x-X[j]);
d = d * i * h;
P = P + (right(Y, i, 0)*Pr/d);
}
printf("x = %.5f y = %.5f", x, P);
getch();
}.

Formula (5.3) is called Newton’s first interpolation formula. This expression

is inconvenient for interpolation around the last values of yi. In this case, as a rule,
Newton’s second interpolation formula is used, which is obtained by using the
left differences from the last value (xn, yn) («backward» interpolation). Then the
interpolation polynomial will look like this:

211

0 1 2 1 3 1 2() () ()() ()()()n n n n n n nP x C C x x C x x x x C x x x x x x− − −= + − + − − + − − − + 

1 1()() ().n n nC x x x x x x−+ − − − 

The coefficients Cj are determined as follows:

nyC =0 , 1
1

n ny yC
h h

−∆ ∇
= = ,

where ny∇ – «left» difference of the first order at the point yn;
2 2

2
2 2 22! 2

n ny yC
h h
−∆ ∇

= = ,

where ny2∇ – «left» difference of the second order;

…,
! !

j j
n j n

j j j

y yC
j h j h

−∆ ∇
= = ,

where n
j y∇ – j-th order left difference.

The final expression for Newton’s second interpolation formula:
2

1 2
12() () ()()

1! 2!
n n

n n n n n
y yP x y x x x x x x
h h
− −

−
∆ ∆

= + − + − − +

0
1 1()() ()

!

n

n nn
y x x x x x x

n h −
∆

+ − − −  .

Newton's interpolation formulas can be used to extrapolate a function. If x<x0,

then it is convenient to use Newton’s first interpolation formula, and .
h

xx 00 <
−

If x>xn, then Newton’s second interpolation formula is used, where

.
h

xx n 0>
−

Thus, the first Newton’s interpolation formula is generally used for forward
interpolation and backward extrapolation, and the second for backward
interpolation and forward extrapolation.

Newton’s formulas use «left» and «right» differences. Using «central»
differences to obtain interpolation formulas leads to the Gaussian’s, Stirling’s, and
Bessel’s formulas.

It should be noted that the «central» differences are not used in the usual way,
but by applying the «right» differences with a gradual shift of the indices to the
left.

It is convenient to consider these Newton’s formulas on (2n+1) equidistant
interpolation nodes:

(1) 1 0 1 1, , , , , , , , ,n n n nx x x x x x x− − − − − 

212

and 1 consti i ix x x h+∆ = − = = (= , (1), , 1i n n n− − − −), and for the function
y = f(x), its values at these nodes yi = f(xi) are known.

Let it be necessary to construct a polynomial P(x) of degree no higher than 2n
such that ()i iP x y= . Then the polynomial P(x) is defined as:

0 1 0 2 0 1 3 1() () ()() ()P x C C x x C x x x x C x x−= + − + − − + − ×

0 1()()x x x x× − − + 2 1 (1)... ()...n nC x x− − −+ − × (5.4)

1 0 1 1...()()()...()()n nx x x x x x x x x x− −× − − − − − .

Similarly to Newton’s interpolation formulas, using (5.4), are determined:

0 0C y= ; 0
1

yC
h
∆

= ;
2

1
2 22!

yC
h
−∆

= ; …,
2 1

(1)
2 1 2 1(2 1)!

n
n

n n

y
C

n h

−
− −

− −

∆
=

−
;

2

2 2(2)!

n
n

n n
yC

n h
−∆

= .

Substituting the found values of the coefficients in (5.4), we obtain the first
Gaussian’s interpolation formula, which contains the differences (Table 5.1):

2 3 4 5 6
0 1 1 2 2 2, , , , , ,y y y y y y− − − − −∆ ∆ ∆ ∆ ∆ ∆  .

Similarly, a second Gaussian's interpolation formula, containing
central differences, can be obtained:

2 3 4 5 6
1 1 2 2 3 3, , , , , ,y y y y y y− − − − − −∆ ∆ ∆ ∆ ∆ ∆  .

Using the arithmetic mean of the first and second interpolation formulas of
Gauss, we obtain Stirling’s formula. These formulas enable us to derive Bessel’s
interpolation formula. In general, it is recommended to use interpolation formulas
with central differences within the interval, while at its boundary nodes, Newton’s
formulas are typically used (refer to Table 5.1).

The interpolation errors for Newton’s formulas can be estimated,
respectively, for the first and second formulas as:

1
0

(1)...()()
(1)!

n
n

q q q nx y
n

+− −
∆ = ∆

+
;

,
)!1(

))...(1()(1
n

n
n y

n
nqqqx +∆

+
++

=∆

where .
h

xxq n−
=

For the Stirling’s formula:

).(...)2)(1(
)!12(2

)(22222
12

)1(
12

nqqqq
n

yy
x n

n
n

n

n −−−
+

∆+∆
=∆ −

+
−−

+

For the case of unequally spaced values of the argument, interpolation
formulas can be obtained using the definition of divided differences.

213

Table 5.1 – Application of difference interpolation formulas

For example, the operation 1
1

1

[,] i i
i i

i i

y yx x
x x

+
+

+

−
=

−
 is referred to as the divided

difference of the first order, while the operation 1 2 1
1 2

2

[,] [,][, ,] i i i i
i i i

i i

x x x xx x x
x x

+ + +
+ +

+

−
=

−
 is

referred to as the divided difference of the second order.
Divided differences of order n are obtained from the recurrence relation:

1 1 1
2

[, ,] [, ,][, , ,] i i n i i n
i i i n

i n i

x x x xx x x
x x

+ + + + −
+ +

+

−
=

−
 

 .

Newton’s interpolation formula for unequally spaced values of the argument
can also be obtained:

0 0 1 0 0 1 2 0 1() [,]() [, ,]()() ...P x y x x x x x x x x x x x= + − + − − +
0 1 0 1 1[, , ,]()() ()n nx x x x x x x x x −+ − − −  .

214

Example 5.1. The production site manufactures construction metal structures
from sheet and profile rolled metal. The site operates consistently, and the orders
are generally the same type, with a slight variation in the number of workers.
There is data available on the total output of products (in thousand units) for the
previous four months. The goal is to determine the function that represents the
dependence of output (in thousand units) over the entire production period. To
solve this, we will use Newton’s first interpolation formula, taking into account
the known values of the interpolation nodes (as shown in Table 5.2). Finally, we
will find the value of the total output in one and a half months (x = 1.5) by
performing the interpolation.

Table 5.2 – Output data
i 0 1 2 3

xi, month number 1 2 3 4
yi, thousand units 2 5 10 17

Solution:
We determine the values of the differences of different orders:
1) x0=1, y0=2;
2) x1=2, y1=5, Δy0= y1– y0=5–2=3;
3) x2=3, y2=10, Δy1= y2– y1=10–5=5;
4) x2=4, y3=17, Δy2= y3– y2=17–10=7;
5) Δ2y0=Δy1–Δy0=5–3=2;
6) Δ3y0=Δ(Δ2y0)=Δ2y1–Δ2y0=(Δy2–Δy1)–(Δy1–Δy0)=(7–5)–(5–3)=0.
We determine the values of the coefficients of the interpolation polynomial

(5.3):

0 0 2C y= = ; 0
1 1

3 3
1! 1 1

yC
h

∆
= = =

⋅
;

2
0

2 2 2

2 1
2! 1 2 1

yC
h

∆
= = =

⋅ ⋅
;

3
0

3 3 3

0 0
3! 1 2 3 1

yC
h

∆
= = =

⋅ ⋅ ⋅
.

Interpolation polynomial function:
0 1 2 3() (1) (1)(2) (1)(2)(3)P x C C x C x x C x x x= + − + − − + − − − ,

() 2 3(1) (1)(2)P x x x x= + − + − − .
The value of the interpolation function at a point х = 1,5:

(1,5) 2 3(1,5 1) (1,5 1)(1,5 2) 3,25P = + − + − − = thousand units.

Example 5.2. Table 5.3 shows the results of measuring beam deflection from

a uniformly distributed vertical force load. Determine the deflection function
along the length of the beam. Solve the interpolation problem using Newton’s
formula based on the known values of the interpolation nodes (Table 5.3) and find
the value of the function at the point x = 0,4 m.

215

Table 5.3 – Output data
i 0 1 2 3

xi, m 0,0 0,1 0,3 0,5
yi, mm – 0,5 0,0 0,2 1,0

Solution:
Using Newton’s interpolation polynomial, based on the initial data given in

Table 5.3, we have the case of unequally spaced nodes for n = 3. Then, the value
of the divided differences:

1 0

0
0

1
1

0,0 (0,5)[] 5,0
0,1

, y y
x x

x x − − −
= = =

−
;

2 1
1 2

2 1

0,2 0,0[,] 1,0
0,3 0,1

y yx x
x x
− −

= = =
− −

;

3 2
2 3

3 2

1,0 0,2[,] 4,0
0,5 0,3

y yx x
x x
− −

= = =
− −

;

1 2 0
0 1 2

1

2 0

[,] [,] 1,0 5,0 40]
0,

[,
3 ,0 3

,
0

x x xx xx
x x

x − −
= = = −

− −
;

2 3 1
1 2 3

2

3 1

[,] [,] 4,[0 1,0 15]
0,5 0

,
,1 2

, xx x xx x x
x x
− −

= = =
− −

;

1 2 3 0 1 2

3
1 2

0
0 3[, , ,

15 40
[, ,] [, ,] 1252 3]

0,5 0,0 3
x x x x x x x x

x
x

x
x

 − − −  = = =
− −

.

The results of the calculations are given in Table 5.4.

Table 5.4 – Results of the calculation of split differences
n xn yn [xn, xn+1] [xn, xn+1, xn+2] [xn, xn+1, xn+2, xn+3]
0 0 – 0,5
1 0,1 0,0 5,0 – 40/3 125/3
2 0,3 0,2 1,0 15/2
3 0,5 1,0 4,0

Newton’s interpolation formula for unequally spaced values of the argument:

0 0 1 0 0 1 2 0 1 0 1 2 3 0

1 2

3 2

() [,]() [, ,]()() [, , ,]()
40()() 0,5 5(0) (0)(0,1)
3

125 125 91(0)(0,1)(0,3) 30 0,5.
3 3 12

P x y x x x x x x x x x x x x x x x x x

x x x x x x x

x x x x x x

= + − + − − + − ×

 × − − = − + − + − − − + 
 

+ − − − = − + −

For x = 0,4 m; () 3 2125 91(0,4) 30 (0,4) (0,4) 0,5 0,36
3 12

0,4y P − + − == ⋅= mm.

216

5.1.2 Lagrangian interpolation

The Lagrangian interpolation is used in general cases with arbitrarily located
nodes.

The interpolation polynomial for the Lagrange’s method is given in the form:

0 0 1 1() () () ()n n nP x y b x y b x y b x= + + + ,

where all bj(x) (j=0, 1, 2, …, n) are polynomials of degree n, the coefficients of
which can be found using the (n+1)-th equation.

()n i iP x y= ,

as a result, a system of equations will be obtained:

0 0 0 1 1 0 0 0

0 0 1 1

() () ... () ;
;

() () ... () .

n n

n n n n n n

y b x y b x y b x y

y b x y b x y b x y

+ + + =


 + + + =



If the value of bj(xi) is determined so that:

1, ;
()

0, ,j
i j

b x
i j
=

=  ≠

then the system of equations will be defined.
This condition means that any polynomial bj(x) is zero for every xi except

when xi is equal to xj. Therefore, in the general case, the polynomial bj(x) has the
following form:

0 1 1 1() ()()...()()...()j j j j nb x C x x x x x x x x x x− += − − − − − .

If bj(x) = 1, then the coefficients Cj are determined from the expression:

).)...()()...(/(1 110 njjjjjjj xxxxxxxxC −−−−= +− (5.5)

Then for the defined polynomial, we get:

 0 1 1 1

0 0 1 1 1

()()...()()...()
()

()()...()()...()
n j j n

n j
j j j j j j j j n

x x x x x x x x x x
P x y

x x x x x x x x x x
− +

= − +

− − − − −
=

− − − − −
∑ . (5.6)

Then for the defined polynomial, we get:

0 1 1 1() ()()...()()...()j j j nL x x x x x x x x x x x− += − − − − − ,

can be written down

0

()
()

()
n j

n j
j j j

L x
P x y

L x=
= ∑ . (5.7)

It is necessary to note two main properties of Lagrange polynomials:

217

1. ()
0

() / () 1
n

j j j
j

L x L x
=

=∑ .

2. If Pn(x) depends linearly on yj, then the principle of superposition is valid:
the interpolation polynomial of the sum of several functions is equal to the sum
of the interpolation polynomials of the components.

The Lagrangian interpolation error is estimated by the residual term of the
interpolation formula.

If the interpolation nodes are different from each other, and the function f(x)
is such that it has a continuous derivative of order (n+1) on the interval [a; b],
where the interpolation nodes are located, it is possible to write the residual term
of the interpolation formula () () ()n nR x f x P x= − in the form:

(1)

1
()() ()

(1)!

n

n n
fR x x

n
ξ ω

+

+=
+

,

where [] () ()1 2 1 0 1 2 0 1; , min , , , , , max , , , ,n nx x x x x x x xξ α α α α∈ = =  .
Then

1
1() ()

(1)!
n

n n
MR x x
n

ω+
+≤

+
,

where
[]

() ()
1 2

1
1 ,

max n
n x

M f x
α α

+
+ ∈
= .

The scheme of the algorithm for implementing the Lagrangian interpolation
is presented in Figure 5.3.

Consider the implementation of finding differences in the C++ programming
language:

#include <stdio.h>
#include <math.h>
#include <conio.h>

const int n = 4;

void main()
{
 float X[n] = {1, 2, 3, 4};
 float Y[n] = {15, 17, 7, 21};
 float x = 2.5;
 float yx = 0, Pr;
 for (int i=0; i<n; i++)
 {
 Pr = 1;
 for (int j=0; j<n; j++)
 if (i!=j)
 Pr = Pr * ((x-X[j])/(X[i]-X[j]));
 yx = yx + Y[i]*Pr;
 }
 printf("y = %.4f\n", yx);
 getch();
}
Result:
y = 11.2500.

218

Figure 5.3 – Scheme of the interpolation algorithm according to the
Lagrangian interpolation

Example 5.3. Find the value of the function of the change of motion
acceleration depending on the time of the body’s movement y=f(x) based on its
experimental table values (Table 5.5) and find the value of the function at the
point x = 0,4 sec.

219

Table 5.5 – Output data
i 0 1 2 3

xi, sec 0,0 0,1 0,3 0,5
yi,

m/sec2 – 0,5 0,0 0,2 1,0

Solution:
Using the Lagrange interpolation polynomial formula:

33
1 2 3

0
0 00 0 0 1 0 2 0 3

0 2 3 0 1 3
1 2

1 0 1 2 1 3 2 0 2 1 2 3

3

0 1
3

()()()
()()()

()()() ()()()
()()(

(

) ()()()
()()(

)
nn j j

i i
i ij ji j i jj i j i

P
x x x x x x x x x xy y y
x x x x x x x x x x

x x x x x x x x x x x xy y
x x x x x x x x x x x x

x

x

x x x xy

= == =
≠ ≠

=
− − − − −

= = +
− − − − −

− − − − − −
+ + +

− − − − − −

− −
+

∑ ∑∏ ∏

2

3 0 3 1 3 2

) (0,1)(0,3)(0,5)0,5
()()() (0,0 0,1)(0,0 0,3)(0,0 0,5)
(0,0)(0,3)(0,5) (0,0)(0,1)(0,5)0 0,2

(0,1 0,0)(0,1 0,3)(0,1 0,5) (0,3 0,0)(0,3 0,1)(0,3 0,5)
(0,0)(0,1)1,0

x x x x
x x x x x x
x x x x x x

x x

− − − −
= − +

− − − − − −

− − − − − −
+ + +

− − − − − −
− −

+ 3 2(0,3) 125 9130 0,5.
(0,5 0,0)(0,5 0,1)(0,5 0,3) 3 12

x x x x−
= − + −

− − −

For x=0,4 sec; () 3 2125 910,4 30 0,4 0,4 0,5
3 2

0,4
1

y L − ⋅ + −≈ = =

=0,3999 m/sec2.

Example 5.4. Determine the Lagrange interpolation polynomial based on
tabular data (Table 5.6) obtained from the function siny x x= + , with an
interpolation error Δ=0,2⋅10-4.

Table 5.6 – Output data
i 0 1 2 3
ix 1,40 1,50 1,70 1,80
iy 2,38545 2,49749 2,69166 2,77385

Solution:
We find the Lagrange interpolation polynomial in the form:

33
1 2 3

0
0 00 0 0 1 0 2 0 3

0 2 3 0 1 3
1 2

1 0 1 2 1 3 2 0 2 1

3

2 3

()()()
()()()

()()() ()()()
()()() ()()

(

()

)
nn j j

i i
i ij ji j i jj i j i

x x x x x x x x x xy y y
x x x x x x x x x x

x x x x x x x x x x x xy y
x x x x x x x x x x x x

P x
= == =

≠ ≠

− − − − −
= = +

− − − − −

− − − − − −
+ + +

− − − −

=

− −

∑ ∑∏ ∏

220

0 1 2
3

3 0 3 1 3 2

()()() (1,5)(1,7)(1,8)2,38548
()()() (1,4 1,5)(1,4 1,7)(1,4 1,8)

(1,4)(1,7)(1,8)2,49749
(1,5 1,4)(1,5 1,7)(1,5 1,8)

(1,4)(1,5)(1,8)2,69166
(1,7 1,4)(1,7 1

x x x x x x x x xy
x x x x x x

x x x

x x x

− − − − − −
+ = +

− − − − − −

− − −
+ +

− − −
− − −

+
− − ,5)(1,7 1,8)

(1,4)(1,5)(1,7)2,77385
(1,8 1,4)(1,8 1,5)(1,8 1,7)

198,79(1,5)(1,7)(1,8) 416,2483(1,4)(1,7)(1,8)
448,61(1,4)(1,5)(1,8) 231,1542(1,4)(1,5)(1,7).

x x x

x x x x x x
x x x x x x

+
−

− − −
+ =

− − −
= − − − − + − − − −
− − − − + − − −

Lagrangian interpolation error estimation:
51 4

3 1 4
0,98545() () () () 0,0004 1,64 10

(1)! 4! 4!
n

n n
M MR x R x x x
n

ω ω −+
+= ≤ = = ⋅ = ⋅

+
,

де 4 0 1 2 3(1,6) ()()()() (1,6 1,4)(1,6 1,5)(1,6 1,7)x x x x x x x xω = − − − − = − − − ×

(1,6 1,8) 0,2 0,1 (0,1) (0,2) 0,0004× − = ⋅ ⋅ − ⋅ − = ; α1=min(x, x0, x1, x2, x3)=min(1,6;
1,4; 1,5; 1,7; 1,8)=1,4; α2=max(x, x0, x1, x2, x3)=max(1,6; 1,4; 1,5; 1,7; 1,8)=1,8;

[]
() ()

[]1 2

4
1 4 , 1,4;1,8

max max sin() 0,98545n x x
M M f x x

α α+ ∈ ∈
= = = = .

Since 5 4() 1,64 10 0,2 10nR x − −= ⋅ < ∆ = ⋅ , which corresponds to the condition
of the problem.

To determine the value of the Lagrangian interpolation polynomial at the

point x = 1,6, the formula
33

3
0 0

() j
i

i j i jj i

x x
P x y

x x= =
≠

−
=

−
∑ ∏ is used. Calculations are

performed step by step based on the formula, and the results are summarized in
Table 5.7.

Table 5.7 – Calculation results of the interpolation polynomial

i ix x− i jx x− , i j≠ П(xi–xj),
i≠j 0

n j
i

j i jj i

x x
y

x x=
≠

 −
  − 

∏
0 0

nn j
i

i j i jj i

x x
y

x x= =
≠

 −
  − 

∑ ∏

0 0,2 – 0,1 – 0,3 – 0,4 – 0,012 – 0,3978500 – 0,3978500
1 0,1 0,1 – 0,2 – 0,3 0,006 1,6649930 1,2671430
2 – 0,1 0,3 0,2 – 0,1 – 0,006 1,7944400 3,0615830
3 – 0,2 0,4 0,3 0,1 0,012 – 0,4623083 2,5992747

Based on the calculation results (see Table 5.6), the value of the Lagrange
interpolation polynomial P3(1,6) = 2,5992747. To compare the value of the
function siny x x= + at point x=1,6 to seven decimal places, it is
y(1,6)=2,5995736.

221

5.1.3 Spline interpolation

Interpolation with a Lagrange or Newton polynomial over the entire segment

using a large number of interpolation nodes often leads to an inaccurate
approximation, which is explained by the significant accumulation of errors in the
calculation process. In addition, due to the divergence of the interpolation process,
increasing the number of nodes does not always lead to increased accuracy. In
order to avoid large errors, the entire segment is divided into partial segments, and
on each of the partial segments, the function f(x) is approximately replaced by a
polynomial of low degree (the so-called piecewise polynomial interpolation).

One way to interpolate over the entire segment is to use spline functions. A
spline function, or spline, is a piecewise polynomial function that is defined on a
segment and has a certain number of continuous derivatives on this segment.

The word «spline» means a «flexible ruler» used to draw smooth curves
through given points in a plane. The main advantage of splines is the ability to
locally change the shape of the curve on a selected range of values.

Classic cubic spline
Consider the most well-known and common interpolation spline of the third

order. In machine-building drawings, these splines are widely used in the form of
patterns (flexible rulers), which are deformed so that with their help it is possible
to draw a curve through given points (xi, yi). It can be shown (using the theory of
elastic transverse bending of a beam under small deformations) that a spline is a
group of combined cubic polynomials where the first and second derivatives of
the corresponding functions of the polynomials are continuous at the junctions.
Such functions are called cubic splines (Fig. 5.4), for the construction of which it
is necessary to set the coefficients that uniquely determine the polynomial in the
interval between two points.

For a mathematical description of cubic splines, consider the segment [a; b]
of the real OX axis. The interpolation grid, a = x0 < x1 < … < xn = b, consists of
nodes where the values of the function f(x) are determined as yi = f(xi) (i = 0, 1,
…, n). It is necessary to construct a continuous function – spline S(x) on the
segment [a; b] that satisfies the following requirements:

1. On each segment [xi-1; xi], the spline S(x) is a polynomial Si(x) of degree
not higher than three (Fig. 5.4):
 2 3

1 2 3 4()i i i i iS x k k x k x k x= + + + , (5.8)

where kij – constant coefficients to be determined.
2. At nodes xi, the spline Si(x) acquires given values yi = f(xi) (i = 0, 1, …, n),

which is:

1

() (1, 2, ,);
() (0,1, , 1).

i i i

i i i

S x y i n
S x y i n+

= =
 = = −





 (5.9)

222

Figure 5.4 – Spline interpolation scheme

Condition (5.19) is necessary for passing splines through the nodes of a given

interpolation grid a = x0 < x1 < …< xn = b, yi = f(xi) (i = 0, 1, …, n). This
condition (5.19) forms 2n equations.

3. At internal nodes xi (i = 1, 2, …, n–1), the spline has continuous first and
second derivatives, namely:

1

1

() () (1, 1);

() () (1, 1).
i i i i

i i i i

S x S x i n

S x S x i n
+

+

 ′ ′= = −


′′′′ = = −

That is, the following expressions will be obtained:
3 2

4 3 2 1

2
4 3

4 3

() (1,);

() 3 2 (1, 1);

() 6 2 (1, 1).

i i i i i

i i i i

i i i

S x k x k x k x k i n

S x k x k x c i n

S x k x k i n

 = + + + =
 ′ = + + = −
 ′′ = + = −

At the points of spline conjugation, their first and second derivatives must be
equal to each other. The number of such conditions should be 2n–2. To find the
spline, it is necessary to determine the coefficients kij of the polynomials Si(x)
(i = 1, 2, …, n–1) with 4n unknowns, which satisfy the system of 4n–2 equations.

Two additional equations are needed to obtain the solution of the system of
equations. They are obtained by determining the curvature value of the spline
graph at the ends of the general interpolation curve, namely: 0 1()S x σ′′ = ,

2()nS x σ′′ = .
The algorithm for solving the interpolation problem using a third-order

polynomial is presented in Figure 5.5.

223

Figure 5.5 – Scheme of the algorithm for solving the interpolation problem
using a third-order polynomial

If σ1 = σ2 = 0, then such a spline is called natural. If there is additional

information about the behavior of the function at the ends of the interpolation
interval, then additional boundary conditions are recorded. Thus, the obtained

Start

Compilation of equations under the
condition of equality of the first and

second derivatives

Compilation of equations for
conjugation at nodal points

Compilation of the equations for the
values of the second derivatives at

the extreme points

2

3

4

Obtaining a system of equations in
matrix form

5

Solving a system of equations
6

Obtaining a system of equations for
solving the spline interpolation

problem

Stop

7

8

1

224

cubic spline, which is «glued» from cubic parabolas, passes through the given
points, is a piecewise smooth and continuous function.

To construct the curve function (5.18), it is necessary to determine four
coefficients. The expression (5.18) can be written in the form proposed by Charles
Hermite, which allows us to reduce the number of computational operations. For
this, individual cubic equations can be written in the form:

 2 2
1 1() () () (1,)i i i i i i i iS x ty ty x k d tt k d t t i n− − = + + ∆ − − − =  , (5.10)

where 1
1, , 1i

i i i
i

x xx x x t t t
x

−
−

−
∆ = − = = −

∆
, 1i i iy y y −∆ = − , i

i
i

y d
x

∆
=

∆
, Δxi, Δyi –

length of the interval; t and t are auxiliary variables; x is an intermediate point on
the segment [xi-1; xi].

Each of the Si(x) equations (5.20) contains only two constant unknown
coefficients. After the first equation Si(x) is written, only one new unknown
coefficient is added with each subsequent equation. Then for x=xi-1 t=0, 1t = , and
for x=xi t=1, t=0.

Accordingly, all conditions, except for the conditions for the second
derivatives, are satisfied. Second derivatives for interior points are expressed as
ratios:

1 1 1 1 1 12 () 3()i i i i i i i i x i ik x k x x k x d x d x− + + + + +∆ + ∆ + ∆ + ∆ = ∆ + ∆ ,

and for the two outer ones – 2k0+k1=3d1 і km-1+2km=3dm.
Thus, the system of equations to be solved is linear, and its matrix is

tridiagonal (see Chapter 1):

1
0

1 2 2 1
12 1 2 1

2 3 3 2
23 2 3 2

1 1

2 1 0 0 0
2() 0 0

30 2() 0

0 0 0 1 2 m m m m
n

m

d
k

d x d x
kx x x x

d x d x
kx x x x

d x d x
k

d
− −

∆ + ∆
∆ ∆ + ∆ ∆

∆ + ∆
⋅ =∆ ∆ + ∆ ∆

∆ + ∆


    

.

In many cases, the spline interpolation method is the most convenient, as it
allows you to obtain an analytical piecewise polynomial function. There are
higher-order splines. The application of this method is also possible in other areas
of computational mathematics, for example, in numerical integration or for
solving differential equations.

Example 5.5. Determine the deflection function of a normally loaded rod

along its length using spline interpolation based on a third-order polynomial for
the function y=f(x), which is given in the table (Table 5.10), and also determine
the approximate value of the deflection of the rod at the point x=2,5 m.

225

Table 5.8 – Output date
i 0 1 2 3

ix , m 1,0 2,0 3,0 4,0
iy , 10-2 mm 15,0 17,0 7,0 21,0

Solution:

According to three ranges of values of the argument xi (see Table 5.10), on
the basis of condition (5.18), the following system of m=3 equations will be
obtained:

3 2
1 1 1 1

3 2
2 2 2 2

3 2
3 3 3 3

, [1; 2];
, [2; 3];
, [3; 4].

A x B x C x D x
y A x B x C x D x

A x B x C x D x

 + + + ∈


= + + + ∈
 + + + ∈

 (5.11)

In order to determine the unknown coefficients коефіцієнти A1, B1, C1, D1,
A2, B2, C2, D2, A3, B3, C3, D3, it is necessary to create a system with the number of
m·4=12 equations and 12 unknowns.

The first 2m equations are composed based on the requirement that the splines
must converge at the specified nodal points:

1) 3 2
1 0 1 0 1 0 1 0A x B x C x D y+ + + = ;

2) 3 2
1 1 1 1 1 1 1 1A x B x C x D y+ + + = ;

3) 3 2
2 1 2 1 2 1 2 1;A x B x C x D y+ + + =

4) 3 2
2 2 2 2 2 2 2 2;A x B x C x D y+ + + =

5) 3 2
3 2 3 2 3 2 3 2;A x B x C x D y+ + + =

6) 3 2
3 3 3 3 3 3 3 3.A x B x C x D y+ + + =

The following 2m–2 equations are formed under the condition that the first
and second derivatives are equal at the points of conjugation of the splines:

7) 2 2
1 1 1 1 1 2 1 2 1 23 2 3 2A x B x C A x B x C+ + = + + ;

8) 2 2
2 2 2 2 2 3 2 3 2 33 2 3 2A x B x C A x B x C+ + = + + ;

9) 1 1 1 2 1 26 2 6 2A x B A x B+ = + ;
10) 2 2 2 3 2 36 2 6 2A x B A x B+ = + .
For the last two equations, an additional condition is used that the value of the

second derivative at the extreme points must be equal to zero, namely:
11) 1 0 16 2 0A x B+ = ;
12) 3 3 36 2 0A x B+ = .
Substituting the initial data (see Table 5.10), we obtain a system of 12

equations with 12 unknowns:

226

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

3 3 3 3

3 3 3 3

1 1 1 2 2 2

2 2 2 3 3 3

1 1 2 2

2 2 3 3

1 1

15;
8 4 2 17;
8 4 2 17;
27 9 3 7;
27 9 3 7;
64 16 4 21;
12 4 12 4 ;
27 6 27 6 ;
12 2 12 2 ;
18 2 18 2 ;
6 2 0

A B C D
A B C D
A B C D

A B C D
A B C D
A B C D
A B C A B C
A B C A B C
A B A B
A B A B

A B

+ + + =
+ + + =
+ + + =
+ + + =
+ + + =
+ + + =
+ + = + +
+ + = + +
+ = +
+ = +
+ =

3 3

;
24 2 0.A B


















 + =

 (5.12)

Submitting the system of equations (5.22) in matrix form, we obtain:

1 1 1 1 2 2 2 2 3 3 3 3

1 1 1 1 1 0 0 0 0 0 0 0 0
2 8 4 2 1 0 0 0 0 0 0 0 0
3 0 0 0 0 8 4 2 1 0 0 0 0
4 0 0 0 0 27 9 3 1 0 0 0 0
5 0 0 0 0 0 0 0 0 27 9 3 1
6 0 0 0 0 0 0 0 0 64 16 4 1
7 12 4 1 0 12 4 1 0 0 0 0 0
8 0 0 0 0 27 6 1 0 27 6 1 0
9 12 2 0 0 12 2 0 0 0 0 0 0

10 0 0 0 0 18 2 0 0 18 2 0 0
11 6 2 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0

A B C D A B C D A B C D

− − −
− − −

− −
− −

15
17
17
7
7
21

.
0
0
0
0
0

0 24 2 0 0 0

(5.13)

After solving the system of equations (5.22), for example, using the Gaussian
elimination, we substitute the found coefficients in (5.21), which allows us to
obtain a solution to the given problem.

When solving the problem using the Gaussian elimination, it is necessary to
first transform the system (5.23) into the form so that there are no zero elements
in the main diagonal (it is necessary to change the corresponding equations),
namely:

227

1 1 1 1 2 2 2 2 3 3 3 3

11 6 2 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0
7 12 4 1 0 12 4 1 0 0 0 0 0
2 8 4 2 1 0 0 0 1 0 0 0 0
8 0 0 0 0 27 6 1 0 27 6 1 0
9 12 2 0 0 12 2 0 0 0 0 0 0
3 0 0 0 0 8 4 2 1 0 0 0 0
4 0 0 0 0 27 9 3 1 0 0 0 0

10 0 0 0 0 18 2 0 0 18 2 0 0
12 0 0 0 0 0 0 0 0 24 2 0 0
5 0 0 0 0 0 0 0 0 27 9 3 1
6 0 0 0 0 0 0 0 0

A B C D A B C D A B C D

− − −

− − −
− −

− −

0
15
0

17
0
0

.
17
7
0
0
7

64 16 4 1 21

(5.14)

Let’s solve the system of equations using the Gaussian elimination. The
C/C++ program looks like this:

#include <iostream>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 int n = 12;
 float a[12][12] = {6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
 12, 4, 1, 0, -12, -4, -1, 0, 0, 0, 0, 0,
 8, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 27, 6, 1, 0, -27, -6, -1, 0,
 12, 2, 0, 0, -12, -2, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 8, 4, 2, 1, 0, 0, 0, 0,
 0, 0, 0, 0, 27, 9, 3, 1, 0, 0, 0, 0,
 0, 0, 0, 0, 18, 2, 0, 0, -18, -2, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 24, 2, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 27, 9, 3, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 64, 16, 4, 1};
 float b[12] = {0, 15, 0, 17, 0, 0, 17, 7, 0, 0, 7, 21};
 float d;

for (int i=0; i<n-1; i++)
 for (int j=i+1; j < n; j++)
 {
 d = a[j][i] / a [i][i];
 for (int m=0; m < n; m++)
 a[j][m] = a[i][m] * d - a[j][m];
 b[j] = b[i]*d - b[j];
 }

 float x[12];

 for (int i=n-1; i>=0; i--)
 {

228

 float D = 0;
 for (int j=n-1; j>i; j--)
 D = D + x[j]*a[i][j];
 x[i] = (b[i]-D) / a[i][i];
 }
 for (int i=0; i<n; i++)
 cout << "x[" << i << "]=" << x[i] << endl;

 system("PAUSE");
 return 0; }

In the process of solving the system of equations (5.24), the following

coefficient values were obtained: A1 = – 4,8; B1=14,4; C1 = –7,6; D1 = 13,0;
 A2 = 12,0; B2 = –86,4; C2 = 194,0; D2 = –121,4; A3 = –7,2; B3 = 86,4; C3 = –324,4;
D3 = 397,0.

Accordingly, the system of equations (5.21) will have the form:
3 2

3 2

3 2

4,8 14,4 7,6 13, [1; 2];
12 86,4 194 121,4, [2; 3];

7,2 86,4 324,4 397, [3; 4].

x x x x
y x x x x

x x x x

− + − + ∈


= − + − ∈
− + − + ∈

Then 3 2 2(2,5) 12 2,5 86,4 2,5 194 2,5 121,4 11,1 10 mmy −= ⋅ − ⋅ + ⋅ − = ⋅ .

5.2 Data approximation

Approximation is an approximate description provided by one function (the
approximating function) of a given form of another function (the approximated
function), which can be given in any form (for data approximation, it is provided
in the form of data arrays).

There are two main approaches to data approximation. For one of them, it is
necessary that the approximating curve (perhaps piecewise smooth) passes
through all the points specified in the table. This is implemented using the
interpolation methods discussed in the previous subsection. Another approach is
to approximate the data with a simple function that is applied to all table values,
but not necessarily through all points. This approach is called curve fitting, which
is sought to be drawn so that its deviation from tabular data is minimal. As a rule,
the least squares (LS) is used, that is, the sum of the squares of the differences
between the value of the function determined by the selected approximating curve
and the tabular data is minimized.

At the same level as the most common LS, the Chebyshev’s method is also
used, in which the maximum distance of the approximating curve from the
approximated one is minimized. In general, the criterion of closeness can be any
measure justified by the statement of the problem, which leads to the use of

229

various mathematical methods and models of approximation, as well as
algorithms for finding the parameters of the approximating function.

Let the table specify (n+1) points (x0, y0), (x1, y1), …, (xn, yn) and it is necessary
to determine the approximating curve g(x) in the range x0≤x≤xn (Fig. 5.6). In this
case, the error in each table point:

 ()i i ig x yε = − . (5.15)

Then the sum of squared errors is determined by the expression:

 []2

0
()

n

i i
i

E g x y
=

= −∑ . (5.16)

Figure 5.6 – Schematic diagram of data approximation

As a rule, the function g(x) is chosen as a linear combination of typical

functions gk(x):
 () 1 1 2 2() () ... ()k kg x C g x C g x C g x= + + + . (5.17)

The minimum condition of the function E is determined by the equations:

1 2

0
k

E E E
C C C
∂ ∂ ∂

= = = =
∂ ∂ ∂

 . (5.18)

Since
2

1 1 2 2
0

() () ... ()
n

i i k k i i
i

E C g x C g x C g x y
=
 = + + + − ∑ ,

then from formula (5.25) we obtain the following system of equations:

230

[]

[]

[]

1 1 1 1 1
1

1 1 1
2

1 1

2 () ... () () 0;

2 () ... () () 0;

;

2 () ... () () 0.

k k i i

i k k i i i

i k k i i k i
k

E C g x C g x y g x
C
E C g x C g x y g x
C

E C g x C g x y g x
C

∂ = + + − =∂
∂ = + + − =∂



∂ = + + − =∂

∑

∑

∑



This system of k equations can be written in matrix form, namely:

2
1 11 1 2 1

2
2 21 2 2 2

2
31 2

()() () () () ()
()() () () () ()

.

()() () () () ()

i ii i i i k i

i ii i i i k i

k i ii k i i k i k i

C g x yg x g x g x g x g x
C g x yg x g x g x g x g x

C g x yg x g x g x g x g x

=

∑∑ ∑ ∑
∑∑ ∑ ∑

∑∑ ∑ ∑





 
   



 (5.19)

Since the elements of the matrix on the left and the column vector on the right
parts of (5.29) are determined by tabular data, the resulting system of k linear
equations with k unknowns has a solution.

If we switch to the matrix form of the record, then the general formula of LS
takes the following form:

 1[]T T−= ⋅ ⋅ ⋅C U U U Y , (5.20)

where

1

2

k

C
C

C

=


C ,

1

2

n

y
y

y

=


Y ,

1 1 1

1 2 2

1

() ()
() ()

() ()

k

k

k k n

g x g x
g x g x

g x g x

=





  



U .

The choice of the type of function g(x) must be made taking into account the
nature of tabular data (periodicity, symmetry properties, existence of asymptotics,
etc.).

For example, by approximation, a quadratic function will be obtained:
2

0 1 2()g x C C x C x= + + ⟹
2

2
0 1 2

1
()

n

i
i

E C C x C x y
=

= + + −  ∑ ;

2
0 1 2

00

2
0 1 2

01

2 2
0 1 2

02

2 () 0;

2 () 0;

2 () 0;

n

i
i

n

i i
i

n

i i
i

E C C x C x y
C
E C C x C x y x
C
E C C x C x y x
C

=

=

=

 ∂
= + + − =   ∂

 ∂
= + + − =   ∂

 ∂
= + + − =   ∂

∑

∑

∑

231

2
0

2 3
1

2 4 2
3 2

(1) i i i

i i i i i
i

i i i i

n x x C y
x x x C x y
x x x C x y

+    
     =    
        

∑ ∑ ∑
∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

.

Sometimes tabular data is divided into several parts and a separate
approximating curve is selected for each part. This approach satisfies those cases
when the data correspond to different physical states of the system.

The residual mean square error of approximation is estimated using the
following expression:

 .)1/(+=∆ nE (5.21)

The algorithm for solving the approximation problem using the method of
least squares will take the form (Fig. 5.7).

If orthogonal polynomials for which () () 0j i k ig x g x =∑ (j≠k), are used during
the construction of the approximating function gi(x), then the system (5.29) is
simplified and the matrix becomes diagonal. For their part, the coefficients are
determined from such ratios:

 2

0 0
() / ()

n n

j j i i j i
i i

C g x y g x
= =

= ∑ ∑ . (5.22)

This approach simplifies the task, which allows orthogonal polynomials to be
used in many standard curve fitting programs.

Example 5.6. The distribution function of the company’s profit rate f(x) in

thousand USD by calendar months, presented in tabular form (Table 5.9), it is
necessary to approximate the type function:
 2

1 2 3 4() sin 2x C x C x C C xφ = + + + . (5.23)

Table 5.9 – Output data

i 1 2 3 4 5
X,

month 0 1 2 3 4

)(xf ,
thousand

USD
–1,0 2,0 3,0 –2,0 5,0

Solution:

Let’s introduce functional notation based on the approximating function
(5.33): 2

1()g x x= , 2 ()g x x= , 3() 1g x = , 4 () sin 2g x x= .

Based on system (5.29) written in matrix form, we obtain:

232

Figure 5.7 – Scheme of the algorithm for solving the approximation problem
using the method of least squares

Start

Definition of the type of
approximating function

Compiling the system of equations
5.29

2

3

Obtaining a system of equations in
matrix form

4

Calculation of matrix elements
5

Solving a system of equations
6

1

Obtaining the approximating
function

Stop

Determination of the residual root
mean square error

8

9

7

233

2 2 2 2 2

1 1 1 1

2 2 1

1 1 1 1 2

32

41 1 1

2 2

1 1 1 1

() sin 2

sin 2

1 sin 2

sin 2 sin 2 sin 2 sin 2

n n n n

i i i i i i
i i i i

n n n n

i i i i i i
i i i i

n n n

i i i
i i i

n n n n

i i i i i i
i i i i

x x x x x x

Cx x x x x x
C
C

x x x C

x x x x x x

= = = =

= = = =

= = =

= = = =

 
 
 
 

 
 
 ×
 

 
 

 
 
  

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑

2

1

1

1

1

()

()

.

()

()sin 2

n

i i
i
n

i i
i
n

i
i
n

i i
i

f x x

f x x

f x

f x x

=

=

=

=

 
 
 
 

  
  
  =
  

   
  

 
 
  

∑

∑

∑

∑

Let’s calculate all elements of the matrix:

5
2 2 4 4 4 4 4

1 1
() 0 1 2 3 4 354

n

i i
i i

x x
= =

= = + + + + =∑ ∑ ;

5
2 3 3 3 3 3

1 1
0 1 2 3 4 100

n

i i i
i i

x x x
= =

= = + + + + =∑ ∑ ;

2 2 2 2 2

1
0 1 2 3 4 30

n

i
i

x
=

= + + + + =∑ ;

2

1
sin2 0 sin 2 4sin 4 9sin 6 16sin8 0,909 3,027 2,515

n

i i
i

x x
=

= + + + + == − + +∑

+15,83=11,197;

2 2 2 2 2

1
() 1 0 2 1 3 2 2 3 5 4 2 12 18 80 76

n

i i
i

x f x
=

= − ⋅ + ⋅ + ⋅ − ⋅ + ⋅ = + − + =∑ .

Similarly, calculations are performed for the remaining elements of the
matrix:

1

2

3

4

354,0 100,0 30,0 11,197 76,0
100,0 30,0 10,0 2,515 22,0
30,0 10,0 1,0 0,862 7,0

11,197 2,515 0,862 2,456 5,054

C
C
C
C

    
    
    × =
    
    

    

. (5.24)

Solving the system of equations (5.34) (see Chapter 1) will yield unknown
coefficients С1,2,3,4: C1 = –0,0376; C2 = 0,6645; C3 = 0,2115; C4 = 1,4745.

So, the approximating function will look like this:

xxxx 2sin4745,12115,06645,00376,0)(2 +++−=ϕ .

For a complete solution, it is necessary to determine the residual error.
According to formula (5.31), it is necessary to determine the sum of squares of
deviations of the obtained function φ(x) from the given f(x). First, the value of the

234

function φ(x) at the specified points is determined, after which the square of the
difference between the two functions is calculated (Table 5.10).

Table 5.10 – The results of calculating the squared differences between two

functions
i 0 1 2 3 4
x 0,000 1,000 2,000 3,000 4,000

f(x) – 1,000 2,000 3,000 – 2,000 5,000
φ(x) 0,211 2,179 0,274 1,455 3,727

φ(x) – f(x) 1,212 0,197 – 2,726 3,455 – 1,273
(φ(x) – f(x))2 1,468 0,032 7,430 11,934 1,621

From Table 5.12, the value of the sum of squared errors:

[]
4 2

0
() () 1,468 0,032 7,430 11,934 1,621 22,485i i

i
E x f xϕ

=
= − = + + + + =∑ .

Then the value of the residual root mean square error:

22,485 1,936
1 5 1

E
n

∆ = = =
+ +

.

From a practical point of view, the resulting root mean square error Δ=1,936
of the approximation of the function f(x) is quite large. In order to reduce the
approximation error, it is necessary to first select the optimal type of φ(x) function

5.3 Statistical data processing

When processing the results of experimental data, there is a need to evaluate
the characteristics of a random variable.

The arithmetic mean of the results of N independent tests is used to estimate
X the unknown value of the mathematical expectation mX of the random variable
X:

 1X

n

i
i

x

N
==
∑

, (5.25)

and to estimate the value of the dispersion Dx for a sufficiently large number of
experimental data (N≥30) – the ratio:

2

2 1
()

1

N

i
i

x X

x x
D

N
σ =

−
= =

−

∑
. (5.26)

235

Consider the implementation of finding the mathematical expectation and
variance in the C++ programming language:

#include <cmath>
#include <iostream>
using namespace std;

double sum(int size, double sample[]){
 double sum = 0;
 for (int i = 0; i < size; i++){
 sum+=sample[i];
 }
 return sum;
}

double mExp(int size, double sample[]){
 return sum(size, sample)/size;
}

double variance(int size, double sample[]){
 double mean = mExp(size, sample);
 double diffsSquared[size];
 for (int i=0; i<size;i++) {
 diffsSquared[i] = pow(sample[i]-mean,2);
 }

 return sum(size,diffsSquared)/(size-1);
}

int main(int argc, char *argv[]) {
 int size = argc-2;
 double sample [size];

 for (int i = 0; i < size; i++){
 sample[i]=stod(*(argv+2+i));
 }
 string mode(*(argv+1));
 cout << "Mode: " << mode << endl;
 if ("expectation" == mode) {
 cout << "Expectation: " << mExp(size,sample) << endl;
 } else if ("variance" == mode) {
 cout << "Variance: " << variance(size,sample) << endl;

 } else {
 cout << "Unknown mode" << endl;
 }
 return 0;
}.

If the normal distribution law of the quantity X is considered, then it can be

shown that the quantity:

/
X

X

X mT
Nσ

−
= ,

has a Student’s t-distribution with k=N–1 degrees of freedom. The degree of
freedom in statistics is defined as the difference between the number of
experiments and the number of model coefficients that can be calculated based on

236

the results of these experiments independently of each other. For example, in a
normal distribution, there are two parameters, and Poisson distribution has one.
From here, you can determine the confidence interval for the true value of x: from
the known values of the confidence probability P, namely from Table 5.11, the

value of ɛ is determined, from where XD
N

ε∆ = .

Thus, if a random variable is normally distributed with expectation mX and
variance DX, then the true value of x lies in the interval (mX–Δ, mX+Δ) with
confidence probability P.

To evaluate the type of distribution law under the confidence distribution law,
the Kolmogorov–Smirnov and Pearson’s chi-squared test are most widely used
(Student’s t-test is used only under the normal distribution law), which allow,
based on the comparison of the empirical distribution function * ()Xf x , obtained
in the form of a histogram as a result of processing experimental data with
hypothetical fX(x), corresponding to the proposed hypothesis, to conclude about
their coincidence at the level of significance α, which is defined as the probability
that a reliable hypothesis will be rejected.

Table 5.11 – Values for the interval –ɛ<t<ɛ, where the value t has the

Student’s distribution depending on the reliable probability P and the number of
degrees of freedom k

k Р=0,90 Р=0,95 Р=0,99
1 2 3 4
1 6,310 12,71 63,7
2 2,920 4,30 9,92
3 2,350 3,18 5,84
4 2,130 2,77 4,60
5 2,020 2,57 4,03
6 1,943 2,45 3,71
7 1,895 2,36 3,50
8 1,860 2,31 3,36
9 1,833 2,26 3,25

10 1,812 2,23 3,17
11 1,796 2,20 3,11
12 1,782 2,18 3,06
13 1,771 2,16 3,01
14 1,761 2,14 1,98
15 1,753 2,13 2,95
16 1,746 2,12 2,92
17 1,740 2,11 2,90
18 1,734 2,10 2,86

237

Continuation of Table 5.11
1 2 3 4

19 1,729 2,09 2,86
20 1,725 2,08 2,84
22 1,717 2,07 2,82
24 1,711 2,06 2,80
26 1,706 2,06 2,78
28 1,701 2,05 2,76
30 1,697 2,04 2,75
40 1,684 2,02 2,70
60 1,671 2,00 2,66
120 1,658 1,98 2,62
240 1,645 1,96 2,58

In the Kolmogorov–Smirnov test, the measure is the magnitude:

*

max
() ()X Xf x f x nλ = − ,

which is compared with the critical value given in Table 5.12.

Table 5.12 – Critical values of λ0 depending on the level of significance
α 0,500 0,400 0,300 0,200 0,100 0,050 0,020 0,001 0,001
λ0 0,828 0,895 0,974 1,073 1,224 1,358 1,520 1,627 1,950

Under the condition λ < λcr, the hypothesis of the coincidence of fX(x) and

* ()Xf x is accepted.
In the Pearson’s chi-squared test, the value is calculated:

2*

2

0

() ()
()

k X i X i

i X i

f x f x
x

f x=

 − = ∑ , (5.27)

where k – the number of histogram digits (discrete fX(xi) values).
From Table 5.13, the critical value of χ2 is determined, taking into account the

value of α and the number of degrees of freedom:
,

where l – the number of parameters contained in the distribution law (for normal
l=2, Poisson’s l=1, etc.).

For χ2 < χ2
cr, the hypothesis is accepted.

If we compare analytically obtained probability distribution laws, the mean
squared error is a measure of their closeness.

To assess the interdependence of random variables that have a stochastic
relationship, the correlation coefficient is used:

1−−= lkr

238

 1
()()1

1

n

i x i Y
i

xy
x y

x m y m
r

n σ σ
=

− −
=

−

∑
, (5.28)

where n – sample size.
When determining the interdependence of the values of random variables at

different points in time, the correlation coefficient is estimated by the formula:

[][]

1
() ()1()

1

n m

i x i X
i

X
X

x t m x t m
r

n m D

τ
τ

−

=

− + −
=

− −

∑
 , (5.29)

where x(ti) – the value of the random variable X at the moment of time ti, and
x(ti+τ) – at the moment of time that differs from ti at the time interval τ. Thus,
x(ti) = xi, x(ti+τ) = xj, τ is the time interval between i and j values of x (i–j = m).

Table 5.13 – Critical points of the distribution x is a random variable that is

distributed according to the χ2 law with k degrees of freedom
Number of
degrees of
freedom

α=0,010 α=0;
0,025 α=0,050 α=0,950 α=0,975 α=0,990

1 6,6 6,0 3,8 0,0039 0,00098 0,00016
2 9,2 7,4 6,0 0,103 0,051 0,020
3 11,3 9,4 7,8 0,352 0,216 0,115
4 13,3 11,1 9,5 0,711 0,484 0,297
5 15,1 12,8 11,1 1,15 0,831 0,554
6 16,8 14,4 12,6 1,64 1,24 0,872
7 18,5 16,0 14,1 2,17 1,69 1,24
8 20,1 17,5 15,5 2,73 2,18 1,65
9 21,7 19,0 16,9 3,33 2,70 2,09
10 23,2 20,5 18,3 3,94 3,25 2,56
11 24,7 21,9 19,7 4,57 3,82 3,05
12 26,2 23,3 21,0 5,23 4,40 3,57
13 27,7 24,7 22,4 5,89 5,01 4,11
14 29,1 26,1 23,7 6,57 5,63 4,66
15 30,6 27,5 25,0 7,26 6,26 5,23
16 32,0 28,8 26,3 7,96 6,91 5,81

The correlation interval is defined as the time interval during which the

correlation function decreases by 95%.
Determining the correlation coefficient (normalized correlation function) and

correlation function based on known data arrays x and y on the basis of the above
formulas does not cause difficulties, and the approximation of the form of the

k

239

correlation function by typical correlation functions (Table 5.14) can be carried
out by the method of least squares.

Table 5.14 – Typical correlation functions

Type Parameters

 ,
Rx(τ*) – known value of correlation function

,

for two known values of the correlation
function Rx(τ), and Rx(*

1τ)=0.

Conclusions regarding the application of data processing problem
solving methods

Data processing tasks combine a number of questions that arise for
researchers during the processing of experimental data or in the process of tests
with the objects under study. Problems of approximating unknown functions are
generally approximation problems. If obtaining a function of the given form is the
final result, then the process of solving the problem itself is determined by the
choice of the criterion of proximity of the approximated and approximating
functions. Most often, this method is the method of least squares, where the
measure of closeness is the sum of the squares of the deviations of these functions,
but there are also other formulations of the problem. In general, the criterion of
closeness is chosen by the researcher himself. When the approximation is used to
estimate the value of an unknown function at a certain point, the interpolation
problem is considered, which is solved by the known methods of Lagrange,
difference, splines, etc. The choice of an effective algorithm depends on the
answers to the following questions: how accurate is the chosen method, how much
machine time is spent on its use, how smooth is the interpolation function, how
many data points does it require, etc. The errors of interpolation methods depend
on whether all the points obtained from the experiment are used. The Lagrangian
polynomial explicitly contains the function values at the interpolation nodes, so it

α<τ

τα−σ=τ

/
),()(R Xx

1

12 *
X

*
xX /))(R(τστ−σ=α 22

τα−σ=τ e)(R Xx
2

)(R
ln *

x

X
* τ

σ
τ

=α
21

222 τα−σ=τ e)(R Xx)(R
ln *

x

x
* τ

σ
τ

=α
21

)(e)(R xx τα+σ=τ
τα−

12 τ≈α max
k4,5/

βτσ=τ τα− cose)(R xx
2)(R

cos
ln

*
x

*

*

x

*
2

1

22

2

2
τ
τ

πτ
σ

∗
τ

=α */ 12τπ=β

240

is useful when the function values change and the interpolation nodes are fixed.
The effectiveness of the application of different interpolation methods depends on
the location of the point at which the function value is being searched. If it is
located at the beginning of the interval, it is more convenient to use Newton's first
interpolation formula; at the end, the second formula is more suitable; and in the
middle, formulas based on central differences are preferred. Splines are
effectively used when multiple interpolation calculations are required and in the
case of a large fixed database. They are also effective in the case of
multidimensional interpolation and are widely used (spatial interpolation based
on Bezier curves) for the reconstruction and processing of spatial images in
computer graphics. Extrapolation is the procedure of interpolating beyond the
specified interval. During statistical data processing, it is necessary to evaluate the
main characteristics of a random variable. These procedures are included in the
set of classic problems of processing experimental data in combination with
algorithms and methods for their solution, which must be in the arsenal of an
engineer and a researcher.

Control questions and tasks

1. Formulate the problem of interpolation. In which cases is interpolation

impossible?
2. What restrictions are placed on the set of base points when solving an

interpolation problem?
3. Compile an algorithm and program for solving the problem of interpolation

using the Lagrangian interpolation.
4. Compile an algorithm and program for solving the problem of interpolation

using Newton’s first interpolation formula.
5. Compile an algorithm and program for solving the problem of interpolation

using Newton’s second interpolation formula.
6. Compile an algorithm and program for solving the interpolation problem

using interpolation formulas with central differences.
7. Derive Newton’s interpolation formula for equidistant nodes.
8. What is spline interpolation? How are spline coefficients determined?
9. What is extrapolation?
10. What is the more generalized concept – extrapolation or interpolation?
11. What is an approximation? What is the difference between approximation

and interpolation?
12. In what ways is the approximation problem solved?
13. Give the main formula for the method of least squares.
14. Derive the system of equations for determining the coefficients of the

approximating polynomial in the least squares method.

241

15. What are polynomials called orthogonal? Please provide examples.
16. Construct the n-th degree Lagrangian interpolation polynomial for the

function y(x) on the given interval, and calculate its value at the given point.
Divide the interval into 10 and 20 points, and compare the errors:

а) 2

2
3 4 1

xy
x x

=
+ +

 on the interval xϵ[2; 4], x=3,0;

b)
1

3 2
y

x
=

+
 on the interval xϵ[1; 3], х=2,0;

c) 2

1
2 3 5

y
x x

=
+ +

 on the interval ϵ[2; 3], x=2,2;

d)
lg(2)

xy
x

=
+

 on the interval xϵ[4; 5], x=4,3.

17. Solve the problem of interpolation using the Lagrange’s method for the
function given in the table and calculate the value of the function at the point
x=2,2:

a)

b)

 c)

18. The calibration table below for a thermocouple gives the voltmeter

readings when the temperature changes with a constant step. Using Lagrangian
interpolation polynomial, find the voltmeter readings at T=55 0C.

i 0 1 2 3 4 5
T, 0C 0 20 40 60 80 100

U,
mV – 0,670 – 0,254 0,171 0,609 1,057 1,517

19. Construct a diagonal table of finite differences for the given function

using Newton’s first interpolation formula and calculate the interpolation value
at the given point by dividing the interval into 10 and 20 points. Compare the
calculation errors:

i 0 1 2 3
xi 2 4 5 8
yi 10 15 9 25

i 0 1 2 3
xi 1 3 5 8
yi 11 5 9 12

i 0 1 2 3
xi – 5 – 3 0 3
yi – 24 – 12 4 22

242

а) 3 2

1()
2 3 1

y x
x x

=
+ +

 on the interval xϵ[4; 5], x=4,2;

b)
23

1()
3 5

y x
x

=
+

 on the interval xϵ[6; 7], x=6,4;

c)
3

1()
3

y x
x x

=
+

 on the interval xϵ[1; 3], x=1,2.

20. Solve the interpolation problem using Newton’s first interpolation
formula and calculate the value of the function at the point x=1,5.

a)

b)

c)

21. Construct a diagonal table of finite differences for the given function using

Newton’s second interpolation formula and calculate the interpolation value at the
given point by dividing the interval into 10 and 20 points, compare the calculation
errors:

а) 4 3

1()
3

y x
x x x

=
+ +

 on the interval xϵ[1; 3], x=1,5;

b)
5

1()
5

y x
x x x

=
+

 on the interval xϵ[3; 5], x=4,0;

c)
3

1()
4 5

y x
x x x

=
+ +

 on the interval xϵ[6; 8], x=7,6.

22. Solve the interpolation problem using Newton’s second interpolation
formula and calculate the value of the function at the point x=6,2.

a)

i 0 1 2 3
xi 0 2 4 6
yi – 2 15 7 24

i 0 1 2 3
xi – 2 0 2 4
yi 10 5 7 12

i 0 1 2 3
xi – 5 0 5 10
yi – 24 – 12 4 22

i 0 1 2 3
xi 2 4 6 8
yi 10 – 2 9 5

243

b)

 c)

23. Construct a diagonal table of finite differences for the given function using
Stirling’s formula and calculate the interpolation value at the given point by
dividing the interval into 10 and 20 points, compare the calculation errors:

а) 3 2

1()
2 3 1

y x
x x

=
+ +

 on the interval xϵ[4; 6], x=5,0;

b) 2 3sin()y x x x= + − on the interval xϵ[6; 7], x=6,8;

c)
3

1()
3

y x
x x

=
+

 on the interval xϵ[1; 3], x=1,2.

24. Solve the interpolation problem using Stirling’s formula and calculate the
value of the function at the point x=2,2:

a)

b)

c)

25. Construct third-order splines for the function yi(xi) given in the table:
а)

i 0 1 2 3
xi 1 3 5 7
yi 11 2 9 10

i 0 1 2 3
xi – 4 0 4 8
yi – 24 – 12 4 22

i 0 1 2 3
xi 0 2 4 6
yi – 2 15 7 24

i 0 1 2 3
xi – 3 0 3 6
yi 10 5 7 12

i 0 1 2 3
xi – 4 0 4 8
yi – 15 – 12 4 10

i 0 1 2 3
xi 2 4 5 8
yi 10 15 9 25

244

c)

26. Using the method of least squares, approximate the given tabular data
with a function of the following form:

а) 1 2()x C C xϕ = + ;
b) 2

1 2 3()x C C x C xϕ = + + ;
c) 1 2 3() sin(3)x C C x C xϕ = + + .

Determine the corresponding coefficients С1, С2, С3 and the residual error.

i 0 1 2 3 4
x – 4,0 1,0 3,0 5,0 12,0

f(x) 2,4 – 5,0 1,2 7,0 4,0

27. Develop an algorithm and compile a program for evaluating the statistical
characteristics of the results of measuring the random variable X.

28. Write an algorithm and a program for estimating the correlation
coefficient of two random variables.

29. Write an algorithm and program to construct a histogram of a random
variable, and also construct a histogram for a random variable obtained from a
standard random number generator.

30. Compose an algorithm and program to estimate the autocorrelation
coefficient of a random variable and approximate the resulting function with one
of the typical correlation functions from Table 5.14.

i 0 1 2 3
xi 1 3 5 8
yi 11 5 9 12

i 0 1 2 3
xi – 5 – 3 0 3
yi – 24 – 12 4 22

b)

245

Chapter 6. NUMERICAL INTEGRATION AND DIFFERENTIATION

In many tasks related to the development, analysis, identification and quality
assessment of various methods and means of mathematical modeling, as well as
information technologies, there is a need to calculate certain integrals.

The function F(x) on a given interval D is called the original function for the
function f(x) or the integral of f(x), provided that f(x) is the derivative of the
function F(x) throughout this interval, or the same, that f(x)dx serves as a
differential for F(x):

() ()F x f x′ = or () ()dF x f x dx= .

If the function f(x) is continuous on the interval [a; b] and its original function
F(x) is known, then the definite integral from a to b can be calculated using the
fundamental theorem of calculus:

 ∫ −==
b

a
aFbFdxxfI)()()(. (6.1)

The graphic interpretation of the integral is the area of the curved trapezoid
bounded by the curve y = f(x), two ordinates x1 = a and x2 = b and the line
segment x.

Very often, calculating the value of an integral is not only a difficult process
(due to the complexity of analytical transformations), but also impossible
altogether (due to the presence of improper integrals), especially when the integral
function is given by a set of numerical data (experimental data).

Therefore, the task of numerical integration (numerical integration) of the
function consists in calculating the value of the definite integral based on a
number of values of the integral function (replacing the original integral function
with a certain approximating function). Numerical integration formulas are often
called quadrature.

The most famous methods of finding definite integrals are:
− rectangle formulas;
− Newton-Cotes, Gaussian quadrature, Chebyshev polynomials formulas,

which are based on the use of so-called quadrature formulas obtained by replacing
f(x) with interpolation polynomials;

− Monte Carlo methods, which are based on the use of statistical models.

6.1 Riemann sum

Let it be necessary to determine the value of the integral of the function f(x)
on the segment [a; b]. The idea of the Riemann sum is to divide the segment of
integration [a; b] into elementary segments [xi-1; xi] by points
a = x0 < x1 < … < xn = b, based on which rectangles with height f(ξi) are

246

constructed. With a uniform division of the segment xi = a+i·h (h is a step),

therefore
()a bh

n
−

= .

The value of the integral of the function f(x) is approximately expressed as
the sum of the areas of the constructed rectangles. The generalized quadrature
formula for rectangles has the form:

 1
1

() ()()
b n

i i i
ia

I f x dx f x xξ −
=

= ≈ −∑∫ , (6.2)

where the point ξi ϵ [xi; xi-1].
Depending on the selection of the position of the ξi point, the formulas of the

left, right and middle rectangles are distinguished
For ξi = xi–1, the formula for left rectangles with first-order accuracy is O(h):
– for non-equidistant nodes

 1
1

()()
n

i i i
i

I f x xξ −
=

≈ −∑ ; (6.3)

– for equidistant nodes

 1
1

()
n

i
i

I h f x −
=

≈ ∑ . (6.4)

The geometric interpretation is given in Figure 6.1, a).
For ξI = xi the formula of right rectangular quadrants with first order accuracy

is O(h):
– for non-equidistant nodes

 1
1

()()
n

i i i
i

I f x x x −
=

≈ −∑ ; (6.5)

– for equidistant nodes

1

()
n

i
i

I h f x
=

≈ ∑ . (6.6)

The geometric interpretation is given in Figure 6.1, b).

In the case of 1

2
i i

i
x xξ − +

= , the formula for averaging rectangles with a

different order of accuracy is O(h2):
– for non-equidistant nodes

 1
1

1
()()

2
n

i i
i i

i

x xI f x x−
−

=

+
≈ −∑ ; (6.7)

– for equidistant nodes

 1
1 2

n

i
i

hI h f x −
=

 ≈ + 
 

∑ . (6.8)

The geometric interpretation is given in Figure 6.1, c).

247

Figure 6.1 – Scheme of numerical integration by the Riemann sum:

a) left; b) right; c) average

Formulas for left and right rectilinear equations can be used for both
analytically defined functions and functions defined in tables. The method of
average rectilinear equations (Riemann sum) can only be used to find integrals
from analytically defined functions.

Example 6.1 Determine the value of the integral ∫ +
=

1

0
21 x

dxI by the method

of left, right, and middle rectangles (Riemann sum) to calculate with step size
h=0,2.

Solution:
According to the formula for left-handed rectangles (6.4), we obtain:

5

1
1

2 2 2 2 2

() ((0) (0,2) (0,4) (0,6) (0,8))

1 1 1 1 10,2 0,833732.
1,0 0 1,0 0,2 1,0 0,4 1,0 0,6 1,0 0,8

lr i
i

I h f x h f f f f f−
=

= = ⋅ + + + + =

 = + + + + = + + + + + 

∑

According to the formula for right-handed rectangles (6.6), we obtain:
5

1

2 2 2 2 2

() ((0,2) (0,4) (0,6) (0,8) (1,0))

1 1 1 1 10,2 0,733732.
1,0 0,2 1,0 0,4 1,0 0,6 1,0 0,8 1,0 1,0

rr i
i

I h f x h f f f f f
=

= = ⋅ + + + + =

 = + + + + = + + + + + 

∑

According to the formula for average rectilinear curves (6.8), we obtain:

5

1
1

0,2 0,2 0,20 0,2 0,4
2 2 2

2 0,2 0,20,6 0,8
2 2

mr i
i

f f f
hI h f x h

f f
−

=

      + + + + + +              = + =        + + + +        

∑ =

а) b) c)

248

2 2 2 2 2
1 1 1 1 10,2 0,786826

1,0 0,1 1,0 0,3 1,0 0,5 1,0 0,7 1,0 0,9
 = + + + + = + + + + + 

.

The exact value of the integral based on analytical decoupling:
1 1

2 0
0

() 0,785398
1 4

dxI arctg x
x

π
= = = =

+∫ .

The relative difference in calculation by means of equalization between the
values of the analytical decoupling of the integral and the numerical method
according to the formula:

– left-handed rectangular

0,785398 0,833732100% 100% 6,15%
0,785398

lr
л

I I
I

ε − −
= ⋅ = ⋅ = ,

– right-winged rectangular

0,785398 0,733732100% 100% 6,58%
0,785398

rr
п

I I
I

ε − −
= ⋅ = ⋅ = ,

– medium-sized rectangular

0,785398 0,786826100% 100% 0,18%
0,785398

mr
с

I I
I

ε − −
= ⋅ = ⋅ = .

The method of left and right triangles (Riemann sum) for a given alignment
introduces a fundamental calculation error. The most precise result is achieved by
using the method of average rectilinearity. As the number of intervals increases
(as the values of h decrease), the accuracy of the integral calculation will also
increase.

6.2 Newton-Cotes formulas

To derive the Newton-Cotes formulas, the integral is written in the form:

0

() ()
b n

i i
ia

f x dx A f x
=

= + ∆∑∫ , (6.9)

where xi – interpolation nodes;
A – coefficients that depend on the type of formula;
Δ – error of the quadrature formula.
By replacing the integrand function in equation (6.9) with the corresponding

Lagrange polynomial for n equidistant nodes with a step
b ah

n
−

= , one can obtain

249

the following formula for calculating the Аі coefficients for an arbitrary number
of nodes:

1

0

(1) (1) ()
!(1)! ()

n т

i
b a q q q nA dq

n i n q i

−− − − − =   − − 
∫

 (i=0, 1, 2, …, n), (6.10)

where
x aq

h
−

= – cast variable.

Usually, the coefficients i
i

AH
b a

=
−

 are called Cotes' coefficients. Formula

(6.9) will take the form:

∫ ∑
=

−=
b

a

n

i
ii xfHabdxxf

0
)()()(, (6.11)

and has the following properties
0

1
n

i
i

H
=

=∑ і i n iH H −= .

For n = 1 and n = 2, from (6.10) and (6.11) we obtain the trapezoidal
and Simpson’s rules. Table 6.1 shows the values of the Cotes'
coefficients for n = 1, 2, …, 8. Since the Cotes coefficients for a large
number of ordinates are complex, in practice, for approximating definite
integrals, the integration interval is divided into a large number of small intervals
and Newton’s quadrature formula is applied to each of them – Cotes with a
small number of ordinates. After that, formulas of simpler structure will be
obtained, which can have sufficiently high accuracy.

Table 6.1 – Values of the coefficients of the Newton-Cotes formula
 Common

denominator
N

1 1 1 2
2 1 4 1 6
3 1 3 3 1 8
4 7 32 12 32 7 90
5 19 75 50 50 75 19 288
6 41 216 27 272 27 216 41 840
7 751 3577 1223 2989 2989 1223 3577 751 17280
8 989 5888 –928 10496 –4540 10496 –928 5888 989 28350

ii HH =


0H


1H


2H


3H


4H


5H


6H


7H


8H


For example, the trapezoidal and Simpson’s rules obtained in this way have
the following form:

250

[]0 1 2 1() 2 () 2 () ... 2 () ()
2 n n
hI f x f x f x f x f x−= + + + + + , (6.12)

[]0 1 2 3 2 1() 4 () 2 () 4 () ... 2 () 4 () () .
3 n n n
hI f x f x f x f x f x f x f x− −= + + + + + + + (6.13)

Moreover, the errors of the component formulas are, respectively:

3

212
hn M∆ = − та

5

4180
hn M∆ = − .

Similarly, it is possible to obtain Newton-Cotes component formulas for
higher orders.

To estimate the calculation error in practice, the Runge’s method (Richardson
extrapolation) is used, similar to the use of one-step numerical methods for
solving the Cauchy problem (see Chapter 3).

Example 6.2. Determine the value of the integral ∫ +
=

1

0
21 x

dxI using the

Newton-Cotes formulas, namely the trapezoid formula with a step of
h = 0,2 and Simpson’s rule with a step of h = 0,25.

Solution:

Since the value of the integral function is 2
1()

1
f x

x
=

+
, then for h = 0.2, the

interval xϵ[0; 11,0] will be divided into five segments. Using the trapezoid
formula (6.13), we have:

[]

[]

0 1 2 3 4 5

2 2 2 2 2

2

() 2 () 2 () 2 () 2 () ()
2

(0) 2 (0,2) 2 (0,4) 2 (0,6) 2 (0,8) (1,0)
2
0,2 1 1 1 1 12 2 2 2
2 1,0 0 1,0 0,2 1,0 0,4 1,0 0,6 1,0 0,8

1 0,783730.
1,0 1,0

t
hI f x f x f x f x f x f x

h f f f f f f

= + + + + + =

= + ⋅ + ⋅ + ⋅ + ⋅ + =

= + ⋅ + ⋅ + ⋅ + ⋅ + + + + + +
+ =+ 

Also, using Simpson’s formula (6.13) with a step size of h = 0.25, we
obtain:

251

[]

[]

0 1 2 3 4

2 2 2 2 2

() 4 () 2 () 4 () ()
3

(0) 4 (0,25) 2 (0,5) 4 (0,75) (1,0)
3
0,2 1 1 1 1 14 2 4
3 1,0 0 1,0 0,25 1,0 0,5 1,0 0,75 1,0 1,0

0,785392.

s
hI f x f x f x f x f x

h f f f f f

= + + + + =

= + + + + =

 = + ⋅ + ⋅ + ⋅ + = + + + + + 
=

The relative error of the calculation can be determined by comparing the
values of the analytical solution of the integral (refer to Example 6.1) and the
numerical method, using the formula:

– trapezium
0,785398 0,783730100% 100% 0,21%

0,785398
т

t
I I

I
ε − −
= ⋅ = ⋅ = ,

– Simpson’s (parabola)

40,785398 0,785392100% 100% 7,63 10 %
0,785398

с
s

I I
I

ε −− −
= ⋅ = ⋅ = ⋅ .

The most accurate result of the solution can be obtained using the Simpson’s
(parabola) formula, given that the calculation step is much larger than that of the
trapezoidal formula for calculating the integral.

6.3 Chebyshev’s integral

If you replace
2 2i i

a b b ax t+ −
= + in expression (6.9), the corresponding

expression will be reduced to the following form:

1

1
1

() ()n
i ii

f t dt A f t
=

−

=∑∫ . (6.14)

During the derivation of the Chebyshev’s formula, the following conditions
are used: the coefficients Ai are equal to each other; the quadrature formula (6.14)
has a high degree of accuracy for all polynomials up to and including the n-th
power.

Given that A1=A2=…=An=A and f(t)=1, then
1

2
n

i
i

A nA
=

= =∑ , whence A=2/n.

Under these conditions, formula (6.14) will have the following form:

1

1
1

2() ()n
i if t dt f t

n =
−

= ∑∫ . (6.15)

252

To determine ti, the second condition is used, according to which it is required
that the formula (6.15) has a high degree of calculation accuracy for the function
of the form:
 () kf t t= (k=1, 2, …, n). (6.16)

After substituting these functions into (6.15), we obtain a system of equations:

1 2

2 2 2
1 2

1

1 2

0;

;
3

;

1 (1)
.

2(1)

n

n

n
n n n

n

t t t
nt t t

n
t t t

n

+

+ + + =

 + + + =



  − − + + + =

+









 (6.17)

The system of equations (6.17) has a solution for n < 8 and n = 9, which
imposes limitations on the accuracy of the calculation, as a drawback of using
Chebyshev’s integral. The values of the abscissa ti in Chebyshev’s integral for
different values of n are given in Table 6.2.

Table 6.2 – The value of the abscissa ti in Chebyshev’s integral

2 1; 2 0,5773500
6

1; 6 0,866247

3
1; 3 0,7071070 2; 5 0,422519

2 0,0 3; 4 0,266635

4
1; 4 0,7946540

7

1; 7 0,883862

2; 3 0,1875920 2; 6 0,529657

5
1; 5 0,8324980 3; 5 0,323912

2; 4 0,3745413 4 0,0
3 0,0

For an arbitrary interval [a; b], formula (6.15) takes the form:

1

()
n

i
i

b aI f x
n =

−
= ∑ , (6.18)

where
2 2i i

a b b ax t+ −
= + .

Calculation error by the Chebyshev’s integral:

1

1
(1) 1

1

2 () ()
(1)! (1)! 2

n

nb n
n n

i
ia

a bx
b a a bf x dx x f x

n n n

+

+
+ +

=

+ −  − +  ∆ = = − + +  
∑∫ . (6.19)

n i it n i it
 

 



 

 

 



253

Example 6.3. Determine the value of the integral ∫ +
=

1

0
21 x

dxI using the

Chebyshev's integral (the order of the method is n = 3).

Solution:
For order n = 3, we obtain the abscissa value from Table 6.2:

t1= – 0,707107; t2=0; t3=0,707107.
If we substitute the obtained abscissa values into formula 6.19, we get:

[] [1 2 3
1

1,0 0() () () () 0,9790 0,80
3

0,57852 0.78584,

n

ch i
i

b a b aI f x f x f x f x
n n=

− − −
= = + + = + +

+ =

∑

where 1 1
0 1,0 1,0 0 (0,707107) 0,14645

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + ⋅ − = ;

2 2
a bх +

= + 2
0 1,0 1,0 0 0 0,5

2 2 2
b a t− + −

⋅ = + ⋅ = ;

3 3
0 1,0 1,0 0

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + × 0,707107 0,85355= ;

1 2 2
1

1 1() 0,9790
1 1,0 0,14645

f x
x

= = =
+ +

; 2()f x = 2 2
2

1 1 0,8
1 1 0,5x

= =
+ +

;

.

Example 6.4. Determine the value of the integral ∫ +
=

1

0
21 x

dxI using the

Simpson’s rule with a calculation step of h = 0,5 (the order of Chebyshev’s
integral method is n = 3).

Solution:
For the calculation step h = 0.5, the interval xϵ[0; 1,0] is divided into two

equal intervals, for which I = I1+I2, respectively.
The values of the integrals I1 and I2 for each of the intervals are determined

by Chebyshev’s integral. Therefore, from Table 6.2, we obtain the values of the
abscissa: t1 = – 0,707107; t2 = 0; t3 = 0,707107.

The value of the integral I1 for the interval [0; 0,5]:

[] [1 1 2 3
1

0,5 0() () () () 0,99467 0,94118
3

n

i
i

b a b aI f x f x f x f x
n n=

− − −
= = + + = + +∑

]0,84592 0.46363,+ =

3 2 2
3

1 1() 0,57852
1 1 0,85355

f x
x

= = =
+ +

254

where 1 1
0 0,5 0,5 0 (0,707107) 0,07322

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + ⋅ − = ;

2 2
a bх +

= + 2
0 0,5 0,5 0 0 0,250

2 2 2
b a t− + −

⋅ = + ⋅ = ;

3 3
0 0,5

2 2 2
a b b aх t+ − +

= + ⋅ = +
0,5 0 (0,707107) 0,42678

2
−

⋅ = ;

1 2 2
1

1 1() 0,99467
1 1 0,07322

f x
x

= = =
+ +

;

2 2 2
2

1 1() 0,94118
1 1 0,25

f x
x

= = =
+ +

; 3 2 2
3

1 1() 0,84592
1 1 0,42678

f x
x

= = =
+ +

.

The value of the integral I2 for the interval [0,5; 1,0]:

[] [2 4 5 6
1

1,0 0,5() () () () 0,75268 0,64
3

n

i
i

b a b aI f x f x f x f x
n n=

− − −
= = + + = + +∑

]0,53795 0.32177+ = ,

where 4 1
0,5 1 1 0,5 (0,707107) 0,57322

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + ⋅ − = ;

5 2
a bх +

= ;

6 3
0 0,5

2 2 2
a b b aх t+ − +

= + ⋅ = +
0,5 0 (0,707107) 0,92678

2
−

⋅ = ;

4 2 2
4

1 1() 0,75268
1 1 0,57322

f x
x

= = =
+ +

;

5 2 2
5

1 1() 0,640
1 1 0,75

f x
x

= = =
+ +

; 6 2 2
6

1 1() 0,53795
1 1 0,92678

f x
x

= = =
+ +

.

Then the full value of the integral:
1

1 22
0

0,46363 0,32177 0,78540
1ch

dxI I I
x

= = + = + =
+∫ .

The relative error of the calculation can be obtained by comparing the values
of the analytical solution of the integral (see Example 6.1) with the Chebyshev’s
integral:

– for the whole interval (see Example 6.3)

0,785398 0,785840100% 100% 0,056 %
0,785398

ch
wi

I I
I

ε − −
= ⋅ = ⋅ = ,

– by the method of curved trapezoids (see Example 6.4)

40,785398 0,785400100% 100% 2,55 10 %
0,785398

ch
ct

I I
I

ε −− −
= ⋅ = ⋅ = ⋅ .

2
0,5 1 1 0,5 0 0,750

2 2 2
b a t− + −

+ ⋅ = + ⋅ =

255

The use of the Chebyshev’s integral, compared to the trapezoidal and
Simpson’s rule, is the most productive, as it allows you to consider the entire
integration interval in general, while providing higher calculation accuracy. In
order to further increase the accuracy of the calculation, based on the Chebyshev’s
integral, it is advisable to reduce the calculation intervals within the general
integration interval.

6.4 Gaussian quadrature

The Gaussian quadrature is known as the formula of the highest algebraic
accuracy. For a formula of the form (6.14), the highest accuracy can be achieved
for polynomials of degree (2n–1), which are defined by 2n constants ti and Ai
(i = 1, 2, …, n).

To ensure this condition, it is necessary and sufficient that it is fulfilled for
functions of the type:

() kf t t= (0,1, , 2 1)k n= − .

Given that the function f(t) can be approximated by polynomials of degree

(2n–1), namely
2 1

0
()

n
k

k
k

f t c t
−

=

= ∑ , it is possible to obtain:

1 12 1 2 1 2 1

0 0 1 1 01 1

() ()
n n n n n

k k
k k k i i i k i i i

k k i i k
f t dt C t dt C At A C t A f t

− − −

= = = = =− −

= = =∑ ∑ ∑ ∑ ∑∫ ∫ .

The task is to determine the coefficients Аі and abscissa points ti. To determine
these constants, it is necessary to consider the implementation of formula (6.14)
for functions of the form f(t) = tk (k = 0, 1, …, 2n–1).

Given that:
1

1

2 / (1)
0

k k
t dt

−

+ 
=  
 

∫ ,

we get a system of equations:

1

1

2

1

2 2

1

2 1

1

2;

0;

1;

2 ;
2 1

0.

n

i
i

n

i i
i

n

i i
i

n
n

i i
i

n
n

i i
i

A

At

At

At
n

At

=

=

=

−

=

−

=

 =

 =

 =

 = −
 =


∑

∑

∑

∑

∑

 (6.20)

256

The system of equations (6.20) is nonlinear, its solution is associated with
significant computational difficulties. But if you use the system for polynomials
of the form:

 () ()k
nf t t P t= (0,1, , 1)k n= − , (6.21)

where Pn(t) – the Legendre polynomials can then be reduced to a linear system
with respect to the coefficients Ai, using the given points ti.

Legendre polynomials are called polynomials of the form

21() (1)
2 !

n

n n n

dP x x
n dx

= −   ,

which have the following basic properties:
1) Pn(1) = 1, Pn(–1) = (–1)n for any integer n;
2) orthogonality

1

1

() () 0n kP x Q x dx
−

=∫ , (6.22)

where Qk(x) – any polynomial of degree k < n;
3) presence of n real roots on the interval [–1; 1].
Since the powers of the polynomials in the ratio (6.21) do not exceed the value

2n–1, the system (6.20) must be fulfilled, and the formula (6.14) takes the
following form:

1

11

() ()
n

k k
n i i n i

i
t P t dt At P t

=−

= ∑∫ . (6.23)

As a result of the orthogonality property (6.22), the left part of the expression
(6.23) is equal to zero. Then:

1

() 0
n

k
i i n i

i
At P t

=

=∑ , (6.24)

which is always ensured for any values of Ai at the points ti, corresponds to the
roots of the corresponding Legendre polynomials.

By substituting these ti values into the system (6.20) and considering the first
n equations, it is possible to determine the coefficients Ai.

The formula (6.14), where ti are the zeros of the Legendre polynomials Pn(t),
and Ai (i = 1, 2, …, n) are determined from the system (6.20), is called the
Gaussian quadrature.

Table 6.3 shows the values of ti and Ai in the Gaussian quadrature for different
values of n ranging from 1 to 8.

For an arbitrary interval [a; b] the formula for the Gaussian quadrature takes
the form:

1

()
2

n

i i
i

b aI A f x
=

−
= ∑ , (6.25)

257

where
2 2i i

a b b ax t+ −
= + .

The estimate of the error of the Gaussian quadrature with n nodes is
determined from the ratio:

 []
2 1 4

2
3

() (!)
(2)! (2 1)

n
nb a n M

n n

+−
∆ ≤

+ , (6.26)

where M2n – the maximum value of the 2nd derivative on the interval [a; b].

Table 6.3 – Elements of the Gaussian quadrature

1 1 0,0 2,0
2 1; 2 0,57735027 1,0

3
1; 3 0,77459667 =0,55555556

2 0,0 =0,88888889

4
1; 4 0,86113631 0,34785484
2; 3 0,33998104 0,65214516

5
1; 5 0,90617985 0,23692689
2; 4 0,53846931 0,47862867

3 0,0 0,56888889

6
1; 6 0,93246951 0,17132450
2; 5 0,66120939 0,36076158
3; 4 0,238619119 0,46791394

7

1; 7 0,94910791 0,12948496
2; 6 0,74153119 0,27970540
3; 5 0,40584515 0,38183006

4 0,0 0,41795918

8

1; 8 0,96028986 0,10122854
2; 7 0,79666648 0,22238104
3; 6 0,52553142 0,31370664
4; 5 0,18343464 0,36268378

Example 6.5. Determine the value of the integral
1

2

0

(1)I x dx= +∫ using the

Gaussian quadrature (the order of the method is n = 3).

n i it iA



 9
5

9
8





























258

Solution:
For order n=3, we choose the abscissa value from Table 6.3:

t1 = – 0,77459667; A1 = 0,55555556; t2 = 0; A2 = 0,88888889; t3 = 0,77459667;
A2 = 0,55555556.

If we substitute the obtained abscissa values into formula (6.25), we will have:

1 1 1 2 2 3 3

1,0 0(() () ()) (1,012702 0,55555556
2 2

1,250 0,88888889 1,787298 0,55555556) 1.333333,

b aI A f x A f x A f x− −
= + + = ⋅ +

+ ⋅ + ⋅ =

where 1 1

0 1,0 1,0 0 (0,77459667) 0,112702
2 2 2 2

a b b aх t+ − + −
= + ⋅ = + ⋅ − = ;

2 2

0 1,0 1,0 0 0 0,50
2 2 2 2

a b b aх t+ − + −
= + ⋅ = + ⋅ = ;

3 3

0 1,0 1,0 0 (0,77459667) 0,887298
2 2 2 2

a b b aх t+ − + −
= + ⋅ = + ⋅ = ;

2 2
1 1() 1 1 0,112702 1,012702f x x= + = + = ; 2 2

2 2() 1 1 0,5 1,250f x x= + = + = ;
2 2

3 3() 1 1 0,887298 1,787298f x x= + = + = .

The exact value of the integral is based on the analytical solution:

1 12 2

00

1 4(1) (3) 1,333333
3 3

I x dx x x= + = + = =∫ . (6.27)

Example 6.6. Determine the value of the integral
1

2

0

(1)I x dx= +∫ using the

trapezoidal rule with a calculation step of h = 0,5 (the order of the Gaussian
quadrature is n = 3).

Solution:
For the calculation step h = 0.5, the interval x∈[0; 1] is divided into two equal

intervals, resulting in I = I1+I2, respectively.
The values of the integrals I1 and I2 for each of the intervals are determined

by Gaussian quadrature. Therefore, from Table 6.3, we obtain the values of the
abscissa:
t1 = – 0,77459667; A1 = 0,55555556; t2 = 0; A2 = 0,88888889; t3 = 0,77459667;
A2 = 0,55555556.

The value of the integral I1 for the interval [0; 0,5]:

[]1 1 1 2 2 3 3
0,5 0() () () (1,003175 0,55555556

2 2
1,0625 0,88888889 0,196825 0,55555556) 0.541667,

b aI A f x A f x A f x− −
= + + = ⋅ +

+ ⋅ + ⋅ =

259

where 1 1
0 0,5 0,5 0 (0,77459667) 0,056351

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + ⋅ − = ;

2 2
0 0,5 0,5 0 0 0,250

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + ⋅ = ; 3 32 2
a b b aх t+ −

= + ⋅ =

0 0,5 0,5 0 (0,77459667) 0,443649
2 2
+ −

= + ⋅ = ; 2 2
1 1() 1 1 0,056351f x x= + = + =

1,003175= ; 2 2
2 2() 1 1 0,25 1,06250f x x= + = + = ; 2

3 3() 1 1f x x= + = +
20,443649 1,196825+ = .

The value of the integral I2 for the interval [0.5; 1.0]:

where 1 1
0,5 1,0 1,0 0,5 (0,77459667) 0,556351

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + ⋅ − = ;

2 2
0,5 1,0 1,0 0,5 0 0,750

2 2 2 2
a b b aх t+ − + −

= + ⋅ = + ⋅ = ; 3 32 2
a b b aх t+ −

= + ⋅ =

0,5 1,0 1,0 0,5 (0,77459667) 0,943649
2 2
+ −

= + ⋅ = ; 2
4 4() 1 1f x x= + = +

20,556351 1,309526+ = ; 2 2
5 5() 1 1 0,750 1,5625f x x= + = + = ; 2

6 6() 1f x x= + =
21 0,943649 1,890474= + = .

Then, the full value of the integral:
1

2
1 2

0

(1) 0,541677 0,791667 1,333333I x dx I I= + = + = + =∫ .

Comparing the results of the numerical and analytical solutions, one can note
the high accuracy of the calculation of the integral value.

Example 6.7. Determine the value of the integral ∫ +
=

1

0
21 x

dxI using the

Gaussian quadrature method (with an order of n = 5).

Solution:

Let’s replace the variable
1 1

2 2 2 2
a b b ax ξ ξ+ −

= + = + , де a=0 і b=1,0. Also

1 1
12 2
2

d
dx

d

ξ

ξ

 +  = = . Based on the formula (6.25), the new value of the

()2 1 4 2 5 3 6
0,5 0() () () (1,309526 0,55555556

2 2
1,5625 0,88888889 1,890474 0,55555556) 0.791667,

b aI A f x A f x A f x− −
= + + = ⋅ +

+ ⋅ + ⋅ =

260

integration interval is for xϵ[x1; x2] = [0; 1]: 1 12 1 2,0 0 1,0 1,0tξ = − = ⋅ − = − ;
ξ2 = 2t2–1 = 2⋅1,0–1,0 = 1,0.

Also, the function 2
1()

1
f x

x
=

+
will look like this after substitution:

2
4()

4 (1)
ϕ ξ

ξ
=

+ +
.

After substituting and replacing all components, the new integral expression
will look like this:

1

2
1

2
4 (1)

dI ξ
ξ−

=
+ +∫ .

According to the Gauss quadrature (6.25):

() () () ()
1

2 1 2 1
1 1 2 2 3 3

11

2 () 2
2 2

n

i i
i

I d A f A A Aξ ξ ξ ξϕ ξ ξ ε ϕ ε ϕ ε ϕ ε
=−

− −  = = = + + +  
∑∫

() () ()4 4 5 5
1,0 (1,0 –0,90611)2 0,23 798466926885

2
A Aϕ ε ϕ ε ϕ− − + + = ⋅ +    

()(0,538469310,478628670 0,568888889 0,478628670 00)f f+ − + +⋅ ⋅ ×

()0,538469310 0,236926885 0,906179846() 0,78539816f f⋅ =× + ,

where and, accordingly,

the values of the parameters Ai and f(ti) are given in Table 6.4.

Table 6.4 – Results of calculating the integral of the function
i ti f(ti) Ai
1 – 0,9061179846 0,24945107 0,236926885
2 – 0,538469310 0,23735995 0,478628670
3 0,0 0,20000000 0,568888889
4 0,538469310 0,15706211 0,478628670
5 0,906179846 0,13100114 0,236926885

Comparing the results of the numerical and analytical (see Example 6.1)

solutions, it is possible to observe the high accuracy of the calculation of the value
of the integral.

6.5 Algorithms for the application of numerical methods

The sequence of application of Newton-Cotes formulas:
1. Selection of the formula and definition (see Table 6.1) for the

 coefficients Hi.
2. Algorithm and program compilation, moreover:

1 2 2 1 1,0 (1,0) 1,0 (1,0)
2 2 2 2i i ii t t tε ξ ξ ξ ξ+ − + − − −

= + = + =

261

− in the case of setting discrete values yi = f(xi) through step h, these values
are substituted into the selected formula, for example, in (6.12) or (6.13);

− in the case of setting the function y = f(x), the value yi = f(xi) is
determined, and xi = x0+ih = a+ih (a ≤ x ≤ b).

3. Error estimation.
The algorithm for solving the integral using the trapezoidal rule is presented

in Figure 6.5.

Figure 6.5 – Scheme of the algorithm for solving integrals using the
 trapezoidal rule

Consider the implementation of the trapezoidal rule in the C++ programming

language:

#include <stdio.h>
#include <conio.h>
#include <math.h>

FILE *fp;
const int n_h = 2;

float f(float x)
{ return (sin(x)/(x*x + 1)); }

float Metod_Trapets (float a, float b, float h)
{
 float I, x = a + h;
 fprintf (fp, «\n--- Metod trapets – h = %.3f ---\n», h);

262

 I = f(a) + f(b);
 for (x; x<b; x+=h)
 I = I + 2*f(x);

 I = h*I/2;
 fprintf (fp, «I = %9.7f\n», I);
 return 0;
}

int main()

{
 float a = 0, b = 1;
 float h[n_h] = {0.1, 0.05};
 if ((fp = fopen(«Data.txt», «w»)) == NULL)
 {
 printf(«Error opening file\n»);
 return 0;
 }
 for (int i=0; i<n_h; i++)
 {
 Metod_Trapets (a, b, h[i]);
 }
 printf(«End!»);
 getch();
 fclose(fp);
 return 0;
}.

When solving a problem using Simpson’s rule for an odd number of intervals,

it is suggested to additionally split each interval in half. The algorithm of the
Simpson’s rule for an odd number of intervals is presented in Figure 6.6.

Figure 6.6 – Scheme of the algorithm for solving integrals using the Simpson’s
rule for an odd number of intervals

263

The sequence of application of the Gaussian quadrature:
1. Selection of the order of the method and determination (see Table 6.3) of

coefficients Ai and values of ti (–1 ≤ t ≤ 1).
2. Division of the interval a ≤ x ≤ b into l segments (Fig. 6.7).
3. Determination of integral values for each interval (j = 1, 2, …, l)

.

Figure 6.7 – The diagram illustrating the division of the integration interval into
segments in the Gaussian quadrature

In this case, the values of the abscissa xi within each interval j are determined

by the formula:

 1 1

2 2
j i j j

i i

a a a a
x t+ ++ −
= + , (6.28)

where 1j ja a h+ = + , moreover 1a a= , 1la b+ = ,
b ah

n
−

= (1, 2, ,j l= ).

The values of the integral Ij are determined by the formula:

1

1

1

()
() ()

2

j

j

a n
j j

j i i
ia

a a
I f x dx A f x

+

+

=

−
= = ∑∫ . (6.29)

The algorithm of the Gaussian quadrature is presented in Figure 6.8, b).
Consider the implementation of the Gaussian quadrature function in the C++

programming language:

const int n_G = 4; // method order for the Gaussian method
float t_G[n_G]= {-0.86113631, -0.33998104, 0.33998104, 0.86113631}; //

coefficients t [i] for the Gaussian method n=4
float A_G[n_G]= {0.34785484, 0.65214516, 0.65214516, 0.34785484}; //

coefficients A[i] for the Gaussian quadrature n=4

∑
=

=
l

j
jII

1

264

float Method_Gaussa (float a, float b)
{

float I;
fprintf (fp, "\n--- Metod Gaussa_simple \n");
float F = 0;
for (int i=0; i<n_G; i++)
{
 float x = (a+b)/2 + (b-a)*t_G[i]/2;
 F = F + A_G[i]*f(x);

}
I = (b-a)*F/2;

 fprintf (fp, "I = %9.7f\n", I);
 return 0;

}

Accordingly, you need to add to the main function:
Method_Gaussa (a, b);

In the Chebyshev's integral, the sequence of actions is similar to the
Gaussian quadrature, but in step 1, the coefficients ti are taken from Table 6.2,
and in step 3, the formula is used to determine the jth integral:

1
1

1

()
() ()

j

j

a n
j j

j i
ia

a a
I f x dx f x

n

+

+

=

−
= = ∑∫ , (6.30)

where xi is estimated in a similar way as in the Gaussian quadrature, according to
formula (6.25).

The algorithm of the Chebyshev’s integral is presented in Figure 6.8, a).
Let’s consider the implementation of the Chebyshev's integral function in

the C++ programming language:

const int n = 4; // order of the method for the Chebyshev method
float t[n]= {-0.794654, -0.187592, 0.187592, 0.794654};

float Method_Chebisheva (float a, float b)
{

 float I;
fprintf (fp, "\n--- Metod Chebisheva_simple \n");
float F = 0;
for (int i=0; i<n; i++)
{
 float x = (a+b)/2 + (b-a)*t[i]/2;
 F = F + f(x);

}
I = (b-a)*F/n;

 fprintf (fp, "I = %9.7f\n", I);
 return 0;

}

To the main function, respectively, should be added:
Method_Chebisheva (a, b);

265

 а) b)

Figure 6.8 – Schemes of algorithms for solving problems by:

a) Chebyshev’s integral; b) Gaussian quadrature

Stop
12

Print: I

x=(a+a1)/2+((a1–
–a)/2)⋅t[i]

F=F+f(x)

I=I+((a1–a)/n)⋅F

i=0; i<n; i++

a1=a+h

F=0

5

a; a<b; a+=h

Start

Input: f(x), a, b, h, t(n)
2

I=0
3

1

6

7

10

11

8

9

Stop
12

Print: I

x=(a+a1)/2+((a1–
– a)/2)⋅t[i]

F=F+A[i]⋅f(x)

I=I+((a1–a)/n)⋅F

i=0; i<n; i++

a1=a+h

F=0

5

Start

Input: f(x), a, b, h,
t(n), A[n]

1

2

I=0
3

a; a<b; a+=h

6

7

10

11

8

9

4 4

266

6.6 Monte Carlo integration

The Monte Carlo integration is the most famous application of statistical
modeling for solving applied mathematical problems.

If the sequence of random numbers {xi}ϵX with the probability distribution
law fx(x) is subjected to the functional transformation ()i iy xφ= , then the
mathematical expectation of the sequence of random numbers {yi}ϵY:

 ∫
∞

∞−
= dxxfxm xy)()(ϕ (6.31)

for a sample size (n > 1000) with sufficiently high accuracy (Δrelative < 0,1), the
estimate can be obtained using the formula:

1

1 n

y i
i

m y
n =

= ∑ . (6.32)

If expressions (6.31) and (6.32) include the area indicator function [a; b]:

[] 1, ;
, ,

0, , ,
a x b

a b x
x a x b
≤ ≤

=  < >
1

and choose ()()
()X

f xx
f x

ϕ = , where f(x) is the integrand function, and the values of

a and b are the limits of integration from formula (6.14). Then the final expression
will have the form:

[]
1

1 ()() , ,
()

b n
i

y i
i x ia

f xI m f x dx a b x
n f x=

= = = ∑∫ 1 .

The scheme of the numerical integration algorithm using the Monte Carlo
integration is presented in Figure 6.9.

The error of the Monte Carlo integration is determined by the error of
generating a pseudorandom sequence of numbers generated by a computer system
and the size of the sample. It can be estimated from this ratio:

1

2 (1)n P
∆ =

− . (6.33)

where Р – guaranteed probability of hitting an error in the [–Δ; +Δ] interval.
The number of trials does not depend on the dimension of the integral I.

Therefore, the Monte Carlo integration is advantageous to use for calculating
multiple integrals, where the use of other methods of numerical integration is
time-consuming. For example, calculating a ten-fold integral in a unit volume
with a step of h=0,1 requires calculating the sum of approximately 1010
components.

267

Figure 6.9 – Scheme of the Monte Carlo integration algorithm

268

6.7 Estimation of the error in numerical integration

In the case when the integrand function is given analytically, the task of
determining the integral with a predetermined accuracy can be set. Since the
accuracy of the quadrature formulas discussed above depends on the
calculation step h, the accuracy of the result can be increased by reducing the
step. For example, by dividing the calculation step in half.

To determine the value of the integral with the specified accuracy ε, it is
necessary to choose the appropriate quadrature formula and the initial step h=h0.
Then, calculate the integral with a step of h/2. It is necessary to reduce the
calculation step by dividing it in half until the condition is fulfilled:

/2h hI I ε− < .

If this condition is fulfilled, the value of the integral is equal to Ih/2.
It is also possible to use the Runge method (in order to avoid introducing

additional errors into the calculation, it is necessary to choose steps that are close
in value in the first and second calculations):

1 2

1 1
2 1

h h
p p

I I
c

h h+ +

−
=

−
,

where
1 2

1 1
1 2
p p

h hI I ch I ch∗ + += + = + .
Also, the errors in calculating integrals using numerical methods can be

calculated using the following formulas:

– trapezoidal rule
3

212
nh M∆ = ,

where M2 – the maximum value of the second derivative of f(x) in the
computational domain xϵ[a; b];

– Simpson’s rule
5

4180
nh M∆ = ,

where M5 – the maximum value of the fourth derivative of f(x) in the
computational domain xϵ[a; b];

– Chebyshev's integral
1

1

1
()

(1)! 2

nn
n

i
i

b a a bx f x
n n

+

+

=

− + ∆ = − +  
∑ ;

– Gaussian quadrature

269

[]
2 1 4

2
3

() (!)
(2)! (2 1)

n
nb a n M

n n

+−
∆ ≤

+
;

– method of rectangles (left, right)
2

12
nh М∆ = ,

where M1 – the maximum value of the first derivative f(x) in the computational
domain xϵ[a; b];

– Riemann sum (averages)
3

224
nh М∆ = .

6.8 Numerical differentiation

The task is to find the derivative at a point for a given differentiable function
f(x), which is given by tabular data or an analytical expression х0.

6.8.1 Numerical differentiation of analytically given functions

Approximate differentiation of analytically given functions is necessary when
developing a universal procedure for finding the derivative for a large number of
different functions, or in the case when the analytical form of the derivative
function is too cumbersome and leads to a loss of accuracy.

The basis of numerical differentiation of analytically given functions is the
definition of the derivative:

0 0
0 0

() ()() lim
h

f x h f xf x
h→

+ −′ = .

Since it is not known what value h to take, it is necessary to construct the
sequence {hk} such that hk→0 (for example, 0,5k

kh =) and, accordingly, the
sequence {Dk} is formed, where:

k

k
k h

xfhxfD)()(−+
= (k=1, 2, …, n). (6.34)

The sequence elements are calculated as long as the condition is met:

1 1n n n nD D D D+ −− < − .

If the accuracy ɛ with which it is necessary to determine the derivative is
known, then the condition for completing the calculation of the derivative by this
method with the order of accuracy h:

270

1n nD D ε+ − < .

Let fϵC3[a; b], then the order of accuracy of the previous method can be
increased by using other expressions instead of formula (6.34).

Formula for the second-order O(h2) accuracy in calculating the derivative:

() ()()

2
f x h f x hf x

h
+ − −′ ≈ . (6.35)

Formula (6.35) can be obtained by expanding the function f(x) into a Taylor
series:

(2) 2 (3) 3

1() ()() () ()
2! 3!

f x h f C hf x h f x f x h ⋅ ⋅′+ = + ⋅ + + ; (6.36)

(2) 2 (3) 3

1() ()() () ()
2! 3!

f x h f C hf x h f x f x h ⋅ ⋅′− = − ⋅ + − . (6.37)

If expression (6.37) is subtracted from equation (6.36), we have:
(3) (3) 3

1 2(() ())() () 2 ()
3!

f C f C hf x h f x h f x h + ⋅′+ − − = ⋅ + ,

or

 2() ()() ()
2

f x h f x hf x O h
h

+ − −′ = + . (6.38)

Similarly, formulas similar to those can be obtained for higher derivatives of
the order of accuracy O(h2):

 2
() 2 () ()() f x h f x f x hf x

h
+ − + −′′ ≈ ; (6.39)

 3
(2) 2 () 2 () (2)()

2
f x h f x h f x h f x hf x

h
+ − + + − − −′′′ ≈ ; (6.40)

 (4)
4

(2) 4 () 6 () 4 () (2)() f x h f x h f x f x h f x hf x
h

+ − + + − − + −
≈ . (6.41)

The derivative calculation algorithm itself remains unchanged, namely: the
sequence {hk} is formed so that the value hk→0 and the elements of the
sequence {Dk} are calculated accordingly, for the calculation of which one of
the obtained formulas (6.38)–(6.41) is used instead of expression (6.34).

There are also higher-order accuracy formulas that can be found in specialized
literature.

271

6.8.2 Numerical differentiation of experimental data

During the solution of many practical problems, there is a need to determine
the derivatives of functions that are given by arrays of experimentally obtained
data. In this case, direct differentiation can give false results due to unseparated
«noise» that greatly distorts the value of the derivative. An example is shown in
Figure 6.10, where f(x) is the true signal, and ()f x is the measured signal (with
«noise»).

It is clear that the value of the derivative of the function f(x) contains a
significant random component, which introduces a large error in determining the
real derivative. A practical solution to this problem is to use the smoothed signal
obtained from the experiment through interpolation or approximation, followed
by differentiation of the interpolation polynomial P(x) (or approximation
function). Additionally, in order to obtain higher-order derivatives, it is necessary
to establish the condition for their convergence to the signal and its interpolation
polynomial. The error value of the derivative of the interpolation function Δ*(x) is
equal to the derivative of the error of this function ()x′∆ :

() () ()x f x P x∆ = − ; *() () ()x f x P x′ ′∆ = − ,

that is, due to the linearity of the differentiation and subtraction operations, we get
*() ()x x′∆ = ∆ .

а) b) c)

Figure 6.10 – Diagrams of signal functions:
a) – valid; b) – measured; c) – a derivative

In the handbooks, there are special tables that allow you to determine the

value of derivatives using various difference interpolation formulas. Such
formulas are easy to obtain for any interpolation method by differentiating the
interpolation formulas in the general form.

Example 6.8. Determine the acceleration and speed of the car as the value of
the derivative of the displacement function f(x) over time, as provided in tabular
data (Table 6.5).

272

Table 6.5 – Output data
i 0 1 2 3 4 5

x, sec 0 1,0 2,0 3,0 4,0 5,0
y, m 3,0 6,0 9,0 10,0 11,0 12,0

Solution:
For an approximate estimation of the derivatives of the function f(x), the left

finite differences are used. Namely, the value of the differentiation step and:
h = xi –xi-1 = x1 –x0 = 1,0 – 0,0 = x2 – x1 = x3 – x2 = x4 – x3 = x5 – x4 = 1,0 sec.

The speed of the car is the value of the first derivative, as given by the formula
(6.34):

1 0
0

2 1
1

5 4
4

6,0 3,0 3,0 m / sec;
1,0

9,0 6,0 3,0 m / sec;
1,0

;
12,0 11,0 1,0 m / sec.

1,0

y yy
h

y yy
h

y yy
h

− − ′ = = =


− − ′ = = =




− − ′ = = =



The values of the second (car acceleration) and third derivatives are based on
formula (6.34):

21 0
0

22 1
1

25 4
3

3,0 3,0 0 m / sec ;
1,0

1,0 3,0 2,0 m / sec ;
1,0

;
1,0 1,0 0 m / sec .

1,0

y yy
h

y yy
h

y yy
h

′ ′− − ′′ = = =


′ ′− − ′′= = = −




′ ′− − ′′ = = =



1 0
0

2 1
1

3 2
2

(2,0) 0,0 2,0;
1,0

0,0 (2,0) 2,0;
1,0

0,0 0,0 0.
1,0

y yy
h

y yy
h

y yy
h

′′ ′′− − − ′′′= = = −


′′ ′′− − − ′′′= = =

 ′′ ′′− −′′′= = =


273

The results of the derivative calculation are entered in Table 6.6.

Table 6.6 – Results of calculating the derivatives of the function f(x)
i 0 1 2 3 4 5

x, sec 0,0 1,0 2,0 3,0 4,0 5,0
y, m 3,0 6,0 9,0 10,0 11,0 12,0

y′ , m/sec 3,0 3,0 1,0 1,0 1,0
y′′ , m/sec2 0,0 –2,0 0,0 0,0

y′′′ –2,0 2,0 0,0

Conclusions on the application of numerical integration and
differentiation methods

Numerical integration of the functions given by the array of experimental data
is carried out using Newton-Cotes methods. In the case of an analytical integration
task, it is possible to use more accurate methods such as Gaussian quadrature
and Chebyshev's integral, or the Monte Carlo integration. The Gaussian
quadrature and Chebyshev's integral, also known as methods of the highest
algebraic accuracy, require the ability to calculate the integral function at
any point within the integration interval, which is determined by the order
of the method and the integration intervals. This is only possible in the case of
an analytical task because any approximation methods introduce additional
errors. The Monte Carlo integration, based on the generation and processing
of random numbers, utilizes the fact that the mathematical expectation of a
random variable is estimated by the average value of a sequence of
random numbers. This allows for the construction of an integral
approximation algorithm as a sequence of operations using a generated set of
random (or pseudo-random) numbers. The advantages of this method are
particularly evident when calculating multiple integrals. Due to the complexity
of analytical calculations, the estimation of errors in the application of
numerical integration methods is often carried out by performing multiple
calculations with different step sizes. In the process of numerical
differentiation, it is necessary to understand the nature of the data
being differentiated. In the presence of significant random errors,
preliminary smoothing of the data should be performed.

Control questions and tasks

1. What is the process of integrating a function called? What is the issue with
numerical integration of a function?

274

2. What are the methods of numerical integration? Provide a comparative
analysis of them.

3. What is the essence of the rectangular method for numerical integration of
functions? What is the peculiarity of using the methods of left, right, and middle
rectangles for numerical integration of functions?

4. How does the use of the left, right, and middle rectangle methods affect
the accuracy of numerical integration of functions? Define the calculation error
using the appropriate numerical methods.

5. How are Cotes coefficients determined? What are the properties of Cotes
coefficients when using them to determine the value of the integral of a function?

6. What is the sequence of application of Newton-Cotes methods? Develop
appropriate algorithms. How do simple Newton-Cotes formulas differ from
complex ones?

7. How are the Newton-Cotes formulas obtained? Derive the simple
trapezoidal and Simpson’s rules for numerical integration, as well as the
components of the formulas.

8. What is the peculiarity of using Simpson’s rule for an even and odd number
of intervals on the entire integration interval?

9. How are errors estimated using Newton-Cotes methods of numerical
integration of functions?

10. Calculate the integral using the appropriate numerical method based on
the initial data given in Table 6.7. Compile an algorithm and a calculation
program. Estimate the calculation error.

Table 6.7 – Output data for the task

Variant Integral function (I) Calculation step
(h)

Type of calculation
method

1
10,0

2

1,0

lnx xdx∫ 0,20 Trapezoidal rule

2
10,0

2
1,0 1

x dx
x+∫ 0,25 Riemann sum

3
10,0

1,0

sin
ln

x x dx
x∫ 0,20 Simpson’s rule

4
10,0

1,0

arctg x dx
x∫ 0,25 Riemann sum

5
10,0

1,0

sin lgx x dx∫ 0,50 Trapezoidal rule

275

Continuation of Table 6.7

Variant Integral function (I) Calculation step
(h)

Type of calculation
method

6
10,0

1,0

sin xdx
x∫ 0,30 Simpson’s rule

7
10,0

3

1,0

lnx xdx∫ 0,50 Trapezoidal rule

8
10,0

1,0 ln
x dx
x∫ 0,30 Simpson’s rule

9
10,0

1,0

cos lnx xdx∫ 0,50 Riemann sum

10
310,0

1,0

4x dx
x
+

∫ 0,60 Simpson’s rule

11
10,0

2
1,0

cos x dx
x∫ 0,20 Riemann sum

12
1,0

0

cos
ln

x dx
x∫ 0,20 Simpson’s rule

13
10,0

4

1,0

lgx xdx∫ 0,25 Trapezoidal rule

11. Derive the Chebyshev’s integral for numerical integration of a function
given at three points.

12. What is the fundamental drawback of Chebyshev’s integral for numerical
integration of a function?

13. What are Legendre polynomials and what are their main properties?
Obtain the expressions for the first five Legendre polynomials.

14. Derive the Gaussian quadrature for the numerical integration of a
function.

15. How are the coefficients in the Gaussian quadrature for numerical
integration determined? Why is it called the formula of the highest algebraic
accuracy?

16. How are the methods of Gaussian quadrature and Chebyshev’s integral
used, and what is the fundamental difference between them? Describe the
methodology, sequence of actions, and develop an algorithm.

17. Calculate the integral using the appropriate numerical method based on
the initial data given in Table 6.8. Compile an algorithm and a calculation
program. Estimate the calculation error.

276

Table 6.8 – Output data for the task

Variant Integral
 function (I)

Method
order (n)

Type of calculation
method

14
10,0

2
1,0

ln
1
x x dx

x+∫ 3 Chebyshev’s integral

15
10,0 2

1,0 ln
x dx

x∫ 5 Gaussian quadrature

16
10,0

4
1,0

lg x dx
x∫ 4 Chebyshev’s integral

17
10,0

1,0

ln sinx x dx∫ 6 Gaussian quadrature

18
210,0

1,0 1
x dx
x +∫ 3 Chebyshev’s integral

19
10,0

2
1,0

ln x dx
x∫ 5 Gaussian quadrature

20
10,0

1,0

()x arctg x dx⋅∫ 4 Chebyshev’s integral

21
10,0

1,0 1
arcсtg x dx

x +∫ 3 Gaussian quadrature

22 ()
10,0

1,0

sin3 lg 1x x dx+∫ 6 Chebyshev’s integral

23
10,0

1,0

sin xdx
x∫ 7 Gaussian quadrature

24 ()
10,0

1,0

ln 1xx x dx+∫ 3 Chebyshev’s integral

25
10,0

2
1,0

1
ln
x dx

x
+

∫ 5 Gaussian quadrature

26
10,0

1,0

cos
ln

x dx
x∫ 4 Chebyshev’s integral

27
210,0

1,0

1
2

x dx
x

+
−∫ 6 Gaussian quadrature

28
10,0

1,0

cos2
x

x dx
x∫ 5 Chebyshev’s integral

277

Continuation of Table 6.8

Variant Integral
 function (I)

Method
order (n)

Type of calculation
method

29 ()
1,0

0

cos
ln 2

xx dx
x +∫ 3 Gaussian quadrature

30 ()
10,0

2

1,0

lg 2 sinx x xdx+∫ 3 Chebyshev’s integral

18. Give a comparative analysis of Chebyshev’s integral, Gaussian

quadrature and Newton-Cotes methods.
19. What is the use of the Monte Carlo integration for the numerical

integration of functions? How is the calculation error determined? How can the
accuracy of the method be increased?

20. Determine the value of the integral
10,0

2

0

I x dx= ∫ using the numerical

Monte Carlo integration. Compare the obtained value with the value of the
analytical expression for different sample sizes of the sequence of random
numbers.

21. Develop a Monte Carlo numerical integration program for the double
integral 2 2

()

() ,I x y dxdy
σ

= +∫∫ where the region of integration σ is determined by

such inequalities as: 0,5 1,0x≥ ≥ and 0 2 1y x≥ ≥ − . Will the points with
coordinates (0,55; 0,75), (0,25; 0,75), (0,25; 0,25), (0,99; 0,70) fall into this region
of integration?

22. How are errors estimated when using the Chebyshev’s integral and
Gaussian quadrature of numerical integration of functions?

23. How is numerical differentiation of analytically given functions carried
out? How can the accuracy of numerical differentiation of a function be
increased?

24. How is the error determined during the numerical differentiation of
analytically given functions?

25. Differentiate the function f(x)=x2sin(x) on the interval x∈[0; 10,0].
Estimate the calculation error by comparing the values of the derivative function
calculated using analytical and numerical methods.

26. Determine the second and third derivatives of the function f(x)=xln(x) on
the interval xϵ[0; 5.0]. Estimate the calculation error by comparing the values of
the derivative function calculated using analytical and numerical methods.

278

27. How is numerical differentiation of functions determined using
experimental data carried out?

28. Determine the values of the first and second derivatives of the function
f(x), which are given by tabular data (Table 6.9).

Table 6.9 – Output data for the task

i 0 1 2 3 4 5 6 8

x 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

y 2,5 3,4 5,2 5,8 5,9 6,3 6,8 7,1

30. How is the error of numerical differentiation of an experimentally

determined function determined?

279

SOURCES:

Abramovitz M. Handbook of mathematical functions. With Formulas,
Graphs, and Mathematical Tables/ Abramowitz M., Stegun I. A. – National
Bureau of Standards, N.Y., 1972. – 1044 p.

Brezinski C.Numerical Analysis: Historical Developments in the 20th

Century / C. Brezinski, L. Wuytack, Elsevier, 2001. – 504 p.

Collatz L. Functional Analysis and Numerical Mathematics. / L. Collatz –

Academic Press, New York., 1966. – 494 p.

Forsythe G. E. Computer Methods for Mathematical Computations.

Englewood Cliffs / G. E. Forsythe, M. A. Malcolm, C. B. Moler – New Jersey
07632. Prentice Hall, Inc., 1977. – 259 p.

Gander W. Solving Problems in Scientific Computing Using Maple and

MATLAB / Walter Gander, Jiri Hrebicek, Springer, 2011. – 479 p.

Greenbaum A. Numerical Methods: Design, Analysis, and Computer

Implementation of Algorithms / A. Greenbaum, T. P. Chartier, – Princeton
University Press, 2012. – 464 p.

Greenspan D. Numerical analysis for applied mathematics, science, and

engineering / Donald Greenspan and Vincenzo Casulli. CRC Press, Boca Raton,
2018. – 352p.

Kvyetnyy R. Basics of Modelling and Computational Methods /
R. Kvyetnyy. – Вінниця : ВДТУ, 2007. – 147 p.

Kong Q. Python Programming and Numerical Methods: A Guide for
Engineers and Scientists/ Kong, Qingkai; Siauw, Timmy; Bayen, Alexandre –
Elsevier, 2020. – 480 p.

Mitsotakis D. Computational Mathematics: An introduction to Numerical
Analysis and Scientific Computing with Python/ Dimitrios Mitsotakis CRC-
Press, 2023. – 530 p.

Judd K.L. Numerical Methods in Economics / Kenneth L. Judd, MIT
Press, 1998. – 656 р.

Stoer J. Introduction to Numerical Analysis /Josef Stoer, R. Bulirsch,–
Springer Science & Business Media, 2002.  – 746 p.

https://www.amazon.com/Anne-Greenbaum/e/B001K6LJSA/ref=dp_byline_cont_book_1
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Tim+P.+Chartier&text=Tim+P.+Chartier&sort=relevancerank&search-alias=books
https://www.yakaboo.ua/ua/book_publisher/view/Elsevier
https://www.google.com.ua/search?hl=uk&tbo=p&tbm=bks&q=inauthor:%22Kenneth+L.+Judd%22
https://www.google.com.ua/search?hl=uk&tbo=p&tbm=bks&q=inauthor:%22Josef+Stoer%22
https://www.google.com.ua/search?hl=uk&tbo=p&tbm=bks&q=inauthor:%22R.+Bulirsch%22

280

SOURCES IN UKRAINIAN:

Задачин В. М. Чисельні методи: навчальний посібник / В. М. Задачин,
І. Г. Конюшенко. – Х. : Вид. ХНЕУ ім. С. Кузнеця, 2014. – 180 с.

Квєтний Р. Н. Методи комп’ютерних обчислень: навчальний посібник

/ Квєтний Р. Н. – Вінниця : ВНТУ, 2001. – 218 с.

Комп’ютерне моделювання систем та процесів. Методи обчислень:

навчальний посібник / під заг. ред. Р. Н. Квєтного – Вінниця : ВНТУ, 2012.
– Ч. 1 – 196 с.; Ч. 2 – 230 с.

Ляшенко М. Я. Чисельні методи: підручник / Ляшенко М. Я., Головань

М. С. – К. : Либідь, 1996. – 288 с.

 Моделювання та оптимізація систем: підручник / Дубовой В. М.,
Квєтний Р. Н., Михальов О. І., Усов А. В. – Вінниця : ПП «ТД«Едельвейс»,
2017 – 804 с.

Самборська О.М. Чисельні методи: навчальний посібник./
Самборська О. М., Шелестовський Б. Г. – Тернопіль: ТНТУ імені Івана
Пулюя, 2010. – 164с.

Усов А. В. Чисельні методи та їх реалізація у середовищі SCILAB6
навчальний посібник / Усов А. В., Шпинковський О. А., Шпинковська М. І.
– Київ : Освіта України, 2013. − 192 с.

Чабан В. Чисельні методи: навчальний посібник / В. Чабан. – Львів :
Вид. Нац. ун-ту “Львівська політехніка”, 2001. – 186 с.

 Фельдман Л. П. Чисельні методи в інформатиці: підручник / Фельдман
Л. П., Петренко А. І., Дмитрієва О. А. – К. : Вид. група BHV, 2006. – 480 с.

Електронне навчальне видання

Квєтний Роман Наумович

Іванчук Ярослав Володимирович

Computational Methods and Algorithms

(Обчислювальні методи та алгоритми)
(англ. мовою)

Підручник

Рукопис оформлено Я. Іванчук

Оригінал-макет підготовлено в редакційно-видавничому відділі ВНТУ

Підписано до видання 09.09.2024 р.
Гарнітура Times New Roman, Lucida Console.

Зам. № P2024-155.

Видавець та виготовлювач –
Вінницький національний технічний університет,

Редакційно-видавничий відділ.
ВНТУ, ГНК, к. 114.

Хмельницьке шосе, 95, м. Вінниця, 21021.
press.vntu.edu.ua;

Email: rvv.vntu@gmail.com.
Свідоцтво суб’єкта видавничої справи

серія ДК № 3516 від 01.07.2009.

	5.1 І Interpolation 205
	5.1.1 Different methods 206
	5.1.2 Lagrangian interpolation 216
	5.1.3 Spline interpolation 221

	5.2 Data approximation 228
	5.3 Statistical data processing 234
	Control questions and tasks 240
	6.1 Riemann sum 245
	6.2 Newton-Cotes formulas 248
	6.3 Chebyshev’s integral 251
	6.4 Gaussian quadrature 255
	6.5 Algorithms for the application of numerical methods 260
	6.6 Monte Carlo integration 266
	6.7 Estimation of the error in numerical integration 268
	6.8 Numerical differentiation 269
	6.8.1 Numerical differentiation of analytically given functions 269
	6.8.2 Numerical differentiation of experimental data.............................271
	5.1.3 Spline interpolation

	Conclusions regarding the application of data processing problem solving methods
	Control questions and tasks
	Conclusions on the application of numerical integration and differentiation methods
	Control questions and tasks
	Brezinski C.Numerical Analysis: Historical Developments in the 20th Century / C. Brezinski, L. Wuytack, Elsevier, 2001. – 504 p.
	Gander W. Solving Problems in Scientific Computing Using Maple and MATLAB / Walter Gander, Jiri Hrebicek, Springer, 2011. – 479 p.
	Greenbaum A. Numerical Methods: Design, Analysis, and Computer Implementation of Algorithms / A. Greenbaum, T. P. Chartier, – Princeton University Press, 2012. – 464 p.
	Mitsotakis D. Computational Mathematics: An introduction to Numerical Analysis and Scientific Computing with Python/ Dimitrios Mitsotakis CRC-Press, 2023. – 530 p.
	Judd K.L. Numerical Methods in Economics / Kenneth L. Judd, MIT Press, 1998. – 656 р.
	Stoer J. Introduction to Numerical Analysis /Josef Stoer, R. Bulirsch,– Springer Science & Business Media, 2002.  – 746 p.
	Самборська О.М. Чисельні методи: навчальний посібник./ Самборська О. М., Шелестовський Б. Г. – Тернопіль: ТНТУ імені Івана Пулюя, 2010. – 164с.
	Усов А. В. Чисельні методи та їх реалізація у середовищі SCILAB6 навчальний посібник / Усов А. В., Шпинковський О. А., Шпинковська М. І. – Київ : Освіта України, 2013. − 192 с.
	Чабан В. Чисельні методи: навчальний посібник / В. Чабан. – Львів : Вид. Нац. ун-ту “Львівська політехніка”, 2001. – 186 с.

